DeMPT: Decoding-enhanced Multi-phase Prompt Tuning for Making LLMs Be Better Context-aware Translators

Xinglin Lyu, Junhui Li, Yanqing Zhao, Min Zhang, Daimeng Wei, Shimin Tao, Hao Yang, Min Zhang


Anthology ID:
2024.emnlp-main.1131
Volume:
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Month:
November
Year:
2024
Address:
Miami, Florida, USA
Editors:
Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
20280–20295
Language:
URL:
https://aclanthology.org/2024.emnlp-main.1131
DOI:
Bibkey:
Cite (ACL):
Xinglin Lyu, Junhui Li, Yanqing Zhao, Min Zhang, Daimeng Wei, Shimin Tao, Hao Yang, and Min Zhang. 2024. DeMPT: Decoding-enhanced Multi-phase Prompt Tuning for Making LLMs Be Better Context-aware Translators. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 20280–20295, Miami, Florida, USA. Association for Computational Linguistics.
Cite (Informal):
DeMPT: Decoding-enhanced Multi-phase Prompt Tuning for Making LLMs Be Better Context-aware Translators (Lyu et al., EMNLP 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.emnlp-main.1131.pdf