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Abstract
Recent advancements in Vision-Language (VL)
research have sparked new benchmarks for
complex visual reasoning, challenging mod-
els’ advanced reasoning ability. Traditional
Vision-Language Models (VLMs) perform well
in visual perception tasks while struggling
with complex reasoning scenarios. Conversely,
Large Language Models (LLMs) demonstrate
robust text reasoning capabilities; however,
they lack visual acuity. To bridge this gap,
we propose Complex Visual Reasoning Large
Language Models (CVR-LLM), capitalizing
on VLMs’ visual perception proficiency and
LLMs’ extensive reasoning capability. Un-
like recent multimodal large language mod-
els (MLLMs) that require a projection layer,
our approach transforms images into detailed,
context-aware descriptions using an iterative
self-refinement loop and leverages LLMs’ text
knowledge for accurate predictions without ex-
tra training. We also introduce a novel multi-
modal in-context learning (ICL) methodology
to enhance LLMs’ contextual understanding
and reasoning. Additionally, we introduce
Chain-of-Comparison (CoC), a step-by-step
comparison technique enabling contrasting var-
ious aspects of predictions. Our CVR-LLM
presents the first comprehensive study across a
wide array of complex visual reasoning tasks
and achieves SOTA performance among all.

1 Introduction

The concept of complex visual reasoning was in-
troduced with Visual Commonsense Reasoning
(VCR) dataset (Zellers et al., 2019) in 2019, which
tests models’ ability to understand visual content
as well as commonsense cognition. However, the
development in this field has remained relatively
subdued, primarily due to Vision-Language Mod-
els’ (VLMs) limitations in incorporating common-
sense knowledge (Gan et al., 2022). Recent years
have seen significant advancements in complex lin-
guistic reasoning tasks (Cobbe et al., 2021; Wei

et al., 2022) due to the emerging GPT3 (Brown
et al., 2020), LLaMA (Touvron et al., 2023a), and
Vicuna (Chiang et al., 2023). This leap forward
has triggered a renewed interest in the complex
visual reasoning area, exploring how visual per-
ception can enhance linguistic inference and po-
tentially overcome previous hurdles (Gan et al.,
2022). It has led to innovative benchmarks focus-
ing on various aspects: commonsense reasoning -
WinoGAViL (Bitton et al., 2022), compositionality
- Winoground (Thrush et al., 2022), weird image
explanation - Whoops (Bitton-Guetta et al., 2023),
and humor understanding - NYCCC (Hessel et al.,
2022). These tasks demand models not only ac-
curately interpret image content, but also integrate
knowledge from daily experiences, general com-
monsense, cultural context, and humor sense. For
example, a synthetic image, as shown in Whoop’s
example in Figure 1 of “The portrait of the Mona
Lisa depicts a stern male face.” contradicts the cul-
tural context, as the famous painting Mona Lisa
depicts a female face.

In this paper, we introduce a novel method
named Complex Visual Reasoning Large Lan-
guage Models (CVR-LLM), based on the "VLMs +
LLMs" concept. Recent multimodal large language
models (MLLMs) like LLaVA (Liu et al., 2024,
2023a) and MiniGPT4 (Zhu et al., 2023; Chen et al.,
2023) have proven effective in many VL tasks.
However, these models are resource-intensive, re-
lying on millions of image-text pairs for projection
layer learning. To overcome this limitation, our
approach leverages the visual perception strengths
of VLMs to translate images into context-aware
image descriptions (CaID) via an inference-only,
dual-loop self-refinement process that incorporates
feedback from LLMs. These detailed descriptions
enhance the LLMs’ inference process, transform-
ing multi-modal tasks into simpler single-modal
challenges and streamlining the overall process.
In addition, we develop a unique multi-modal in-
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Figure 1: Five distinct examples from diverse datasets in the complex visual reasoning field (Bitton-Guetta et al.,
2023) challenge AI models’ ability of complex reasoning in different aspects such as general commonsense.

context learning (ICL) approach named Complex
Visual Reasoning ICL (CVR-ICL), which enhances
the reasoning capacities of LLMs within a range
of complex multi-modal environments. Figure 2
provides an illustration of how our CVR-LLM is
applied to the Winoground task. It describes the
images as appropriate sentences via CaID and uti-
lizes the sophisticated reasoning and ICL abilities
of LLMs through CVR-ICL for more accurate pre-
dictions.

Our research stands as the pioneering study
to explore such a broad array of benchmarks
(WinoGAViL, Winoground, Whoops, VCR, and
NYCCC), proposing a paradigm centred on the
"VLM+LLM" concept for addressing complex vi-
sual reasoning tasks. Experimental results show
that CVR-LLM achieves SOTA performance across
all five tasks. Further ablation studies and com-
parative analyses reveal the effectiveness of each
module and the superiority of our method over pre-
vious approaches. Particularly in comparative anal-
ysis, we introduce the Chain-of-Comparison (CoC)
technique, inspired by "Chain-of-Thought" and uti-
lizing GPT4 (Achiam et al., 2023), to address the
limitations of conventional metrics in evaluating
abstract concepts. CoC provides a nuanced analy-
sis by systematically dissecting and quantitatively
contrasting various facets of the results for a com-
prehensive evaluation.

Our contributions are summarized as follows:
(1) We present the first comprehensive study across

all complex visual reasoning tasks, including Wino-
GAViL, Winoground, Whoops, VCR, and NYCCC.
(2) We design a context-aware image description
generation method and a specific in-context learn-
ing strategy1, to enhance the advanced visual rea-
soning ability of LLMs to multi-modal complex
visual reasoning tasks. (3) We further introduce
Chain-of-Comparsion, a novel GPT4-based com-
parison technique inspired by "Chain-of-Thought"
filling the gaps of traditional metrics in abstract
concept evaluation. (4) Experimental results show
that our approach surpasses current SOTA models
in a range of complex visual reasoning scenarios.

2 Related Work

2.1 Reasoning Research in Vision-Language
Domain

In recent years, multi-modal reasoning research
has significantly advanced. Beyond the complex vi-
sual reasoning benchmarks discussed in Section 1,
many studies focus on the reasoning process it-
self, such as chain-of-thought (Kojima et al., 2022;
Shaikh et al., 2022) or reasoning modules (Zhou
et al., 2023b; Jiang et al., 2023), which are crucial
for enhancing AI models’ analytical capabilities
and performance. For instance, Liu et al. (2023b)
introduced a modality-aligned thought chain rea-
soning framework to incorporate explicit reason-
ing into task-oriented dialogue generation, improv-

1The project is available at: https://CVR-LLM.github.io
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Figure 2: An example of our CVR-LLM works on the Winoground dataset. Our method transfers images into
context-aware image descriptions through CaID and leverages the sophisticated reasoning and ICL abilities of
LLMs with the CVR-ICL module, offering a more precise answer.

ing contextual understanding and effectiveness.
Lv et al. (2023) proposed a counterfactual cross-
modality reasoning method for better video mo-
ment localization. Zhou et al. (2023a) developed
a multi-step reasoning probability transfer mech-
anism to improve multi-label interaction classifi-
cations. Yu et al. (2023) presented a hierarchical
reasoning network to consolidate multi-level in-
teractive cues, from coarse to fine-grained details,
enhancing Human-Object Interaction (HOI) repre-
sentations.

2.2 Large Language Models for
Vision-Language Analysis

The past two years have seen an unprecedented
surge in the development and application of
LLMs (Brown et al., 2020; Touvron et al., 2023a;
Chiang et al., 2023) across diverse fields. LLMs
have garnered acclaim for their robust capabili-
ties, including advanced analytical prowess (Ko-
jima et al., 2022), extensive text-level knowl-
edge (Naveed et al., 2023) and superior under-
standing ability (Chang et al., 2023). Further-
more, they are equipped with two powerful mecha-
nisms: chain-of-thought (Kojima et al., 2022) and
in-context learning (Liu et al., 2021a), which sig-
nificantly augment their effectiveness and perfor-
mance in specialized tasks (Naveed et al., 2023).
For example, Muraoka et al. (2023) developed
a cross-lingual model trained alongside a cross-
lingual LLM, leveraging LLMs’ capabilities across
languages. Lan et al. (2023) proposed reasoning
question prompts for Visual Question Answering
(VQA) tasks, unlocking LLMs’ potential in zero-
shot learning. Additionally, Yang et al. (2023) in-
troduced SODA, a system that integrates LLMs
with explainable AI to assist marketers with data
interpretation, enhancing human-AI collaboration.
Zhong et al. (2023) used knowledge distillation
to imbue the SUR-adapter with LLMs’ semantic

understanding and reasoning capabilities.

3 Methods

In this section, we introduce the CVR-LLM frame-
work, highlighting its innovative process for gen-
erating context-aware image descriptions (CaID)
as well as its complex visual reasoning in-context
learning (CVR-ICL) strategy. Initially, we ex-
plain the CaID generation process, which differs
from traditional image captioning by using a self-
refinement loop with feedback from Large Lan-
guage Models (LLMs) to produce accurate and
contextually relevant descriptions (Section 3.1).
Subsequently, we present the CVR-ICL approach
(Section 3.2), which enhances LLMs’ contextual
understanding and reasoning by assessing relevant
cases and selecting suitable complex multi-modal
demonstrations.

3.1 Context-Aware Image Description

Pre-trained VLMs (Li et al., 2023; Alayrac et al.,
2022) have demonstrated their proficiency in gen-
erating detailed image captions on benchmarks
such as MSCOCO (Chen et al., 2015). How-
ever, while these captions may accurately reflect
visual content, they are not customized for com-
plex visual reasoning scenarios. Recently, the trend
of multi-modal instruction-following agents like
miniGPT4 (Zhu et al., 2023; Chen et al., 2023) and
LLaVA (Liu et al., 2024, 2023a), integrating open-
source LLMs (Chiang et al., 2023; Touvron et al.,
2023b) with pre-trained vision encoders (Doso-
vitskiy et al., 2020; Liu et al., 2021b) to create
a MLLM, has become very popular. The effective-
ness of these models is heavily reliant on tuning
with vast amounts of VL instruction data, which is
generated by powerful LLMs like ChatGPT (Ope-
nAI, 2023) and GPT4 (Achiam et al., 2023). While
promising, their reliance on extensive VL instruc-
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Figure 3: The framework overview of CaID. It is de-
signed to transfer images into contextualized descrip-
tions, bypassing the need for direct multi-modal fusion
and leveraging LLMs’ extensive knowledge for more
accurate predictions.

tion data for tuning requires the substantial resource
and time investment. In this work, we introduce a
more efficient method for generating context-aware
image descriptions, which depends on the inference
process and leverages task-specific information and
feedback from LLMs to craft better prompts, guid-
ing the caption generation process more effectively.

Our CaID framework optimizes the process of
creating context-aware image descriptions through
a dual-loop self-refinement approach, as shown
in Figure 3. Initially, it leverages task-specific
details and LLM insights to craft precise image
prompts. These initial prompts are designed to dis-
till essential task-related information, guiding the
captioner in producing descriptions that not only
cover image content but are also deeply aligned
with the task’s requirements. Specifically, given a
task specific text description t with an image i (for
processes involving multiple images, we approach
each image sequentially), the generation of initial
context-aware image descriptions can be described
as follows:

dinit = C(i,L(t)), (1)

where dinit is the initial generated context-aware
image description. C is the image-to-text captioner,
transfering the image into the description. L is
the LLM, encapsulating crucial task-related text
information t (e.g. requirements, questions, cue
words) into feature prompts.

In the second loop, our approach is crafted to
encapsulate essential task-related details as well
as LLMs’ feedback, enhancing description gener-
ation with LLMs’ vast knowledge. Specifically, it
merges initial descriptions with task specifics and
CVR-ICL examples into a task-focused prompt,
guiding LLMs to make more precise predictions.

These predictions are then treated as pseudo labels,
asking LLMs to design further inquiries for deeper
insights around them. In this way, we build up a
feedback reflection between LLM prediction and
context-aware caption, enhancing the richness and
accuracy of the content produced. The textual feed-
back is then leveraged to refine the image prompts,
providing deep insights that inform and guide the
generation of nuanced image descriptions. The
revised context-aware image descriptions can be
described as follows:

drevised = C(i,L(t,Q(p))), (2)

where drevised is the revised generated context-
aware image description. Q is the further query
from LLM. p is the prediction from LLM accord-
ing to the generated task prompt. Q(p) is the text
feedback for updating image prompt.

3.2 Complex Visual Reasoning ICL

LLMs are renowned for their exceptional in-
context learning capabilities, especially with task-
specific examples. The optimal in-context exem-
plars enable LLMs to leverage their background
knowledge for more precise outcomes. However,
most of the research works (Liu et al., 2021a;
Sorensen et al., 2022) have primarily focused on
the text-centric domain, with few works (Alayrac
et al., 2022; Zhao et al., 2023) exploring multi-
modal in-context learning for VL tasks. Our ap-
proach, unlike prior methods focused solely on
text similarity in NLP, such as the kNN-augmented
in-context example selection (KATE), integrates
multi-modal factors, thereby enriching the disci-
pline with a fresh perspective. Furthermore, it is
also different from MMICL (Zhao et al., 2023) in
the multi-modal domain, which employs a vision
prompt generator for image-to-visual embedding
conversion and merges these with text embeddings
as a union measurement factor.

Complex visual reasoning tasks demand mod-
els capable of selecting in-context examples from
a multi-modal domain, leveraging extensive back-
ground knowledge and information within it (Zhao
et al., 2023). However, our CVR-LLM is grounded
in LLMs, which are inherently text-based, lead-
ing to a gap between textual and multi-modal do-
mains. Directly applying a text-based kNN clus-
tering method could result in the loss of important
multi-modal information. On the other hand, using
multi-modal information for retrieval might ignore
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Figure 4: The generic diagram of our proposed CVR-ICL approach. The dual analysis enables our approach to
more effectively select contextually relevant examples from text and multi-modal domains.

essential context-aware information within our gen-
erated image descriptions. To address this, we pro-
pose the complex visual reasoning ICL, which aims
to select in-context examples for LLMs by effec-
tively integrating both text and multi-modal compo-
nents. This dual analysis enables our LLM to more
effectively select contextually relevant examples,
ensuring a balanced integration of text and multi-
modal insights for enhanced in-context learning.
Figure 4 illustrates the framework of our CVR-ICL
strategy. Specifically, given a task t with an image
i, we initially convert the image into a description
d, which enables the task to be applicable not only
in multi-modal domains but also in text-only sce-
narios. Then, we employ a multi-modal encoder
fm and a text encoder ft to transform inputs from
the multi-modal domain and the text domain into
vector representations as follows:

xm = fm(t, i), (3a)

xt = ft(t, d), (3b)

where xm is the vector representation in the multi-
modal domain. xt is the vector representation in
the text domain.

Upon transforming each example into two dis-
tinct vector forms, we compute the cosine similar-
ity score to identify and select the examples that
are most relevant. Considering a target sample in
test set and the ith example in the training set, the
similarity calculation process can be expressed as
follows:

sm = fc(xm, xith
m ), (4a)

st = fc(xt, x
ith
t ), (4b)

s = sm + st, (4c)

where sm is the similarity score between the target
sample and ith example in dataset on the multi-
modal domain, st is the similarity score between
the target sample and ith example in dataset on the
text domain. s is the final similarity score. fc is the
cosine similarity function. Finally, the top-k cases
with the highest s are selected as the in-context
examples, aimed at boosting the contextual under-
standing and prediction accuracy of the LLMs.

4 Experiments

4.1 Dataset and Metrics

To evaluate the effectiveness of our proposed
method, we conduct a comprehensive test in com-
plex visual reasoning areas. Our evaluation in-
cluded WinoGAViL (4373 samples), Winoground
(400 samples), Whoops (500 samples), VCR (2653
out of over 26k samples, selecting a random 10%),
and NYCCC (528 samples), providing a broad as-
sessment of our approach’s capabilities. In the
terms of metrics, we adhered to the evaluation
methods provided by these datasets, ensuring a
fair assessment of our method’s performance.

4.2 Implementation Details

For the basic captioner in context-aware image
description (Section 3.1), we choose the BLIP2-
flant5xxl (Li et al., 2023) as our baseline. For CVR-
ICL phase (Section 3.2), we employ BM25 (Robert-
son et al., 1995) and BLIP2 multi-embedding (Li
et al., 2023) to encode text and multi-modal inputs,
respectively. It is important to note that the ICL
example results are derived from LLM inference
without using actual annotations to prevent data
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Type Model
WinoGAViL Winoground Whoops VCR NYCCC

5/6 10/12 SWOW Text Image Group GPT4 Rate Q->A QA->R Match acc. CrowdAcc

VLM

ViLT (2021) 55.0 52.0 59.0 34.7 14.0 9.2 - - - - -
CLIP ViT-L/14 (2021) 47.0 15.0 66.0 - - - - - - 56.6 55.8

UNITER (2020) - - - 38.0 14.0 10.5 - - - - -
ViLLA (2020) - - - 37.0 13.2 11.0 - - - 48.1 47.0
BLIP (2022) 54.6 45.0 66.5 46.5 27.7 24.2 22.0 29.2 27.5 58.7 58.1

BLIP2 (2023) 49.3 38.8 71.6 44.0 26.0 23.5 31.0 24.5 25.6 58.3 56.7

MLLM

LLaVA 1.0 (2024) - - - - - - 32.0 28.3 40.0 55.8 53.1
LLaVA 1.5 (2023a) - - - - - - 42.4 35.1 44.5 59.3 56.0

MiniGPT4 V1 (2023) - - - - - - 44.6 40.6 47.7 58.5 55.6
MiniGPT4 V2 (2023) - - - - - - 48.2 48.8 49.7 60.4 59.2

VLM+LLM
CVR-LLMLlama3 72.3 70.4 88.7 45.0 29.5 24.5 60.4 50.5 52.4 59.8 57.7
CVR-LLMGPT3.5 73.4 71.6 83.4 42.7 30.5 23.5 61.2 51.1 53.4 59.4 56.8
CVR-LLMGPT4 74.7 73.2 86.5 43.5 35.0 26.5 62.0 52.9 54.3 60.6 57.4

Table 1: The comparison of our CVR-LLM with popular VLMs and MM LLMs on five complex visual reasoning
tasks. Notably, MLLMs like LLaVA and MiniGPT4 exhibit limitations in handling tasks involving multiple
images or computing image-text similarity scores, resulting in their performance being unavailable for tasks like
WinoGAViL and Winoground.

leakage. For our LLMs, we choose three popular
LLMs as inference models for generation tests in-
cluding: Llama3-8B (Dubey et al., 2024) for CVR-
LLMLlama3, GPT3.5 (OpenAI, 2023) for CVR-
LLMGPT3.5, and GPT4 (Achiam et al., 2023) for
CVR-LLMGPT4. Performance comparisons are
conducted directly on the test set without any fine-
tuning, as WinoGAViL, Winoground, and NYCC
datasets are exclusively for testing purposes.

4.3 Comparison to State-of-the-Arts
In this section, we evaluate our proposed CVR-
LLM against various models across a range of
complex visual reasoning tasks, including Wino-
GAViL, Winoground, Whoops, VCR, and NYCCC.
These models fall into two categories: VLMs (Kim
et al., 2021; Radford et al., 2021; Gan et al., 2020;
Li et al., 2023) and MLLMs (Liu et al., 2024,
2023a; Zhu et al., 2023; Chen et al., 2023). No-
tably, MLLMs like LLaVA and MiniGPT4 struggle
with tasks involving multiple images, making their
performance data unavailable for WinoGAViL and
Winoground.

Table 1 showcases our method’s superiority
across five tasks, eclipsing both VLMs and LMMs.
For example, our CVR-LLMLlama3 significantly
surpasses the SOTA model BLIP2 by achieving an
88.7% accuracy (+17.1 improvement) in SWOW
setting on the WinoGAViL benchmarks. Similarly,
it outperforms the SOTA model MiniGPT4 with a
62.0% accuracy (+13.8 improvement) on the GPT4
rate (Bitton-Guetta et al., 2023) for Whoops tasks,
underscoring our framework’s advanced perfor-
mance. Additionally, our method performs well on
three LLM-based categories, demonstrating robust
generation abilities with consistent performance.

This highlights the versatility and adaptability of
our model, ensuring high-quality results across var-
ious complex visual reasoning tasks.

4.4 Ablation Studies
In this section, we examine the individual contri-
butions of the components within our framework
CVR-LLMGPT4. As demonstrated in Table 2, we
present an ablation study that quantifies the per-
formance impact of each module across various
datasets. The experimental findings suggest that the
CVR-ICL module significantly boosts the inference
performance of LLMs compared to using context-
aware image descriptions alone, with the exception
of the NYCCC dataset (It may be due to NYCCC’s
focus on humor, where precise descriptions are
more critical). This highlights the CVR-ICL mod-
ule’s effectiveness in enhancing LLM capabilities
across various tasks. In addition, our comprehen-
sive method, CVR-LLM, which integrates both
context-aware descriptions and CVR-ICL, achieves
a substantial enhancement in performance relative
to the baseline.

4.5 Analysis
Context-Aware Image Description vs General
Image Caption In this section, we investigate
CaID’s impact at an abstract level and design a
novel method to quantitatively demonstrate the se-
mantic gap between context-aware image descrip-
tions and general image captions (Note that the
performance impact has been shown in Table 2).
Figure 5 provides two examples comparing context-
aware image descriptions with general image cap-
tions and our goal is to determine whether context-
aware descriptions offer more contextually relevant
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Module
WinoGAViL Winoground Whoops VCR NYCCC

5/6 10/12 SWOW Text Image Group GPT4 Rate Q->A QA->R Q->AR Match acc. CrowdAcc NYAcc

Base 60.0 58.3 78.4 28.7 26.2 16.0 36.4 38.0 37.0 21.3 41.8 41.3 46.0
Base+CaID 63.5 62.0 73.7 31.5 30.0 19.7 54.6 43.9 44.2 22.9 51.5 48.7 53.6
Base+CVR-ICL 69.8 66.1 80.9 39.0 29.2 22.0 60.6 48.8 49.2 25.8 48.0 47.6 52.9
CVR-LLMGPT4 73.4 73.2 86.5 43.5 35.0 26.5 62.0 54.3 52.9 30.4 60.6 57.4 63.1

Table 2: The ablation study of our CVR-LLM on five complex visual reasoning tasks. "Base" represents using the
general image captions and GPT4 to complete these tasks. "Base+CaID" means using the context-aware image
descriptions instead of the general image captions and GPT4 to test the performance. "Base+CVR-ICL" represents
using general image captions and GPT4 with our designed CVR-ICL learning methods.

Figure 5: Two examples from WinoGAViL compare
context-aware image descriptions with general image
captions. WinoGAViL is designed to ask the model to
select the image that best matches the cue word.

information to aid LLMs in decision-making. Un-
like traditional sentence evaluations that rely on
annotations to compute metrics like BLEU (Pa-
pineni et al., 2002) and CIDEr (Vedantam et al.,
2015), we lack direct measures to assess the con-
textual relevance of sentences. To address this, we
use GPT4 (Achiam et al., 2023) to evaluate the rela-
tive effectiveness between two kinds of expressions
with the prompt: “Evaluate the equivalence of the
following two options for the task XXX. Option A:
XXX; Option B: XXX. Please return True if Option
B is better than Option A in answering questions;
return False if the opposite is true; return Equal
if they are the same for the question.”. Addition-
ally, inspired by the concept of chain-of-thought
(CoT) (Wei et al., 2022), we propose a novel com-
parison chain-of-comparison (CoC), which imple-
ments a step-by-step analysis to evaluate the effec-
tiveness. This method involves a comprehensive
four-step analysis protocol, depicted in Figure 6. It
follows a series of cognitive steps that our brains
undertake to make sense of information, particu-
larly when engaging with complex problems.

Figure 6: The illustration of how to use GPT4 for step-
by-step comparsion.

Figure 7: Hypothesis verification with GPT4, which
demonstrates the effectiveness of our CaID against gen-
eral image captions.

Figure 7 shows the results of directly employing
GPT4 to compare the effectiveness of general im-
age captions with our image descriptions in the spe-
cific scenario of answering task-related questions.
Furthermore, Table 3 presents the performance de-
rived from utilizing GPT4 to conduct a detailed,
step-by-step analytical assessment of effectiveness.
These empirical results indicate that our approach
yields image descriptions with enhanced contex-
tual relevance, thereby significantly aiding LLMs
in the decision-making process, particularly on the
WinoGAViL and Whoops datasets.

Complex Visual Reasoning ICL vs Other ICL
The CVR-ICL is designed to optimize the selection
of in-context exemplars within a multi-modal envi-
ronment, thereby enhancing the reasoning abilities
of LLMs. This innovative method is contrasted
with three alternative configurations: Random In-
Context Learning (RICL) (Brown et al., 2020),
KATE (Liu et al., 2021a), and Multi-modal Similar
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Dataset Option Step 1 Step 2 Step 3 Step 4 Average

WinoGAViL
Caption Better 6.0 4.3 8.3 5.0 5.9
Description Better 75.3 76.0 71.3 76.7 74.8
Equal 18.7 19.7 20.3 18.3 19.3

Winoground
Caption Better 24.0 24.0 29.0 27.0 26
Description Better 59.0 56.0 59.0 56.0 57.5
Equal 17.0 20.0 12.0 17.0 16.5

Whoops
Caption Better 27.0 13.0 14.0 13.0 16.7
Description Better 71.0 80.0 76.0 75.0 75.5
Equal 2.0 7.0 10.0 12.0 7.7

VCR
Caption Better 24.3 32.5 30.1 28.6 28.9
Description Better 53.5 45.4 50.6 52.7 50.5
Equal 22.2 22.1 19.3 18.7 20.6

NYCCC
Caption Better 18.6 15.8 17.4 19.1 17.7
Description Better 58.5 62.3 60.4 61.0 60.5
Equal 22.9 21.9 22.2 19.9 21.8

Table 3: The performance of using GPT4 to assess the
effectiveness of two options (general image caption and
our context-aware image description) based on CoC.

Dataset Category RICL (2020) KATE (2021a) MMICL (2023) CVR-ICL

WinoGAViL
5/6 64.1 68.6 66.3 69.8
10/12 61.7 64.1 62.8 66.1
SWOW 80.7 82.8 80.9 80.9

Winoground
Text 35.0 29.5 27.5 39.0
Image 22.5 30.0 25.0 29.2
Group 18.5 20.0 17.5 22.0

Whoops GPT4 Rate 60.4 62.0 60.8 62.0

VCR
Q->A 45.1 48.6 44.0 48.8
QA->R 46.5 48.9 46.3 49.2
Q->AR 22.5 24.8 23.6 25.8

NYCCC
Match acc. 44.4 47.5 45.5 48.0
CrowdAcc 46.6 46.4 43.7 47.6
NYAcc 50.3 51.2 49.8 52.9

Table 4: The performance of using different ICL meth-
ods on different datasets.

In-Context Learning (MMICL) (Zhao et al., 2023).
To ensure a fair comparison, we utilized general im-
age captions across all models to test performance
for eliminating the effect of our context-aware im-
age descriptions. As demonstrated in Table 4, our
CVR-ICL outperforms other ICL methods, demon-
strating its adeptness at integrating and leveraging
both textual and multi-modal domains to select the
most contextually appropriate exemplars.

Case Number Selection in Complex Visual Rea-
soning ICL Figure 8 illustrates the influence of
varying case numbers in the CVR-ICL on the per-
formance of our proposed CVR-LLM method. The
experimental results suggest a trend where the
model’s performance initially improves with an
increase in case numbers, exhibits fluctuations at
higher numbers, and eventually declines as the case
number becomes excessively large. This pattern
suggests that the optimal selection for the number
of cases is four.

5 Qualitative Results

To showcase the capabilities of our approach, we
present qualitative results in Figure 9. It illustrates

Figure 8: The different case numbers in CVR-ICL and
corresponding performance.

Figure 9: Two qualitative results from Whoops illustrat-
ing the capabilities of our approach. Whoops is designed
to ask the model to explain what makes images weird.

how LLMs leverage contextual information to ask
more relevant and insightful questions tailored the
specific tasks. For instance, when provided with
an image of the chess piece, the LLMs might ask
“What does the chess piece look like?”. Subse-
quently, the captioner model generates contextually
appropriate descriptions, such as “A chess piece
that looks like a unicorn.”. This synergy enhances
the LLM’s decision-making process, making it
more precise and context-aware. More detailed
qualitative results with corresponding prompts and
CVR-ICL examples are illustrated in Appendix A.1
and Appendix A.2.

6 Conclusion

In this work, we propose CVR-LLM, an innova-
tive approach for complex visual reasoning tasks.
This method boosts LLMs’ understanding of visual
content for complex reasoning via context-aware
image descriptions. We also develop a multi-modal
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in-context learning technique, enhancing LLMs’
reasoning skills at both image and text levels. Ex-
perimental results show that CVR-LLM sets new
benchmarks across multiple complex visual reason-
ing tasks. We also introduce a nuanced GPT4 based
analysis technique Chain-of-Comparison to auto-
matically break down and contrast among various
aspects of generated results.

7 Limitation

Although our approach achieves SOTA perfor-
mance across a wide range of complex visual rea-
soning benchmarks, it still has two notable limita-
tions. First, compared to the MLLMs that can per-
form end-to-end inference directly, our approach
operates as an LLM-agent-driven framework. This
involves VLMs generating context-aware image de-
scriptions, followed by the LLM performing infer-
ence with ICL to predict the answer. While this two-
step process enhances contextual understanding
and reasoning, it may significantly increase time
consumption compared to direct end-to-end infer-
ence models. Second, despite its overall strong per-
formance and generalization ability, our approach
still lags behind GPT4V in some tasks. Figure 10
shows that our CVR-LLM can surpass GPT4V in
SWOW setting in WinoGAViL dataset but fall short
in others. Our future work will focus on refining
the integration between VLMs and LLMs compo-
nents and enhancing the model’s efficiency and
accuracy across a broader spectrum of complex
visual reasoning challenges.

Figure 10: The comparison of our CVR-LLM against
GPT-4V.
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A Appendix

A.1 Qualitative Results with Corresponding
Prompt

Section 5 only illustrates the simplified process of
our Context-aware Image Description (CaID) gen-
eration. Here, we delve into more details about the
generation process and the corresponding prompts.
Figure 11 provides an example of the CaID gen-
eration process applied to the VCR (Zellers et al.,
2019) task. In this example, the initial input con-
sists of an image showing several individuals, with
two of them (Person1 and Person4) holding guns.
The associated question is: “Why do Person1 and
Person4 have guns?” with multiple-choice options
such as “1) They are soldiers. 2) Person1 and Per-
son4 are robbing a hotel room. 3) They are cattle
thieves. 4) They are about to shoot someone.”.

The CaID process begins by generating a de-
tailed description of the image. The captioner
model produces an initial caption: “An image of
a man in a suit with a gun and another in a suit
with a gun.”. This caption, while descriptive, lacks
the context needed to answer the specific ques-
tion posed. To address this, our system prompts
the LLM with a scenario where it acts as a ques-
tioner for the image caption model. The LLM
is instructed to generate a follow-up question to
gather crucial information for answer prediction.
The prompt guides the LLM to consider specific de-
tails such as the appearance and pose of the individ-
uals. In this case, the LLM generates the question:
“What is the appearance of Person1 and Person4?”.
This question is designed to extract more contextu-
ally relevant details from the image captioner. The
captioner then provides a refined description: “Per-
son1 is wearing a suit with a gun and Person4 is
wearing a suit with a gun.”. This additional infor-
mation helps to better understand the scene and
narrows down the possible answers to the origi-
nal question. This detailed process highlights how
our system leverages both multi-modal and textual
information to generate precise and contextually
relevant descriptions, ultimately improving the per-
formance on complex visual reasoning tasks.

A.2 Qualitative CVR-ICL Examples

Section 3.2 only illustrates the mechanism of our
CVR-ICL. Here, we explain more details about its
implementation. Figures 12 showcases one exam-
ple of our CVR-ICL on the WinoGAViL (Bitton
et al., 2022).

Figure 11: The detailed illustration of our CaID process
on VCR. Best viewed by zooming in.

To accurately calculate similarity scores us-
ing the cosine similarity function, we utilize
BM25 (Robertson et al., 1995) for text encoding
and BLIP2 multi-embedding (Li et al., 2023) for
multi-modal inputs. As illustrated in Figure 12,
the process begins with encoding both the test and
training prompts through multi-modal and text-
based encoders. For instance, a test case from
WinoGAViL might contain the question “Select
two pictures most related to clouds?” along with
images of a foggy river, a cloud of sand on a beach,
and other related scenes. At the beginning, the
multi-modal encoder processes these images as
well as the question and generates multimodal-level
embeddings. Simultaneously, we convert these im-
ages into context-aware image descriptions and
translate the entire case into text form. The text-
based encoder then generates corresponding text-
level embeddings. Next, we calculate the individ-
ual cosine similarity scores in both the multi-modal
and text domains. The final similarity score, which
determines the most relevant cases, is calculated in
a balanced manner as S = S1 + S2. These scores
are then sorted, and the top-k most similar cases are
selected as in-context learning examples. This dual-
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Figure 12: The detailed illustration of our CVR-ICL on WinoGAViL. Best viewed by zooming in.

encoding and similarity scoring approach ensures
that we capture the nuanced relationships between
multi-modal inputs and text, thereby enhancing the
accuracy and relevance of our in-context learning
framework.

A.3 Comparative Analysis with Fine-tuned
Models

In this section, we explore the impact of fine-tuning
strategy on performance in complex visual reason-
ing tasks. Since some tasks in the complex visual
reasoning field are initially designed in the super-
vised setting, we are curious whether our approach
can also perform better with the help of real anno-
tation. For the test-only datasets WinoGAViL and
Winoground, we randomly divided them into splits
of 80% training, 10% validation, and 10% testing.
Due to the small number of cases in these tasks, we
abandoned training LLMs to avoid catastrophic for-
getting. Instead, we chose to fine-tune the captioner
using the real labels and incorporated these real an-
notations into our CVR-ICL examples. Results
shown in Table 5 compare our CVR-LLM’s perfor-
mance in zero-shot and fine-tuned settings against
SOTA performances, revealing that our method
maintains SOTA performance in several areas.

Dataset Category
Zero-shot Finetuned

SOTA CVR-LLM SOTA CVR-LLM

WinoGAViL
5/6 55.0 74.7 54.6 82.8
10/12 52.0 73.2 47.2 80.8
SWOW 59.0 88.7 68.8 95.9

Winoground
Text 46.5 43.5 47.0 55.0
Image 27.7 35.0 42.2 42.5
Group 24.2 26.5 30.5 35.0

Whoops GPT-4 Rate 31.0 62.0 71.0 72.0

VCR
Q->A 48.8 52.9 87.4 85.3
QA->R 49.7 54.3 89.6 87.5
Q->AR 28.6 30.4 78.6 77.1

NYCCC
Match acc. 60.4 60.6 84.5 80.9
CrowdAcc 59.2 57.4 73.3 69.6
NYAcc 66.5 63.1 68.2 65.4

Table 5: The comparison of our CVR-LLM against
SOTA performance under two kinds of settings.

A.4 More Explanation about Our CoC

The Chain-of-Comparison (CoC) is designed to
qualitatively analyze the semantic contribution of
context-aware image descriptions against general
image captions. It is inspired by the popular idea
of Chain-of-Thought, which implements a step-by-
step analysis to evaluate effectiveness. Figure 13
shows an example from the Whoops dataset, com-
paring the semantic gap between a general caption
“An airplane prepares to take off” (Option A) and
our context-aware image description “An airplane
is taking off from a highway in the middle of the
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Figure 13: The detailed illustration of our CoC on Whoops. Best viewed by zooming in.

desert.”. (Option B).
Our CoC prompt asks the LLM to analyze the

semantic contribution through four steps: Initial
Perception, Recognizing Incongruity, Contextual
Analysis, and Linking to the Question. This pro-
cess mimics the human brain’s analytical process.
We directly ask the LLM to compare the contribu-
tions of the two options and determine which is
better.

For instance, in the Initial Perception step, the
LLM identifies Option B as superior because it is
highly unusual and immediately striking, as air-
planes typically do not take off from highways,
especially in desert environments. This scenario
is much more unusual and striking compared to
the routine scenario of Option A, which merely
depicts an airplane preparing to take off at an air-
port. During the Contextual Analysis step, Option

B is again favored. The LLM explains that con-
textually, the scenario raises questions about why
an airplane is using a highway in a desert for take-
off, which is not standard practice and could imply
unusual circumstances or emergencies. Option A,
in contrast, has nothing contextually strange about
an airplane preparing for takeoff in a typical air-
port setting. Finally, in the Linking to the Question
step, the LLM determines that Option B provides
a clearer connection to the concept of weirdness
through its unconventional and striking situation.
Option A does not inherently link to weirdness, as
it describes a routine occurrence in aviation.

This example demonstrates how our CoC frame-
work effectively breaks down and evaluates the
semantic contributions of different types of im-
age descriptions, highlighting the advantages of
context-aware image descriptions in complex vi-
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Model Whoops VCR (Q->A) NYCCC (Match)
LLaVA 1.0 32.0 28.3 55.8
LLaVA 1.5 42.4 35.1 59.3
CVR-LLMLlama2 55.6 44.6 56.4
CVR-LLMLlama3 60.4 50.5 59.8

Table 6: The comparison of our CVR-LLM with Llama2
and Llama3 base against SOTA LLaVA models.

α 0.1 0.2 0.3 0.5 1 2
WinoGAViL (5/6) 66.6 67.9 66.5 68.3 69.8 65.8
WinoGAViL (10/12) 63.7 65.1 63.6 64.8 66.1 62.0
WinoGAViL (swow) 76.3 77.0 75.8 78.1 80.9 72.7

Table 7: The performance of our CVR-LLM framework
with varying α values on the WinoGAViL dataset.

sual reasoning tasks.

A.5 The CVR-LLM Performance with
LLaMA2

Table 1 presents the results of our CVR-LLM
framework using Llama3, GPT-3.5, and GPT-4
base models. Additionally, we evaluated CVR-
LLM on the Llama2-13B model (Touvron et al.,
2023b), which was also employed in LLaVA (Wu
et al., 2023; Liu et al., 2024), to ensure a fair
comparison. Table 6 compares the performance
of CVR-LLM (Llama2-based) and CVR-LLM
(Llama3-based) against LLaVA versions 1.0 (Liu
et al., 2024) and 1.5 (Wu et al., 2023) on com-
plex reasoning tasks. The results demonstrate that
while our CVR-LLM performs well on the Llama2
base model, it slightly underperform compared to
Llama3.

A.6 The Parameter Setting in Equation 4c
Section 3.2 explains that our in-context learning
examples are selected based on a similarity score
calculated as follows:

s = α ∗ sm + st, (α = 1). (5a)

In this section, we discuss how the parameter α
influences the performance of In-Context Learning
(ICL). Table 7 presents the results for various val-
ues of α on the WinoGAViL dataset. The results
indicate that α = 1 leads to the best performance
of our CVR-ICL strategy.

A.7 Comparison against Other VLM+LLM
Methods

In the main paper, we compare our method with
several popular end-to-end MLLMs, including
LLaVA (Wu et al., 2023) and MiniGPT-4 (Zhu

Models
WinoGAViL

(swow)
Winoground

(group)
Whoops

(GPT4 reate)
VCR

(Q->A)
DDCoT 77.5 20.2 48.4 40.7
DIEM 83.5 22.5 58.0 50.5
CVR-LLM 86.5 26.5 62.0 54.3

Table 8: The comparison of our CVR-LLM against
other VLM+LLM methods.

Model HuggingGPT IdealGPT Chameleon CVR-LLM
Lang 17.57 31.73 43.87 34.10
Natural 20.93 31.63 26.05 33.20
Social 10.33 26.23 25.44 24.84
Physical 8.7 56.52 39.13 71.11
Social 14.75 50.00 37.30 69.83
Temporal 9.76 26.83 48.78 30.89
Algebra 11.35 20.57 17.73 29.29
Geometry 22.50 30.00 26.25 22.50
Theory 9.52 38.10 23.81 28.57

Table 9: The comparison of our CVR-LLM against
other Tool-Usage methods on the M3CoT dataset.

et al., 2023). Additionally, we evaluate our ap-
proach against VLM+LLM methods such as DD-
CoT (Zheng et al., 2023) and DIEM (Jiang et al.,
2024). Table 8 presents the comparison results of
our CVR-LLM framework versus these methods.
While our approach is similar to DIEM in focusing
on visual information from images, it demonstrates
superior performance in complex visual reasoning
tasks. Instead of decomposing the image and ex-
tracting information from individual components,
we utilize an iterative refinement strategy, enabling
the Large Language Model (LLM) to pose more
precise questions and extract highly specific, valu-
able information from the image.

A.8 The Performance on Multi-step
Reasoning Dataset

Our CVR-LLM framework is designed for com-
plex visual reasoning tasks, making it well-suited
for multi-step reasoning datasets, such as Sci-
enceQA (Lu et al., 2022) and M3CoT (Chen et al.,
2024). In this section, we evaluate the performance
of our CVR-LLM on the M3CoT dataset to deter-
mine its effectiveness. Table 9 presents a compari-
son between our CVR-LLM and other Tool-Usage
methods. The results show that our approach per-
forms well on questions related to general image
content, particularly in areas like physical and so-
cial sciences. However, it faces challenges with
images containing multiple elements, occasionally
leading to hallucinations in detailed descriptions.
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