@inproceedings{kabir-etal-2024-make,
title = "You Make me Feel like a Natural Question: Training {QA} Systems on Transformed Trivia Questions",
author = "Kabir, Tasnim and
Sung, Yoo Yeon and
Bandyopadhyay, Saptarashmi and
Zou, Hao and
Chandra, Abhranil and
Boyd-Graber, Jordan",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1140",
pages = "20486--20510",
abstract = "Training question-answering QA and information retrieval systems for web queries require large, expensive datasets that are difficult to annotate and time-consuming to gather. Moreover, while natural datasets of information-seeking questions are often prone to ambiguity or ill-formed, there are troves of freely available, carefully crafted question datasets for many languages. Thus, we automatically generate shorter, information-seeking questions, resembling web queries in the style of the Natural Questions (NQ) dataset from longer trivia data. Training a QA system on these transformed questions is a viable strategy for alternating to more expensive training setups showing the F1 score difference of less than six points and contrasting the final systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kabir-etal-2024-make">
<titleInfo>
<title>You Make me Feel like a Natural Question: Training QA Systems on Transformed Trivia Questions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tasnim</namePart>
<namePart type="family">Kabir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoo</namePart>
<namePart type="given">Yeon</namePart>
<namePart type="family">Sung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saptarashmi</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Zou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhranil</namePart>
<namePart type="family">Chandra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Training question-answering QA and information retrieval systems for web queries require large, expensive datasets that are difficult to annotate and time-consuming to gather. Moreover, while natural datasets of information-seeking questions are often prone to ambiguity or ill-formed, there are troves of freely available, carefully crafted question datasets for many languages. Thus, we automatically generate shorter, information-seeking questions, resembling web queries in the style of the Natural Questions (NQ) dataset from longer trivia data. Training a QA system on these transformed questions is a viable strategy for alternating to more expensive training setups showing the F1 score difference of less than six points and contrasting the final systems.</abstract>
<identifier type="citekey">kabir-etal-2024-make</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1140</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>20486</start>
<end>20510</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T You Make me Feel like a Natural Question: Training QA Systems on Transformed Trivia Questions
%A Kabir, Tasnim
%A Sung, Yoo Yeon
%A Bandyopadhyay, Saptarashmi
%A Zou, Hao
%A Chandra, Abhranil
%A Boyd-Graber, Jordan
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F kabir-etal-2024-make
%X Training question-answering QA and information retrieval systems for web queries require large, expensive datasets that are difficult to annotate and time-consuming to gather. Moreover, while natural datasets of information-seeking questions are often prone to ambiguity or ill-formed, there are troves of freely available, carefully crafted question datasets for many languages. Thus, we automatically generate shorter, information-seeking questions, resembling web queries in the style of the Natural Questions (NQ) dataset from longer trivia data. Training a QA system on these transformed questions is a viable strategy for alternating to more expensive training setups showing the F1 score difference of less than six points and contrasting the final systems.
%U https://aclanthology.org/2024.emnlp-main.1140
%P 20486-20510
Markdown (Informal)
[You Make me Feel like a Natural Question: Training QA Systems on Transformed Trivia Questions](https://aclanthology.org/2024.emnlp-main.1140) (Kabir et al., EMNLP 2024)
ACL