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Abstract

Parameter-efficient fine-tuning methods, such
as Low-Rank Adaptation (LoRA), are known to
enhance training efficiency in Large Language
Models (LLMs). Due to the limited parame-
ters of LoRA, recent studies seek to combine
LoRA with Mixture-of-Experts (MoE) to boost
performance across various tasks. However,
inspired by the observed redundancy in tradi-
tional MoE structures, prior studies find that
LoRA experts within the MoE architecture also
exhibit redundancy, suggesting a need to vary
the allocation of LoRA experts across different
layers. In this paper, we leverage Heavy-Tailed
Self-Regularization (HT-SR) Theory to design
a fine-grained allocation strategy. Our analy-
sis reveals that the number of experts per layer
correlates with layer training quality, which
exhibits significant variability across layers.
Based on this, we introduce AlphaLoRA, a the-
oretically principled and training-free method
for allocating LoRA experts to reduce redun-
dancy further. Experiments on three models
across ten language processing and reason-
ing benchmarks demonstrate that AlphaLoRA
achieves comparable or superior performance
over all baselines. Our code is available at
https://github.com/morelife2017/alphalora.

1 Introduction

LLMs have shown impressive performance on
various NLP tasks (Brown et al., 2020; Chowd-
hery et al., 2022; Touvron et al., 2023b; Jiang
et al., 2023; Jian et al., 2024; Zhang et al., 2024).
However, due to the increasing size of modern
LLMs, significant computational resources are re-
quired for full fine-tuning. To address this is-
sue, researchers are increasingly focusing on PEFT
methods to reduce training costs, such as Adapter-
tuning (Houlsby et al., 2019) and LoRA (Hu et al.,
2022). Despite their training efficiency, the perfor-
mance of PEFT methods in fine-tuning LLMs is
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still limited due to the small number of parameters
(Xu et al., 2023).

To address the limitation, recent studies seek to
combine LoRA and MoE by adding multiple LoRA
modules (Liu et al., 2023; Gao et al., 2024; Luo
et al., 2024). The MoE structure in LLMs typically
consists of multiple feed-forward "sub-networks",
or "experts", that are trained to handle different
types of inputs or tasks (Shazeer et al., 2017a).
MoE structures are designed to dynamically acti-
vate only a subset of experts for each input, signifi-
cantly scaling up the number of parameters, while
incurring an affordable computational overhead.

Existing LoRA-MoE methods integrate multi-
ple LoRA modules into each sublayer of the trans-
former block and employ different strategies to
assign experts to different tokens or tasks (Li et al.,
2024; Huang et al., 2023; Zhang et al., 2023; Yang
et al., 2024; Dou et al., 2024; Luo et al., 2024; Feng
et al., 2024; Liu et al., 2023). For example, at the
task level, Huang et al. (2023); Zhang et al. (2023)
explore various composition strategies to combine
multiple LoRA experts trained individually on dif-
ferent tasks. At the token level, both experts and
input tokens interact with a routing network, result-
ing in the activation of experts based on the charac-
teristics of the input tokens (Gao et al., 2024; Dou
et al., 2023). These methods demonstrate superior
performance in single-task and multi-task learn-
ing compared to standard LoRA, with the number
of experts per layer uniformly distributed, such as
three per layer, as shown in Table 1.

However, recent studies (Chen et al., 2023; Zoph
et al., 2022) in MoE show that employing a large
number of experts may be redundant due to repre-
sentational collapse or learned routing policy over-
fitting. Similarly, Gao et al. (2024) investigate re-
dundancy in parameter-efficient MoE. Unlike ex-
isting LoRA-MoE methods that uniformly allocate
experts across all layers, they manually design four
architectures with varying group-wise expert allo-

20511

https://github.com/morelife2017/alphalora


cations. Specifically, they divide the 32 layers of
the LLaMA-2 model (Touvron et al., 2023b) into
4 groups, with the first 8 layers constituting the
first group, and so forth. They allocate a varying
number of experts to each group (layers within
the same group have the same number of experts).
While their allocation strategy provides insights
into overall architecture design, suggesting that
higher layers need more LoRA experts, research
on achieving more effective integration remains in
its early stages.

To create a theoretically sound allocation strat-
egy aimed at minimizing expert redundancy, our
research draws inspiration from the Heavy-Tailed
Self-Regularization (HT-SR) Theory (Martin and
Mahoney, 2019, 2020, 2021; Martin et al., 2021).
The HT-SR theory examines the properties of
heavy-tailed (HT) structures observed in the Em-
pirical Spectral Density (ESD) of weight matri-
ces. The application of HT-SR to model selection
and layer-wise adaptive training (Zhou et al., 2024;
Yang et al., 2023) showcases the theory’s effective-
ness in assessing both model and layer quality.

In this paper, we propose a fine-grained strategy
for allocating layer-wise expert numbers, namely,
AlphaLoRA. According to Zhou et al. (2024), layers
with more pronounced HT properties are generally
well-trained. Following Zhou et al. (2024), we
measure the HT characteristics by fitting a power
law (PL) distribution to the ESD and use the expo-
nent as the metric to measure HT properties. We
then use the Hill estimator (Hill, 1975; Zhou et al.,
2024) to calculate PL_Alpha_Hill. The core idea
behind AlphaLoRA is to allocate fewer experts to
better-trained (more HT) layers, which is indicated
by lower PL_Alpha_Hill values, thus reducing the
redundancy in a more theoretically-principled man-
ner. The contributions of our work are summarized
as follows:

• We are the first to interpret the correlation be-
tween layer-wise training quality and LoRA ex-
pert number through the lens of HT-SR theory.
Empirical results on three widely-used language
models suggest that well-trained layers need
fewer LoRA experts.

• We propose a fine-grained allocation strategy,
AlphaLoRA, for allocating layer-wise expert
numbers. Inspired by HT-SR theory, this
method is theoretically grounded and training-
free. AlphaLoRA generally outperforms MoLA-

▽, the current state-of-the-art non-uniform ex-
pert allocation method, across three models and
ten NLP datasets. Notably, AlphaLoRA with 80
experts surpasses MoLA-▽(2468) with 160 ex-
perts, achieving comparable performance with
50% fewer parameters.

• We compare several layer-wise weight matrix
metrics from HT-SR theory for evaluating layer
training quality and allocating expert numbers.
The relative performance of these metrics reveals
that the PL_Alpha_Hill metric outperforms oth-
ers, corroborating the findings of (Zhou et al.,
2024) that the PL_Alpha_Hill metric is better
for assessing layer training quality. This further
demonstrates the correlation between layer ex-
pert number and layer training quality.

Granularity Method

Uniform

MixLoRA(Li et al., 2024)
MoRAL (Yang et al., 2024)
LoRAMoE (Dou et al., 2024)
MoELoRA (Luo et al., 2024)
MoA (Feng et al., 2024)
MOELoRA (Liu et al., 2023)

Group-wise MoLA (Gao et al., 2024)

Layer-wise AlphaLoRA

Table 1: Comparison of allocation strategy between
different LoRA-MoE methods.

2 Preliminary

2.1 LoRA-MoE Architecture
The LoRA-MoE architecture creates multiple
LoRA experts for each layer in a pre-trained LLM.
The “LoRA expert” used in this work refers to
the vanilla LoRA block (Hu et al., 2022). For a
pre-trained weight matrix W0 ∈ Rm×n (n < m),
LoRA creates two low-rank trainable matrices A
and B, where A ∈ Rm×r, B ∈ Rr×n, and
r ≪ min(m,n). Thus, the dimension of ABx
equals the dimension of W0x for the input x. Dur-
ing training, W0 is frozen while A and B receive
gradient updates. The output h is expressed as
follows:

h = W0x+∆Wx = W0x+ABx. (1)

Each LoRA-MoE layer contains N LoRA experts,
which is denoted as {∑N

i=1}. The forward process
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Figure 1: The overview of AlphaLoRA. For a transformer-based model with m layers, AlphaLoRA involves two steps:
(Step 1) Conducting ESD analysis on each layer and applying PL fitting to obtain the layer-wise PL_Alpha_Hill
value. (Step 2) Converting the layer-wise PL_Alpha_Hill value into the number of experts using a mapping
function, followed by initializing the experts for each layer. For instance, Weights 1 represents all the weight
matrices (such as attention weight matrix and projection weight matrix) in layer 1.

of the layer is expressed as:

o = W0x+∆Wx = W0x+

N∑

i=1

G(x)iEi(x),

(2)
where Ei(x) and G(x) = Softmax(xWg) repre-
sent the i-th expert and the router in the LoRA-MoE
layer, respectively. The Wg is the trainable param-
eter matrix of the route network used to allocate
input x to different experts. The router enables ex-
perts to develop varied capabilities and efficiently
handle various types of tasks and inputs.

2.2 ESD Shape Metric

Empirical Spectral Density (ESD). ESD repre-
sents the distribution of eigenvalues of a matrix,
often used to understand properties of large ran-
dom matrices that arise in various applications such
as neural networks (Martin and Mahoney, 2021).
Let A =W⊤

0 W0 ∈ Rn×n be a symmetric matrix
with eigenvalues {λAi }ni=1. The empirical spectral
density (ESD) of A is defined as the probability
measure:

ρ(λ;A) =
1

n

n∑

i=1

δ
(
λ− λAi

)
, (3)

where δ is the Dirac delta function. The ESD rep-
resents the distribution of the eigenvalues of A.

Heavy-Tailed Self-Regularization (HT-SR) The-
ory. Drawing from Random Matrix Theory (Tao,
2023; Bai and Silverstein, 2010; Couillet and Liao,
2022), HT-SR theory relies on the empirical ob-
servation that well-trained models usually display
strong correlations, leading to HT structures in the
ESD of each layer (Martin et al., 2021; Yang et al.,
2023; Zhou et al., 2024). Derived from HT-SR the-
ory, shape metrics are analytical methods used to
characterize the HT properties of ESDs in neural
networks, which correlate with the shapes emerg-
ing in their ESDs. In this work, we mainly study
three shape metrics: PL_Alpha_Hill, Alpha_Hat,
and Stable_Rank. Inspired by previous work on
estimating model quality (Zhou et al., 2024; Yang
et al., 2023), we apply PL_Alpha_Hill, which is
proved to be the most effective, as the main met-
ric to evaluate layer quality. The definition of
PL_Alpha_Hill is explained in §3.1. Other def-
initions can be found in the Appendix A.

3 Method

In this section, we introduce AlphaLoRA, an expert
allocation strategy based on the PL_Alpha_Hill
metric. Given a transformer-based model, we first
compute the PL_Alpha_Hill metric value for each
layer. §3.1 elaborates on the calculation of layer-
wise PL_Alpha_Hill metric. §3.2 gives the pro-
cess of mapping the layer-wise PL_Alpha_Hill
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value to expert number. The overview of our
method is illustrated in Figure 1.

3.1 Analyzing Layer Training Quality
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Figure 2: Illustration of the PL_Alpha_Hill values for
each layer across three different models.

AlphaLoRA measures the layer training qual-
ity based on the HT characteristic of the layer
ESDs, which is quantified by the HT metric
PL_Alpha_Hill. For the i-th weight matrix in
each layer from a transformer-based model, we first
calculate the eigenvalues of its correlation matrix
Xi = WT

i Wi and ESD ρ. We then fit a power law
(PL) distribution p to the HT part of the ESD, tak-
ing values within an interval (λmin, λmax), which
is defined as:

p(λ) ∝ λ−α, λmin < λ < λmax. (4)

We refer to its exponent α as PL_Alpha, where a
lower value means more Heavy-tailed. We then
use the Hill estimator (Hill, 1975) to calculate
PL_Alpha_Hill as the following:

PL_Alpha_Hill = 1 +
k(∑k

i=1 ln
λn−i+1

λn−k

) , (5)

where k is a parameter for controlling the lower
eigenvalue threshold λmin for PL estimation. We
apply the Fix-finger method (Yang et al., 2023)
to select the k, which keeps λmin at the peak of
the ESD. We calculate PL_Alpha_Hill for each
weight matrix within a layer separately and com-
pute the average to represent the layer value. Fig-
ure 2 shows the PL_Alpha_Hill values for three
popular language models. The metric values show
non-uniform distributions across layers, indicating
varying training quality between layers.

Applications of HT-SR theory (Zhou et al., 2024)
indicate assigning larger learning rates to under-
trained layers helps these layers capture more cor-
relations (or features) from the data (Wang et al.,

2024). This implies that under-trained layers,
which have captured fewer features, may need more
LoRA experts to acquire additional features during
fine-tuning.

3.2 Allocating Expert Based on Layer Quality
Given a Transformer model with m layers, we use
si to denote the number of experts in layer i. We
first calculate the PL_Alpha_Hill metric value for
each layer using the algorithm in §3.1 to obtain a
sequence of metric values V = [v1, v2, . . . , vm].

The number of experts assigned to each layer is
determined using a mapping function ψ : Rm →
Rm. This function converts a sequence of metric
values V = [v1, v2, . . . , vm] into the corresponding
expert numbers S = [s1, s2, . . . , sm], represented
as:

si =

⌊(
vβi∑m
i=1 v

β
i

)
× T

⌋
, (6)

where ⌊·⌋ denotes rounding to the nearest integer,
and β is an exponent parameter that controls the
standard deviation of the sequence S . The values in
V are normalized by dividing by their sum, ensur-
ing that the total allocation across all layers is pro-
portional to their relative importance. We introduce
a target sum parameter T such that

∑m
i=1 si = T .

Multiplying by T scales this proportional alloca-
tion to the desired number of experts, and finally,
rounding to the nearest integer ensures discrete ex-
pert numbers for each layer. After rounding, if
the total number of experts across all layers doesn’t
equal the target number T , we iteratively increment
or decrement the integer value as follows:
{

if
∑m

i=1 si < T, sargmin(vei−si) + 1

if
∑m

i=1 si > T, sargmax(vei−si) − 1
, (7)

where we identify a particular index in S that has
the minimum (or maximum) difference between the
scaled value and the present integer value, indicat-
ing the specific integer that needs to be incremented
(or decremented) when the current sum is below (or
above) the target sum. After getting the number of
expert S = [s1, s2, . . . , sm] for each layer, we al-
locate si experts for layer i in a transformer-based
model with m layers, resulting in

∑m
i=1 si = T

experts in total. Given a pre-trained weight matrix
Wi,t

0 ∈ Rm×n from module t in layer i, we cre-
ate si pairs of low-rank matrices {Ai,t

j ,B
i,t
j }sij=1.

Each matrix Ai,t
j is initialized from a random Gaus-

sian distribution, while Bi,t
j is set to zero, where
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Figure 3: Comparing layer expert number assigned by AlphaLoRA and MoLA. MoLA(2468) allocates 2 experts to
each layer for the first 8 layers, 4 experts to each layer for 9-16 layers, 6 experts to each layer for 17-24 layers, and
8 experts to each layer for the last 8 layers, which is denoted as 2468. MoLA(5555) assigns a uniform 5 experts to
each layer. The total number of experts is set at 160.

Ai,t
j ∈ Rm×r, Bi,t

j ∈ Rr×n, and r ≪ min(m,n)
(Hu et al., 2022).

A router Si,t
j with a trainable weight matrix

Wi,t
r ∈ Rn×Nj assigns experts for input x. Fol-

lowing MoLA (Gao et al., 2024), we use the top-K
strategy for computation and apply a load balanc-
ing loss at each layer (Zoph et al., 2022). This
process is mathematically represented as follows:

Si,t
j (x) =

TopK(Softmax(Wi,t
r x),K)j∑K

j=1 TopK(Softmax(Wi,t
r x),K)j

,

(8)

hi,t = Wi,t
0 x+

K∑

j=1

Si,t
j (x)Ai,t

j Bi,t
j x. (9)

The output hi,t is obtained by adding the transfor-
mation of x via the pre-trained weight matrix Wi,t

0

to the aggregated low-rank transformations from
the top K experts, where each expert’s contribu-
tion is modulated by its corresponding assignment
probability Si,t

j (x).

4 Experiment

We design two experimental settings to examine
the performance of AlphaLoRA, including direct
fine-tuning and instruction-tuning→zero-shot eval-
uation. §4.1 compares the expert allocation be-
tween AlphaLoRA and variants of MoLA (Gao
et al., 2024). §4.2 presents the results for two ex-
perimental settings. Implementation details can be
found in Appendix C.

Models and datasets. To demonstrate the effec-
tiveness of our approach, we conduct evaluations
on three LLMs LLaMA-7B (Touvron et al., 2023a),
LLaMA-2-7B (Touvron et al., 2023b) and Mistral-
7B-v0.1 (Jiang et al., 2023). We evaluate both

NLP tasks and reasoning tasks. For the first setting,
following (Gao et al., 2024), we assess the perfor-
mance on three GLUE datasets and three common-
sense reasoning datasets: (1) Microsoft’s Research
Paraphrase Corpus (MRPC) (Dolan and Brockett,
2005), (2) Recognizing Textual Entailment (RTE)
dataset (Wang et al., 2019), (3) Corpus of Linguis-
tic Acceptability (COLA) (Wang et al., 2019), (4)
ScienceQA (Lu et al., 2022), (5) CommonsenseQA
(Talmor et al., 2019), and (6) OpenbookQA (Mi-
haylov et al., 2018). For the second setting, we
evaluate arithmetic reasoning on four zero-shot
benchmarks: (1) AddSub (Hosseini et al., 2014),
(2) MultiArith (Roy et al., 2015), (3) SVAMP (Pa-
tel et al., 2021), (4) GSM8K (Cobbe et al., 2021).
The detailed description of each dataset is shown
in Appendix B.

Baselines. We compare our method with MoLA,
which involves the manual design of 4 different
allocation strategies, with MoLA-▽(2468) as the
state-of-the-art method. Specifically, take LLaMA-
2 (Touvron et al., 2023b) which contains 32 layers,
as an example. MoLA-▽(2468) allocates 2 experts
to each layer for the first 8 layers, 4 experts to each
layer for 9-16 layers, 6 experts to each layer for 17-
24 layers and 8 experts to each layer for the last 8
layers, which is denoted as 2468. Thus, the overall
structure forms a ▽ shape. Following similar nota-
tion, MoLA-□(5555) employs an allocation strat-
egy of 5555, uniformly assigning 5 experts to each
layer. MoLA-□(8888) uniformly assigns 8 experts
to each layer. To ensure a fair comparison, we intro-
duce a target sum parameter T to control the total
number of experts for AlphaLoRA, thereby equal-
izing the number of trainable parameters between
AlphaLoRA and MoLA. The number of trainable
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Models Strategy MRPC COLA RTE S.QA C.QA O.QA Average

LLaMA

MoLA-□ (8888) 82.55 84.37 84.47 90.82 76.82 76.60 82.61

MoLA-□ (5555) 82.43 84.18 83.03 90.28 75.10 76.00 81.84
MoLA-▽ (2468) 83.36 84.64 84.83 90.10 75.42 78.60 82.83
AlphaLoRA 85.19 85.42 85.19 90.37 76.49 78.20 83.48

LLaMA-2

MoLA-□ (8888) 84.70 85.81 88.45 91.91 77.89 82.80 85.26

MoLA-□ (5555) 84.17 86.19 84.83 92.08 77.55 80.00 84.14
MoLA-▽ (2468) 83.48 86.87 86.28 92.36 78.95 79.60 84.59
AlphaLoRA 84.23 86.67 87.36 92.71 78.05 80.80 84.97

Mistral

MoLA-□ (8888) 86.43 87.24 89.53 94.91 82.96 88.60 88.28

MoLA-□ (5555) 85.73 87.34 88.44 94.46 81.90 88.00 87.65
MoLA-▽ (2468) 86.95 87.44 88.80 95.14 83.37 88.20 88.32
AlphaLoRA 87.13 87.91 91.70 95.00 84.00 89.20 89.16

Table 2: Accuracy comparison with different methods on direct fine-tuning (S.QA, C.QA, O.QA denote ScienceQA,
CommonsenseQA, and OpenbookQA respectively). The total number of experts for MoLA-□ (8888) is 256, while
the other variants are 160. AlphaLoRA outperforms other variants or baselines and even achieves competitive or
superior performance with MoLA-□ (8888), with nearly 40% fewer parameters.

parameters is 105,635,840, which is 1.5% of the
trainable parameters in the pre-trained base model.

4.1 Analysis of Expert Allocation

In Figure 3, we present the allocation of experts
across all layers of the three LLMs: LLaMA-
7B (Touvron et al., 2023a), LLaMA-2-7B (Touvron
et al., 2023b), and Mistral-7B-v0.1 (Jiang et al.,
2023). Our allocation indicates that the middle
layers are generally better trained than the higher
and lower layers, suggesting that they should be as-
signed fewer LoRA experts. In contrast, the higher
layers are less well-trained and require more ex-
perts. Our approach reveals that the overall archi-
tecture of the three models forms a loosely "M"
shape, a pattern not previously explored by (Gao
et al., 2024). Additionally, we note that Mistral-
7B-v0.1 requires more experts in the lower layers
compared to the LLaMA models, highlighting the
need for a model-specific allocation strategy.

4.2 Main Result

Direct fine-tuning. The first experimental setup
adheres to the evaluation protocol detailed in (Gao
et al., 2024). We perform direct instruction fine-
tuning (Wei et al., 2021; Sanh et al., 2022) in var-
ious allocation strategies on six NLP datasets, as-
sessing performance on their respective test sets.
1 AlphaLoRA enhances efficiency in LoRA-MoE
experts. In comparison to MoLA-□ (8888), which

utilizes 256 experts, AlphaLoRA shows superior
performance on LLaMA and Mistral models and
achieves similar results on LLaMA-2, while us-
ing only 160 experts (62.5% of the parameters
compared to MoLA-□ (8888)). For instance,
AlphaLoRA surpasses MoLA-□ (8888) by 2.17%
on the RTE dataset for the Mistral model. The
results indicate that a uniform allocation strat-
egy leads to redundancy across various models.
AlphaLoRA ensures efficient allocation, enabling
the experts to capture more knowledge.
2 AlphaLoRA outperforms other baseline allo-
cation methods. Given an equal total number of
experts, AlphaLoRA, based on layer training quality,
consistently outperforms MoLA-□ (5555) across
three models, with performance improvements of
1.64%, 0.83%, and 1.51%, respectively. Further-
more, AlphaLoRA surpasses MoLA-▽ (2468) by
0.65%, 0.38%, and 0.84%, respectively. This high-
lights the superiority of our adaptive layer-wise
allocation strategy.
3 Correlation between number of experts and
layer training quality. As shown in Figure 3, the
overall allocation of AlphaLoRA is more similar to
MoLA-▽ (2468) compared to the difference with
MoLA-□ (5555), resulting in a relatively smaller
performance improvement. This underscores the
correlation between the number of layer experts
and training quality, suggesting that well-trained
layers require fewer LoRA experts.
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Models Strategy GSM8K SVAMP AddSub MultiArith Average

LLaMA
MoLA-□ (5555) 44.04 52.00 38.89 88.16 55.77
MoLA-▽ (2468) 43.59 52.80 40.50 84.33 55.31
AlphaLoRA 45.03 53.60 42.27 86.66 56.89

LLaMA-2
MoLA-□ (5555) 49.50 57.10 47.08 87.00 60.17
MoLA-▽ (2468) 50.11 56.40 48.86 87.66 60.76
AlphaLoRA 50.41 57.00 48.60 91.33 61.84

Mistral
MoLA-□ (5555) 69.37 73.60 56.45 96.00 73.86
MoLA-▽ (2468) 67.20 76.50 59.24 97.00 74.99
AlphaLoRA 68.30 77.20 59.49 97.33 75.58

Table 3: Accuracy comparison with different methods with same total experts number on zero-shot tasks evaluation.
Each method is trained on the MetaMathQA dataset (Yu et al., 2024) and evaluated on four mathematical datasets.

Zero-shot tasks. In the second setting, we
perform instruction-tuning on the MetaMathQA
dataset (Yu et al., 2024) and evaluate on four zero-
shot benchmarks: GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), AddSub (Hosseini
et al., 2014), and MultiArith (Roy et al., 2015).
This setting evaluates the transfer learning capabil-
ities of different allocation strategies. As shown
in Table 3, AlphaLoRA outperforms both the state-
of-the-art allocation strategy MoLA-▽ (2468) and
the uniform allocation MoLA-□ (5555). For ex-
ample, AlphaLoRA exceeds MoLA-▽ (2468) by
an average of 1.58% across the four benchmarks.
The results corroborate our earlier findings from
direct fine-tuning experiments, demonstrating that
a fine-grained allocation strategy like AlphaLoRA
enables models to capture more knowledge and
reduce redundancy among experts, thereby enhanc-
ing overall performance.

4.3 Layer Quality Metrics for Expert
Allocation

In this study, we evaluate several shape metrics in
HT-SR theory for measuring layer training qual-
ity. The definition of other metrics can be found
in Appendix A. Experiments are conducted on
LLaMA-2 (Touvron et al., 2023b) under the same
parameter setting for each task. Figure 4 shows
that PL_Alpha_Hill outperforms other shape met-
rics on both direct fine-tuning and zero-shot setting,
aligning with the findings of (Zhou et al., 2024) that
the PL_Alpha_Hill metric is better for assessing
layer training quality. This further demonstrates
that layer expert number correlates with layer train-
ing quality. The detailed results are shown in Ta-
ble 6, 7 and 8, Appendix D.1.

90.0 87.5 85.0 82.5 80.0
Average Score (%)

MoLA-

StableRank

AlphaHat

AlphaLoRA

Direct Fine-tuning

55.0 57.5 60.0 62.5 65.0
Average Score (%)

Zero-shot

Figure 4: Comparison with different shape metric from
HT-SR theory on both direct fine-tuning and zero-shot
setting.

4.4 Consistent Superiority with Varying
Number of Experts

In this study, we compare AlphaLoRA with MoLA-
▽ across three configurations on Mistral-7B model,
each with a different total number of experts T ,
specifically 80, 160, and 224 experts. We report
the average score of 4 benchmarks, detailed results
could be found in Table 5, Appendix D.2. In addi-
tion to MoLA-▽(2468), we introduce two variants
that follow the MoLA-▽ pattern, featuring a gradu-
ally increasing number of experts from lower layers
to higher layers. For instance, MoLA-▽(46810) al-
locates 4 experts to each layer for the first 8 layers,
6 experts to each layer for 9-16 layers, 8 experts
to each layer for 17-24 layers, and 10 experts to
each layer for the last 8 layers, which is denoted
as (46810). Figure 5 shows AlphaLoRA outper-
forms MoLA-▽ across three configurations. No-
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tably, AlphaLoRA with 80 experts surpasses MoLA-
▽(2468) with 160 experts, achieving comparable
performance with 50% fewer parameters.
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Figure 5: Comparison between AlphaLoRA and MoLA-
▽ across three configurations with varying total number
of experts T , specifically 80, 160, and 224 experts.

5 Related work

5.1 Parameter-Efficient Tuning
As language models continue to expand in size,
parameter-efficient tuning of LLMs has attracted
significant interest due to its cost-effective ap-
proach for fine-tuning. Researchers introduce sev-
eral PEFT approaches, such as LoRA (Hu et al.,
2022) and adapters (Houlsby et al., 2019), aimed at
enhancing the efficiency of fine-tuning large mod-
els. Among these, PEFT techniques based on low-
rank adapters, called LoRA, have gained signifi-
cant popularity and widespread adoption. These
methods introduce two trainable low-rank matrices
within each fully connected layer, resulting in sub-
stantial savings in training resources while main-
taining performance. Building on these ideas, our
approach integrates the MoE technique with LoRA
adapters, employing layer-wise expert allocation to
further enhance performance.

5.2 LoRA-MoE Architecture
Recent research explores the integration of
MoE (Shazeer et al., 2017b) and PEFT methods to
boost performance in both single-task and multi-
task scenarios (Li et al., 2024; Huang et al., 2023;
Zhang et al., 2023; Yang et al., 2024; Dou et al.,
2024; Feng et al., 2024; Liu et al., 2023; Luo et al.,
2024). For instance, Liu et al. (2023) employs
LoRA and MoE for multi-task scenarios, particu-
larly in healthcare. However, their methods neces-

sitate the data type as input, limiting the model’s
applicability to other tasks. Similarly, Dou et al.
(2023) propose LoRAMoE, a novel adapter archi-
tecture that integrates MoE and LoRA within the
feed-forward layer of each Transformer block, ad-
dressing the issue of knowledge forgetting in LLMs
during traditional supervised fine-tuning. Nonethe-
less, these approaches uniformly initialize the num-
ber of LoRA experts for each layer, resulting in re-
dundancy among LoRA experts. Gao et al. (2024)
investigate redundancy in parameter-efficient MoE,
initializing the number of experts with varying
group-wise allocation and suggesting that higher
layers require more LoRA experts. However, their
allocation strategies are based on intuitive trial-and-
error, lacking in-depth interpretability. Taking a
step further, we introduce a fine-grained layer-wise
expert allocation strategy by leveraging HT-SR the-
ory to analyze layer training quality, improving
the expert allocation in a theoretically principled
manner.

5.3 Heavy-Tailed Self-Regularization Theory.

Martin and Mahoney (2019, 2020, 2021); Martin
et al. (2021) explore the HT properties observed
in the ESD of weight matrices in neural networks.
These HT structures provide insights into the under-
lying behavior and quality of models. Recent stud-
ies further demonstrate the utility of HT-SR Theory
in various aspects of deep learning (Yang et al.,
2023; Zhou et al., 2024; Lu et al., 2024; Liu et al.,
2024; Kothapalli et al., 2024). Yang et al. (2023)
apply HT-SR principles to model selection, illus-
trating how the heavy-tailed characteristics can be
leveraged to assess pre-trained NLP models with-
out requiring training or testing data. Similarly,
Zhou et al. (2024) extend this application to layer-
wise adaptive training, showing that HT-SR can
effectively guide the training process by assessing
the quality of individual layers within a network.
On the theory side, HT-SR theory has been sub-
stantially studied from various perspectives, includ-
ing feature learning (Wang et al., 2024; Kothapalli
et al., 2024) and overparameterization (Hodgkin-
son et al., 2023), which contribute to understanding
the emergence of HT structures in the ESDs. Build-
ing on these insights, we utilize HT-SR theory to
design an improved expert allocation method.
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6 Conclusion

In this paper, we apply analytical methods from
HT-SR theory to develop a fine-grained allocation
strategy for determining the number of experts per
layer in the LoRA-MoE architecture. Extensive em-
pirical results show that AlphaLoRA offers a simple
yet effective approach to layer-wise expert alloca-
tion. Analysis of three widely used transformer-
based language models reveals that well-trained
layers require fewer LoRA experts. Our theoreti-
cally grounded method provides a scalable solution
for various models, further reducing redundancy
within the LoRA-MoE architecture. In future work,
we aim to integrate AlphaLoRA with other PEFT
methods and explore its application across different
model architectures and domains.

7 Limitations

AlphaLoRA demonstrates both effectiveness and
scalability as a model-specific method for deter-
mining the number of LoRA experts. However,
there are some potential limitations to consider.
First, the performance of AlphaLoRA could be var-
ied for different tasks, which could increase the
uncertainty in the performance of this method. Ad-
ditionally, the optimal total number of experts is
determined by the experimental results. Overall,
we will continue to work on this problem to address
these limitations and develop more effective and
robust allocation methods for different tasks.
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A Definition of other shape metrics from
HT-SR theory

• (Stable_Rank) The Stable_Rank metric pro-
vides a norm-adjusted assessment of the scale
of the empirical spectral density (ESD). Prior
research (Martin et al., 2021) has shown that
Stable_Rank correlates with the PL_Alpha
metric. For a given weight matrix W, it is
calculated as follows:

Stable_Rank =
∥W∥2F
∥W∥22

, (10)

where ∥W∥F denotes the Frobenius norm and
∥W∥2 denotes the spectral norm.

• (Alpha_Hat) The Alpha_Hat metric, intro-
duced in (Martin et al., 2021), has been
demonstrated to be effective at predicting
model generalization. It represents a modi-
fied form of the Power Law (PL) exponent
α (PL_Alpha), scaled by the logarithm of the
largest eigenvalue λmax of the weight matrix’s
spectral norm (log_spectral_norm):

Alpha_Hat = α log λmax. (11)

B Dataset

AlphaLoRA is studied on ten standard datasets from
three categories:

B.1 Language Understanding

Microsoft’s Research Paraphrase Corpus
(MRPC). This dataset has 5,801 sentence pairs
from news articles, labeled to indicate paraphrases.
It includes 4,076 pairs for training and 1,725 for
testing, with the task of classifying paraphrase
pairs.

Recognizing Textual Entailment (RTE). De-
rived from annual textual entailment challenges
(RTE1, RTE2, RTE3, RTE5), this dataset features
sentences from news and Wikipedia, classified as
entailment or not. It comprises 2,490 training and
277 validation samples.

Corpus of Linguistic Acceptability (COLA).
This dataset contains English sentences annotated
for grammatical acceptability, sourced from lin-
guistic theory texts. It includes 8,551 training and
1,043 validation samples.

B.2 Commonsense Reasoning

ScienceQA. This dataset includes 21,208
multiple-choice questions from elementary and
high school science curricula. For text-only
samples, there are 6,508 training and 2,224 test
samples, covering natural science, language sci-
ence, and social science, requiring commonsense
knowledge for answers.

CommonsenseQA. A dataset for commonsense
reasoning with 9,740 training samples and 1,221
validation samples, created by Amazon Mechan-
ical Turk workers. It demands various types of
commonsense knowledge to determine the correct
answers.

OpenbookQA. Comprising 5,957 elementary-
level science questions, this dataset tests under-
standing of core science facts and their application
to new scenarios. It includes 4,957 training, 500
validation, and 500 test samples.

B.3 Arithmetic Reasoning

Table 4 presents the statistics of four Arithmetic
Reasoning benchmarks: (1)AddSub (Hosseini
et al., 2014), (2) MultiArith (Roy et al., 2015), (3)
SVAMP (Patel et al., 2021), (4) GSM8K (Cobbe
et al., 2021).

Dataset # of Samples Avg. Words

AddSub 395 31.5
MultiArith 600 31.8
SVAMP 1000 31.8
GSM8K 1319 46.9

Table 4: Statistics of Arithmetic Reasoning datasets.

C Implementation

The direct fine-tuning setting aligns with Gao et al.
(2024), we do a grid search on the number of train-
ing epochs, including 10, 15, and 20 epochs for
downstream task fine-tuning. The cutoff length is
set to 256 and the batch size is 128. For the sec-
ond instruction-tuning→zero-shot tasks evaluation,
we conduct instruction-tuning on the MetaMathQA
dataset (Yu et al., 2024) for 1 epoch with cutoff
length set to 512. We conduct a small hyperparam-
eter sweep within the range of β ∈ [2.0, 2.5, 3.0],
where β regulates the standard deviation of experts
allocation, as depicted in Figure 6. For all exper-
iments, we use AdamW (Loshchilov and Hutter,
2017) as the optimizer with a learning rate of 3e-4.
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Figure 6: The expert allocations for Mistral-7b under different parameter β.

Expert Amount Strategy GSM8K SVAMP AddSub MultiArith

80 MoLA-▽(1234) 68.23 73.90 56.70 95.33
AlphaLoRA 69.44 75.60 57.72 97.66

160 MoLA-▽ (2468) 67.20 76.50 59.24 97.00
AlphaLoRA 68.30 77.20 59.49 97.33

224 MoLA-▽(46810) 68.61 73.60 58.98 96.83
AlphaLoRA 69.06 75.30 58.22 97.50

Table 5: Comparison between AlphaLoRA and MoLA-▽ across three configurations with varying total number of
experts T , specifically 80, 160, and 224 experts.

Strategy MRPC COLA RTE

MoLA-▽ 83.48 86.87 86.28
Stable_Rank 84.34 84.56 86.64
Alpha_Hat 84.11 86.86 84.83
AlphaLoRA 84.23 86.67 87.36

Table 6: Comparison of shape metrics on GLUE tasks.

Strategy S.QA C.QA O.QA

MoLA-▽ 92.36 78.95 79.60
Stable_Rank 92.13 77.81 77.80
Alpha_Hat 91.86 78.13 79.80
AlphaLoRA 92.71 78.37 80.80

Table 7: Comparison of shape metrics on QA tasks
(S.QA, C.QA, O.QA denote ScienceQA, Common-
senseQA, and OpenbookQA respectively).

The rank of each LoRA expert is 8 and we adopt
Top-2 for the router. LoRA alpha is set to 16 and
LoRA dropout is 0.05, following the default LoRA
settings (Hu et al., 2022). We apply LoRA experts
to four weight matrices in the self-attention module
(Wq, Wk, Wv, Wo) and three weight matrices
in the MLP module (Wgate, Wdown, Wup). All
experiments are conducted with three RTX A6000-
48G GPUs.

Shape Metrics GSM8K SVAMP AddSub MultiArith

MoLA-▽ 50.11 56.40 48.86 87.66
Stable_Rank 48.22 55.20 48.61 88.50
Alpha_Hat 49.81 56.70 46.08 88.50
AlphaLoRA 50.41 57.00 48.60 91.33

Table 8: Comparison of shape metrics on arithmetic
tasks.

D Complementary Results

In this section, we provide detailed results in Sec-
tion 4.3 and Section 4.4.

D.1 Detailed Results of Different Shape
Metric

Table 6 and 7 present the results of several shape
metrics in HT-SR theory when directly fine-tuned
on GLUE and QA tasks. Table 8 shows the results
of zero-shot setting on math tasks. We report the
average score for both settings in Figure 4.

D.2 Detailed Results of Varying Number of
Experts

In Table 5, we show the results of AlphaLoRA and
MoLA-▽ across three configurations with varying
total number of experts T , specifically 80, 160, and
224 experts.
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