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Abstract

Building socially-intelligent AI agents (Social-
AI) is a multidisciplinary, multimodal research
goal that involves creating agents that can sense,
perceive, reason about, learn from, and re-
spond to affect, behavior, and cognition of other
agents (human or artificial). Progress towards
Social-AI has accelerated in the past decade
across several computing communities, includ-
ing natural language processing, machine learn-
ing, robotics, human-machine interaction, com-
puter vision, and speech. Natural language pro-
cessing, in particular, has been prominent in
Social-AI research, as language plays a key
role in constructing the social world. In this
position paper, we identify a set of underly-
ing technical challenges and open questions for
researchers across computing communities to
advance Social-AI. We anchor our discussion
in the context of social intelligence concepts
and prior progress in Social-AI research.

1 Introduction

Humans rely on social intelligence to interpret and
respond to social phenomena such as empathy, rap-
port, collaboration, and group dynamics. Social
intelligence competencies that evolved over thou-
sands of years in Homo sapiens are hypothesized
to have been core factors shaping human cognition
and driving the emergence of language, culture,
and societies (Wilson, 2012; Emery et al., 2007;
Knight et al., 2000; Goody, 1995; Sterelny, 2007).
Humans today continually navigate diverse social
contexts, from short-term dyadic conversations to
long-term relationships. Virtual and embodied AI
agents must have social intelligence competencies
in order to function seamlessly alongside humans
and other AI agents. The complexity of this vision
and a set of core technical challenges for develop-
ing these agents are visualized in Figure 1.

Building socially-intelligent AI agents (Social-
AI) involves developing computational foundations

for agents that can sense, perceive, reason about,
learn from, and respond to affective, behavioral,
and cognitive constructs of other agents (human or
artificial). Social-AI research interest has acceler-
ated across computing communities in recent years,
including natural language processing (NLP), ma-
chine learning (ML), robotics, human-machine in-
teraction, computer vision, and speech (Figure 2).
We see Social-AI beginning to support humans in
real-world contexts. Virtual text agents have stim-
ulated empathic conversations between humans
in online chatrooms (Sharma et al., 2023), and
affective signals from wearables have supported
well-being (Sano, 2016; Park et al., 2020). Em-
bodied social robots have supported geriatric care
(González-González et al., 2021; Fleming et al.,
2003), motivated stroke patients (Matarić et al.,
2007; Feingold Polak and Tzedek, 2020), assisted
youth with autism spectrum condition (Hurst et al.,
2020; Scassellati et al., 2012), improved student
mental health (Jeong et al., 2020), and collaborated
with humans in manufacturing (Sauppé and Mutlu,
2015), among other prosocial applications1.

Is Social-AI purely an application of AI to so-
cial contexts or do underlying technical challenges
emerge that are particularly relevant to Social-AI?
We believe there are core technical challenges that
must be addressed to advance the multidisciplinary,
multimodal goal of building Social-AI. Our po-
sition paper is driven by the following question:
What are core technical challenges, open ques-
tions, and opportunities for researchers to advance
Social-AI? We anchor our position in the context
of social intelligence concepts, reviewed in Sec-
tion 2, and progress in Social-AI, summarized in
Section 3. In Section 4, we present 4 core techni-
cal challenges, along with opportunities and open
questions to advance Social-AI research.

1While Social-AI has prosocial applications, it must be
advanced in ethical ways. We discuss Social-AI ethical con-
siderations in Section 7 and Appendix B.
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Figure 1: (A) Four core technical challenges in Social-AI research, illustrated in an example context of a Social-AI
agent observing and learning from a human-human interaction. (B) Social contexts in which Social-AI agents can
be situated, with interactions spanning social units, interaction structures, and timescales. Interactions can span
social settings, degrees of agent embodiment, and social attributes of humans, with agents in several roles.

2 Social Intelligence Concepts

A shared understanding of social intelligence con-
cepts is useful for researchers to contextualize
progress and challenges in Social-AI. We begin
with the concept of social constructs – what makes
entities social? Social ontologists distinguish be-
tween social constructs (entities that exist by hu-
man construction) and natural kinds (entities that
exist regardless of the interpretations of human
minds) (Searle, 1995, 1998, 2010; Khalidi, 2015).
For example, a person is a natural kind with phys-
ical properties, but a friend or stranger are social
constructs unlinked to those physical properties.
Language plays a key role in forming social con-
structs (e.g., referring to someone as a close friend

is an act that can make them a close friend) (Searle,
2012). Social constructs are ontologically subjec-
tive, as their existence depends on perceptions of
humans, referred to as being "perceiver-dependent"
(Searle, 1998). This ontological subjectivity of con-
structs informs the Social-AI challenges that we
present in Figure 1A and discuss in Section 4.

2.1 Social Intelligence
The term social intelligence was introduced in the
early 20th century by social scientists who rec-
ognized the importance of teaching children how
to comprehend social situations (Dewey, 1909;
Lull, 1911). Hypotheses that social intelligence
differs from other forms of intelligence began in
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the 1920s, with distinctions among abstract in-
telligence (idea-focused), mechanical intelligence
(object-focused), and social intelligence (people-
focused) (Thorndike, 1920; Thorndike and Stein,
1937), with social intelligence seen as context-
dependent (Strang, 1930). Studying properties
of social intelligence is an ongoing research area
(Conzelmann et al., 2013; Brown et al., 2019).

Humans generate and interpret social signals
through verbal and nonverbal sensory channels
(e.g., word choice, gaze, gesture) (Vinciarelli et al.,
2011; Vinciarelli and Esposito, 2018; Burgoon
et al., 2011). Humans perceive social meaning
from these signals (Poggi and D’Errico, 2012). A
prevalent model developed with construct valida-
tion (Weis, 2008; Weis and Süß, 2005; Conzel-
mann et al., 2013) proposes that social intelligence
encompasses 5 competencies enabling humans to
navigate social situations: social perception, social
knowledge, social memory, social reasoning, and
social creativity. We consider a 6th competency,
social interaction. Social-AI research attempts to
endow agents with these 6 competencies as key
elements of social intelligence, defined below.

Social perception involves the ability to perceive
socially-relevant information from sensory stimuli
(Zebrowitz, 1990; Adolphs et al., 2016) (e.g., read-
ing tension from body language). Social knowledge
includes both declarative (factual) and procedural
(norms) knowledge (Snyder and Cantor, 1980; Bye
and Jussim, 1993). Social memory involves the
ability to store and recall social knowledge about
the self and others (Skowronski et al., 1991; Nel-
son, 2003). Social reasoning involves the ability to
interpret social stimuli and make inferences based
on these stimuli and commonsense understanding
(Gagnon-St-Pierre et al., 2021; Read et al., 2013).
Social creativity, sometimes referred to as "theory-
of-mind", involves the ability to counterfactually
reason about social situations (Hughes and Devine,
2015; Astington and Jenkins, 1995). Social inter-
action involves the ability to engage with other
agents in mutually co-regulated patterns (Turner,
1988; McCall, 2003; De Jaegher et al., 2010).

2.2 Dimensions of Social Context
Social contexts in which AI agents can be studied
and deployed are visualized in Figure 1B. These en-
compass diverse social settings (e.g., homes, hos-
pitals) that influence social norms (e.g., silence in
a library, yelling at a hockey match) (Rachlinski,
1998; Axelrod, 1997). Within social contexts, ac-

tors (human and machine) can have different roles
(e.g., active participant, observer) and different so-
cial attributes (e.g, age, occupation) which can
shape interactions (Van Bavel et al., 2013; Trepte,
2013; Allen, 2023; Goffman, 2016). The degree
of embodiment of actors can enrich and augment
communication channels (Goodwin, 2000; Wainer
et al., 2006; Deng et al., 2019); embodiment spans
disembodied virtual agents (e.g., chatbot), embod-
ied virtual agents (e.g., avatar), and physically-
embodied agents (e.g., humans and robots).

Within social contexts, there are several dimen-
sions of interactions: hierarchical social units, in-
teraction structures, and temporal scale. Social
units influence communication content, norms, and
interpretation (Hymes et al., 1972; Angelelli, 2000;
Agha, 2006; Goody, 1995; Goffman et al., 2002).
To visualize social units, consider the following
scenario adapted from Hymes et al. (1972): two
people exchange eye contact (social signals), while
one of them tells a joke (act) during a conversation
(event) at a party (situation) governed by shared
norms (community). The dyad’s interaction may be
viewed as two connected nodes in a social network
of interactions. Monads, dyads, and multi-party
interaction structures can induce their own social
dynamics (Pickering and Garrod, 2021). For ex-
ample, when a third actor is added to a dyad, new
dynamics of group coordination and conflict can
arise (Olekalns et al., 2003). Social interactions
also have a temporal scale that spans split-second
communication, moments, short-term interactions,
longer-term interactions, and life-long relationships
(Wittmann, 2011). This temporal dimension can
influence social meaning conveyed during interac-
tions; for example, a 100 millisecond pause longer
than normal for an actor can indicate reluctance,
instead of eagerness (Durantin et al., 2017).

This paper proposes core technical challenges
that are relevant to Social-AI agents situated across
many possible dimensions of social context.

3 Progress in Social-AI Research

We examined Social-AI research progress in 6 com-
puting communities: NLP, ML, robotics, human-
machine interaction2, computer vision, and speech.
Interest in Social-AI research has accelerated in the
past decade, notably in NLP, ML, and robotics (Fig-
ure 2). We synthesize key trends to provide readers

2We use "human-machine interaction" to include both
human-computer interaction and human-robot interaction.
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with context for the discussion of core technical
challenges and open questions in Section 4. Using
the Semantic Scholar API (Kinney et al., 2023),
we found 3,257 relevant papers that spanned 1979-
2023. For insights, we examined representative
papers across communities, selected for citation
count, recency, and relevance. Details on search
queries and filtering criteria are in Appendix A.

Early Social-AI research primarily envisioned
rule-based approaches for building social in-
telligence competencies in agents. NLP and
human-machine interaction researchers examined
rule-based approaches for modeling goal-oriented
communication (Pershina, 1986), cooperation
(d’Inverno et al., 1997), and dialogue (McRoy and
Hirst, 1993). They also explored rule-based ap-
proaches for processing multimodal signals during
human-machine interactions (Nagao and Takeuchi,
1994), animating embodied virtual humans as con-
versational agents (Pelachaud et al., 1991; Cassell
et al., 1994; Pelachaud et al., 1996), and interpret-
ing potential effects of speech acts (Pautler and
Quilici, 1998). ML and robotics researchers pro-
posed multi-agent search and planning algorithms
for social learning in groups of disembodied agents
(Ephrati et al., 1993) and behavior-based control
for groups of robots (Mataric, 1993, 1994). So-
cial robotics advanced systems for attending to so-
cial stimuli (e.g., faces) and communicating intent
(Breazeal and Scassellati, 1999a,b).

In the past two decades, scientists have increas-
ingly leveraged ML and deep learning in Social-AI
research. A common approach in these methods is
to train models to predict social phenomena from
observable human behavior, by using static datasets
with ground truth labels computed as aggregations
of annotator perspectives. A focus on ML for so-
cial signal processing also emerged during this era
(Vinciarelli et al., 2009). This stimulated a focus
on predicting social signals, such as laughter from
speech (Brueckner and Schulter, 2014; Eyben et al.,
2015), gesture and gait from visual cues (Morency
et al., 2007; Chao et al., 2019), and engagement
from visual, speech, and physiological data during
human-robot interactions (Rudovic et al., 2018).
There has been substantial research effort in pre-
dicting affective information, such as emotion and
sentiment, from multimodal conversation signals
(Busso et al., 2008; Schuller et al., 2012; Morency
et al., 2011; Zadeh et al., 2018; Majumder et al.,
2019), as well as efforts to predict social behaviors
with affective information (Mathur et al., 2023b).

Figure 2: Cumulative number of Social-AI papers over
time, based on the 3,257 papers from our Semantic
Scholar Social-AI queries. Interest in Social-AI research
has been accelerating across computing communities.

Multimodal interaction and computer vision re-
search explored approaches for rendering virtual
humans with social behavior (Swartout et al., 2006;
Ng et al., 2022) and learning representations to
model social interactions (Soleymani et al., 2019;
Lee et al., 2024). Computer vision and robotics
researchers have studied ML approaches for pre-
dicting human intent to inform human-robot inter-
actions (Strabala et al., 2012) and social navigation
to improve robot navigation in spaces with humans
(Pellegrini et al., 2010; Kosaraju et al., 2019; Cuan
et al., 2022; Taylor et al., 2022).

In parallel, researchers have focused on integrat-
ing game-theoretic and probabilistic approaches
to model aspects of social intelligence, such
as cooperation, competition, and theory-of-mind
(Castelfranchi, 1998; Kleiman-Weiner et al., 2016).
Approaches include stochastic games, inverse
planning, and multi-agent reinforcement learning
(MARL) (Jaques et al., 2019; Shum et al., 2019;
Wu et al., 2020), studied through formalized games,
such as public goods games (Wang et al., 2023), or
grid-world simulations (Lee et al., 2021).

In recent years, there have been efforts to probe
the extent to which models, in particular large lan-
guage models (LLMs), exhibit social intelligence
competencies. Scientists have identified strong
performance by LLMs in procedurally-generated
multi-agent gridworld interaction tasks (Kovač
et al., 2023), as well as limitations in LLM social
knowledge and social reasoning competencies (Sap
et al., 2022; Shapira et al., 2023) when tested on
static text benchmarks such as SOCIALIQA (Sap
et al., 2019b), ToMI (Le et al., 2019), and EPIS-
TEMIC REASONING (Cohen, 2021). These model
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limitations also emerge in static VideoQA bench-
marks such as SOCIAL-IQ 1.0 (Zadeh et al., 2019),
SOCIAL-IQ 2.0 (Wilf et al., 2023), and synthetic
video benchmarks such as MMTOM-QA (Jin et al.,
2024). There have been efforts to study LLM social
interaction competency during goal-oriented dia-
logue (Hosseini-Asl et al., 2020) and open-domain
dialogue (Nedelchev et al., 2020). Recently, dy-
namic environments have been proposed to study
Social-AI agents in dyadic and multi-party settings,
with SOTOPIA (Zhou et al., 2023), CAMEL (Li
et al., 2023), and AGENTVERSE (Chen et al., 2023)
studying text agent interactions, COELA (Zhang
et al., 2023b) studying embodied language agent
interactions, and HABITAT 3.0 (Puig et al., 2023)
studying simulations of human-robot interactions.

Key Takeaways Social-AI research has made
substantial progress in modeling social phenom-
ena in static ungrounded data (abstracting away
physical and social context), synthetic data, and
lab-controlled social interactions. However, these
data can abstract away the richness of multimodal-
ity (Liang et al., 2024) in interactions, as well as
the context-sensitivity and ambiguity inherent to
social phenomena in-the-wild. We also found a
focus on modeling temporally-localized phenom-
ena (e.g., split-second communication, short-term
interactions); longer-term phenomena were com-
paratively understudied (e.g., hours, days, years).

4 Core Technical Challenges
and Open Questions

Social intelligence concepts (Section 2) and prior
research in Social-AI3 (Section 3) informed our
identification of 4 core technical challenges visual-
ized in Figure 1A: (C1) ambiguity in constructs,
(C2) nuanced signals, (C3) multiple perspectives,
(C4) agency and adaptation. We believe these
challenges are particularly relevant to Social-AI
and must be addressed to advance social intelli-
gence in AI agents situated across the landscape of
social contexts in Figure 1B4. In this section, we
present these challenges, along with opportunities
and open questions for Social-AI research.

3We contribute a repository of resources to inform re-
searchers addressing challenges, discussed in Appendix B and
linked here: https://github.com/l-mathur/social-ai

4We sought to disentangle scale (e.g., number of actors
and constructs) from the identification of core challenges.

4.1 (C1) Ambiguity in Constructs
Social constructs have inherent ambiguity in their
definition and interpretation in the social world.
For example, consider the interaction in Figure 1A
– how might we characterize rapport, conflict, or ten-
sion between the actors? Many of these social con-
structs are still being defined and operationalized
by scientists (Neequaye, 2023; Policarpo, 2015).
The ontological subjectivity of social constructs
(entities that exist by human construction, as dis-
cussed in Section 2) results in inherent ambiguity
in construct definitions. This ambiguity is am-
plified when defining and measuring hierarchical
constructs – social constructs composed of other
social constructs. For example, it has been theo-
rized that rapport between humans can be measured
by composing estimates of mutual attentiveness,
positivity, and coordination (Tickle-Degnen and
Rosenthal, 1990). How might we interpret and mea-
sure these inherently ambiguous components? This
is compounded when quantifying observations of a
social construct ("some rapport", "a little conflict",
"a lot of tension"). When modeling ambiguous
social constructs, there is likely to also be misalign-
ment in interpretations of these constructs by actors
within interactions and annotators viewing interac-
tions. This misalignment amplifies ambiguity in
ground truth of social constructs. For example, in
Figure 1A, it is challenging to assign a label that
conclusively represents rapport in the interaction.

C1 Opportunities and Open Questions Re-
searchers must reconsider methods for represent-
ing ambiguous social constructs in modeling ap-
proaches. When there exists ambiguity in social
construct ground truth, as observed in annotator rat-
ings (Yannakakis and Martínez, 2015), how might
we incorporate this ambiguity in Social-AI model-
ing approaches? Modeling efforts have largely re-
lied on predefined label sets and "gold standard" an-
notations that aggregate annotators’ interpretations
of social constructs into discrete labels (computed
by majority vote) or continuous labels (computed
by temporal alignment) (Nicolaou et al., 2014; Kos-
saifi et al., 2019). However, annotators’ and actors’
definitions and interpretations of ambiguous social
constructs can vary during the course of interac-
tions. We believe such social constructs cannot be
solely represented with a single discrete or contin-
uous number on a static scale for an interaction.

Natural language, with its ability to expressively
represent concepts (Liu and Singh, 2004) and con-
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struct the social world (Searle, 1995), may offer a
uniquely effective modality to help address sources
of ambiguity when representing and modeling so-
cial constructs. We see considerable opportunity
for Social-AI researchers to explore techniques for
leveraging richer natural language descriptions of
social phenomena in label spaces. Researchers
can explore approaches for constructing flexible
natural language label spaces that are dynamically-
generated and adjusted during training and infer-
ence, instead of relying on predefined static labels
to categorize inputs. These flexible label spaces
would enable the development of models for social
constructs that can represent greater ambiguity in
social contexts. How to best design frameworks
to accommodate flexible and dynamic label spaces
when modeling social constructs remains an open
question and research opportunity.

We direct readers to representative work in ar-
eas that can inform Social-AI research towards this
challenge: questioning the assumption that labels
in ML tasks must have one "ground truth" (Aroyo
and Welty, 2015; Cabitza et al., 2023), exploring
ordinal representations (e.g., relative scales) for
emotion annotation (Yannakakis et al., 2017), mod-
eling perception uncertainty across annotators (Han
et al., 2017; Ghandeharioun et al., 2019), inferring
annotator subjectivity across samples (Sampath
et al., 2022), evaluating the alignment of "ground
truth" annotations with diverse annotator perspec-
tives (Santy et al., 2023), and handling varied label
distributions (e.g., label distribution learning, multi-
label learning) (Geng, 2016; Liu et al., 2021).

4.2 (C2) Nuanced Signals
Social constructs are expressed through behaviors
and signals that can be nuanced, often manifest-
ing through different degrees of synchrony across
actors and modalities. During interactions, small
changes in social signals can lead to large shifts
in social meaning being conveyed. For exam-
ple, an actor’s slight change in posture or split-
second vocal emphasis on a particular word can
communicate rapport. The challenge lies in en-
abling Social-AI agents to perceive and generate
fine-grained social signals (e.g., chatbot sensing
a user’s slowly-building frustration, robot making
subtle gestures). Social signals can be expressed
with different degrees of synchrony and can be
interleaved across actors and across modalities,
with actors functioning as both speakers and lis-
teners (Morency, 2010; Watzlawick et al., 2011).

The challenge involves advancing social signal pro-
cessing techniques (Shmueli et al., 2014) and mul-
timodal models that operate upon verbal and non-
verbal information to interpret the nuances of cross-
actor and cross-modal interaction patterns.

C2 Opportunities and Open Questions: While
scientists are studying the capacity of language
to scaffold visual understanding (El Banani et al.,
2023; Rozenberszki et al., 2022), audio understand-
ing (Elizalde et al., 2023), and virtual agent mo-
tion generation (Zhai et al., 2023; Zhang et al.,
2023c), the role of natural language supervision
for processing nuanced multimodal social signals
remains an open question. We anticipate that ad-
vancing the ability of Social-AI systems to process
highly-nuanced signals will require researchers to
critically examine the role of language in guiding
social perception and behavior generation. To what
extent can language be treated as an intermediate
representation (Zeng et al., 2022) to represent and
integrate nuanced multimodal social signals? Are
there social signals during interactions that cannot
be effectively described in language? We expect
that processing fine-grained signals such as vocal
cues, eye movements (Adams Jr et al., 2017), and
gestures (often interleaved within milliseconds),
alongside natural language, will require Social-AI
researchers to develop new frameworks for repre-
senting and aligning social signals across multiple
actors and multiple modalities.

Another modeling consideration related to this
challenge lies in developing mechanisms for agents
to perceive the absence of cues. Most ML mod-
els are trained to learn representations of attributes
based on the presence of those attributes in data,
yet much nuance in social perception lies in rec-
ognizing the absence of stimuli, such as unsaid
words, omitted eye contact, silences, and failure
to adhere to social norms. Humans are theorized
to learn from absent cues in addition to visible
cues, per error-driven and implicit learning frame-
works (Markman, 1989; Van Hamme and Wasser-
man, 1994; Nixon et al., 2022). Researchers have
considerable opportunity to explore approaches for
addressing the absence of cues in algorithms for
agent perception of nuanced social signals.

It remains unknown how abilities in nuanced so-
cial perception or social behavior generation might
emerge in models during training or fine-tuning
(Gururangan et al., 2020; Wei et al., 2022; Arora
and Goyal, 2023), leading to the following ques-
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tions: What are the capabilities and limitations of
training objectives, such as next-token prediction
or masking, in inducing nuanced social understand-
ing in models? How might the type and amount of
training data influence a model’s abilities in social
understanding? How might tokenization schemes
influence a model’s abilities in social understand-
ing? While inductive biases of tokenization (Singh
and Strouse, 2024) and fine-grained understanding
in models have been studied in non-social domains
(e.g., segmentation, spatial relationships) (Krause
et al., 2015; Bugliarello et al., 2023; Guo et al.,
2024), fine-grained social understanding abilities
have been understudied. Research in this direc-
tion would advance community understanding of
how social intelligence competencies might (or
might not) emerge in models under various training
paradigms. Datasets with nuanced social signals
will be essential to pursue these open questions; we
discuss data considerations in Appendix B.

4.3 (C3) Multiple Perspectives
In social interactions, actors bring their own per-
spectives, experiences, and roles; these factors can
change over time and influence the perspectives of
other actors during interactions. The subjectiv-
ity in each actor’s perceptions of social situations
stems from the "perceiver-dependent" nature of so-
cial constructs (Section 2). For example, in the
interaction in Figure 1A, both actors have different
perspectives on the level of "rapport" in their inter-
action. The evolution of these concurrent multiple
perspectives can be influenced by several factors
of the interaction’s social context. Actors meeting
for the first time will use different information to
estimate rapport than if they had a long-term rela-
tionship with frequent interactions to draw upon.
The topic of conversation, social setting (e.g., are
they in a doctor’s office?), behavioral norms (Ziems
et al., 2023), social roles (e.g., are they colleagues?)
and additional social attributes (e.g., age) can influ-
ence the evolution of their concurrent perspectives.

In addition, there exists multi-perspective in-
terdependence, as each actor’s perspective can
change over time, while influencing and being in-
fluenced by others’ perspectives. For example, a
hospital patient and assistive Social-AI agent in-
teracting intermittently would be continually ad-
justing their perspective of the other actor to build
rapport over time. The challenge involves equip-
ping Social-AI agents with the capacity to reason
over these multi-perspective dynamics.

C3 Opportunities and Open Questions: Ad-
dressing this challenge will require modeling
paradigms that enable agents to reason over mul-
tiple, dynamically-changing perspectives, experi-
ences, and roles in social interactions. Each actor
can influence and be influenced by other actors, as
formalized in interactionist theories from psychol-
ogy such as actor-partner frameworks (Kenny and
Ledermann, 2010), social identity theory (Hogg,
2016), and social influence theory (Friedkin and
Johnsen, 2011). This complexity leads us to iden-
tify the following open questions: How can re-
searchers create models for Social-AI agents to
perceive concurrent, interdependent perspectives
of actors during interactions? To what extent would
a single, joint model be more effective than multi-
ple models (e.g., one for each actor) to represent
social phenomena across an interaction? When
interactions occur intermittently over time, how
can models efficiently and accurately adjust agents’
perceptions of other actors’ perspectives?

The social intelligence competencies of social
creativity (theory-of-mind) and social reasoning
(Section 2.1) are typically associated with this
"multi-perspective" modeling challenge. Exist-
ing theory-of-mind research in Social-AI has fo-
cused on the movement of abstract shapes (Gor-
don, 2016), procedurally-generated dialogues (Kim
et al., 2023), and synthetic videos (Jin et al., 2024)
and has been useful in assessing abilities of models
in these tasks. However, we believe that the multi-
perspective Social-AI challenge encompasses not
only the capacity to reason about the mental states
and beliefs of other agents (including higher-order
theory-of-mind), but also the capacity to perform
counterfactual social reasoning over time with mul-
tiple dimensions of dynamic social contexts influ-
encing interdependent perspectives of the actors.
In order to test models’ ability to address this chal-
lenge, the Social-AI community will require the
curation of fine-grained benchmarks that test multi-
perspective abilities in naturalistic social settings.
Data considerations for the Social-AI community
are discussed in Appendix B.

4.4 (C4) Agency and Adaptation
Actors learn from social experiences and adapt to
social contexts, through interactions, influenced by
their own agency, goals, motivations, and identi-
ties. Social-AI agents must have the capacity to
be goal-oriented, often targeting multiple goals si-
multaneously. For goal-oriented Social-AI agents
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to learn from social experiences, these agents
must have mechanisms for motivation to adapt
to both explicit and implicit social signals from
other actors and from the surrounding social con-
text. Explicit social signals can include direct or
rank-based feedback provided by humans assessing
the perceived competencies of an AI agent driven
by a social goal. Implicit signals can include verbal
and nonverbal cues from actors, as well as latent
aspects of the social environment (e.g., community-
level norms) that can provide supervision for a
goal-oriented agent. For example, in Figure 1A,
given a social goal of faciliting rapport, the robot
might use its observations of the dyad’s explicit and
implicit social signals to learn how to successfully
intervene in the interaction. Creating goal-oriented
Social-AI agents will involve developing compu-
tational mechanisms for shared social memory
between a Social-AI agent attempting to learn from
social experiences and other actors in an interac-
tion. Building a shared social reality across actors
within an interaction (Echterhoff et al., 2009) en-
ables agents to create common ground (Clark and
Brennan, 1991) and operate in ways aligned with
mutual social expectations. Alignment in these so-
cial expectations will be necessary for Social-AI
agents to effectively adapt behavior in relation to
other actors and achieve long-term social goals.

C4 Opportunities and Open Questions: For
many non-social tasks, motivation for agents to
learn how to exhibit certain behaviors can be in-
stilled through clearly-defined loss functions and
metrics (e.g., minimizing bounding box error for
object detection), as well as reward signals based
on these metrics. However, Social-AI agents need
to learn from multiple kinds of social experiences
(Hu, 2021). In many cases, this can involve learn-
ing from implicit social signals that are fleeting
(e.g., vocal cue lasting 1 second), sparse (e.g., an
actor raising an eyebrow once to indicate disap-
proval), and context-dependent (e.g., varied cul-
tural norms). Learning from these types of social
signals will be important, as it is infeasible to ex-
pect humans to provide regular, explicit feedback
to indicate satisfaction with a Social-AI agent’s
competencies. It is possible that humans will be un-
aware of the Social-AI agent’s goals, reducing the
likelihood of humans providing explicit feedback
in-the-wild about the agent’s performance.

The challenge for researchers is to build mecha-
nisms that motivate Social-AI agents to learn from

diverse spaces of social signals. This challenge
leads us to identify several understudied, open ques-
tions: How can modeling paradigms and metrics
be created for Social-AI agents to estimate success
in achieving social goals, based on explicit and
implicit signals? How can mechanisms to adapt be-
havior towards achieving single goals and multiple,
simultaneous goals be developed for agents? How
might social rewards (Tamir and Hughes, 2018)
shape agent learning over time? How can shared
social memory be built among Social-AI agents
and other actors in interactions, and how can this
memory inform algorithms for learning from so-
cial signals? To begin addressing these directions,
researchers might consider perspectives on motiva-
tion (Chentanez et al., 2004), learning from implicit
signals (Jaques et al., 2020; Wang et al., 2022),
value internalization (Rong and Kleiman-Weiner,
2024) from social feedback, and agent memory
(Cheng et al., 2024; Zhong et al., 2024). There
exists considerable opportunity to tackle open ques-
tions related to Social-AI agency and adaptation.

5 Conclusion

In this position paper, we present a set of core
technical challenges, along with opportunities and
open questions, for advancing Social-AI research
across computing communities. The core technical
challenges that we identify include the following:
(C1) ambiguity in constructs, (C2) nuanced signals,
(C3) multiple perspectives, and (C4) agency and
adaptation in social agents. We believe these chal-
lenges are relevant for developing Social-AI agents
situated in diverse social contexts. For example,
NLP researchers situating chatbots within social
dialogue and robotics researchers building social
robots will both encounter these 4 challenges.

Our research vision for building Social-AI en-
compasses work to advance social agents with a va-
riety of embodiments, social attributes, and social
roles, with agents interacting in a range of social
contexts. We conceptualize dimensions of social
context and illustrate the core technical challenges
in Figure 1, as a resource for readers across fields
to visualize a holistic perspective of Social-AI.

We anchor our paper in key perspectives from
the social intelligence literature (Section 2) and
progress in Social-AI research across multiple com-
puting communities and multiple decades (Section
3). We contribute these summaries to stimulate a
shared community understanding on Social-AI.
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Virtual and embodied AI systems with social in-
telligence have considerable potential to support hu-
man health and well-being in real-world contexts,
such as homes, hospitals, and other shared spaces.
For AI agents to function seamlessly alongside hu-
mans, these agents need to be endowed with social
intelligence competencies. Our paper is intended
to inform and motivate research efforts towards AI
agents with social intelligence.

6 Limitations

Position Paper Constraints This work is a po-
sition paper, and the core challenges we identify
are informed by our involvement in Social-AI re-
search and our reflection on existing Social-AI pa-
pers across NLP, ML, robotics, human-machine
interaction, computer vision, and speech. Our
search queries and filtering criteria were designed
to help us capture and convey trends in Social-AI
research from 6 computing communities over mul-
tiple decades (Section 3 and Appendix A). We have
highlighted representative papers across fields, and
this position paper is not an exhaustive survey.

Scope Our paper is scoped to focus on core tech-
nical challenges and open questions in Social-AI
research, anchored the social intelligence concepts
and competencies discussed in Section 2. An im-
portant direction of research exists in social bias
detection and mitigation (Sap et al., 2019a; Blod-
gett et al., 2020; Liang et al., 2021; Lee et al., 2023).
Social-AI research and the deployment of Social-
AI systems must be informed by bias and ethics
considerations, as discussed in Section 7.

7 Ethics

Social-AI has several prosocial applications to de-
mocratize human access to healthcare, education,
and other domains (Section 1). Our society faces
widening care gaps with a shortage of human care
providers in mental healthcare (Pathare et al., 2018)
and geriatric care (Redfoot et al., 2013), alongside
growing global education inequalities (Attewell
and Newman, 2010). Social-AI agents have poten-
tial to augment human ability to tackle these chal-
lenges; for example, through personalized Social-
AI agents for education (Park et al., 2019; Spauld-
ing, 2022; Dumont and Ready, 2023). However,
while addressing all the Social-AI technical chal-
lenges, research must be conducted with ethical
and privacy-preserving practices. For example, a

scientist advancing the ability of AI systems to de-
tect and generate nuanced social signals (C2) must
acknowledge and mitigate the risk of undermining
human trust in AI systems that are likely to exhibit
uncanny behavior in this process (Mori et al., 2012;
Mathur and Reichling, 2016).

Participatory Social-AI Research In order to
better align development and deployment of
societally-beneficial Social-AI, we advocate that
future directions include embracing Participatory
AI frameworks (Bondi et al., 2021; Birhane et al.,
2022; Zhang et al., 2023a), consciously involving a
diverse range of stakeholders, to ensure Social-AI
researchers prioritize concerns, ethical frameworks,
risks, and needs raised by stakeholders. When hu-
mans interact with computers, virtual agents, and
robots, they impose social norms and expectations
on these agents (Nass and Moon, 2000); it is im-
portant to directly assess and center human social
and functional expectations from Social-AI agents
when creating and deploying them (Takayama
et al., 2008; Dennler et al., 2022; Olatunji et al.,
2024). Participatory AI practices will help Social-
AI researchers develop guidelines for transparency
(Felzmann et al., 2020) in how data is gathered,
what data is stored, and how data is used through
collaboration between end users of Social-AI and
researchers of Social-AI. We envision that Partici-
patory Social-AI research would involve advancing
user-centric modeling paradigms that provide users
with power to choose, edit, and delete their data
used in models, as well as signal social and cultural
norms they would like their systems to follow.

Social Bias Social-AI systems often rely on mod-
els that can exhibit and amplify social bias. Tech-
niques to identify and mitigate social bias in lan-
guage models (Liang et al., 2021; Kaneko and Bol-
legala, 2022; Prabhumoye et al., 2021) and mul-
timodal models (Luccioni et al., 2024; Cho et al.,
2023) are important, in order to build Social-AI sys-
tems that are culturally-competent (Bhatt and Diaz,
2024; Bhatia et al., 2024), develop techniques that
perform across cultures (Hershcovich et al., 2022;
Mathur et al., 2023a), and refrain from propagating
harmful social biases when deployed in-the-wild.

Privacy and Trust We believe that Social-AI re-
searchers must prioritize user privacy, especially
due to the sensitive nature of social phenomena
and the deployment of Social-AI agents in spaces
alongside humans (Kaminski et al., 2016). Re-
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specting user privacy and building trust can involve
transparency about how human data is being used,
models refraining from tasks they cannot perform
(Akter et al., 2024), and minimizing the collec-
tion and use of invasive data (Stapels et al., 2023).
Models that can learn from minimal data (e.g., a
single user’s interaction), perform decentralized
learning (Guerdan and Gunes, 2022), and store
de-identified representations of data can support
the privacy of end-users. In addition, developing
on-device models capable of operating on single
devices (e.g., smartphones and wearables) can min-
imize dependence on external services and reduce
risk of exposing sensitive data. These approaches
can promote trustworthiness of Social-AI systems.
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A Search Queries and Filtering Criteria

We accessed data from Semantic Scholar (Lo et al.,
2019; Kinney et al., 2023), a scientific research
tool from the Allen Institute for AI. We bulk-
downloaded meta-data of papers that (1) had “Com-
puter Science" as one of its fields and (2) satisfied
the following Semantic Scholar query: ["social"
AND "model"] OR ["social" and "agent"] OR
["social" and "artificial intelligence"]
OR ["social" and "machine learning"]. This
initial search yielded approximately 161,000 pa-
pers. We, then, filtered our sample to include rel-
evant papers from venues in the "top 20" per field
by Google Scholar’s venue-listings across the 6
computing communities of artificial intelligence
(this Google Scholar listing includes key machine
learning conferences), computer vision, natural lan-
guage processing, robotics, and human-computer
interaction (this Google Scholar listing includes
human-machine interaction and human-robot inter-
action). This filtering step yielded 3,257 papers.

On the assumption that the papers between 2010
and 2020 would be the most influential in ascer-
taining priorities for each field and papers from
2020 onwards capture the most recent priorities of
each field, we sampled 20 papers per computing
community. 40% of papers were from 2010-2019,
and 60% of papers were from 2020-2023 (15% per
year). Retaining for relevance, we pick the most
cited 8 papers from the past decade and the most
cited 3 papers from each year of 2020-2023. We
examined these 120 papers to help ensure that our
discussion of prior work captures research priori-
ties of computing communities in Social-AI.

B Social-AI Infrastructure

We discuss several data infrastructure considera-
tions to supplement Social-AI research efforts to-
wards the core technical challenges in our paper.

Social-AI Data Sources Commonly-used
sources of data for Social-AI model training and
evaluation are static (e.g., lab-collected interac-
tions, TV shows) and do not contain a naturalistic
distribution of long-tail social phenomena, nuanced
social signals, multi-perspective dynamics, and
other dimensions of social context visualized in
Figure 1B. The majority of online video data,
for example, are sociotechnical constructions
(Knoblauch and Tuma, 2019), influenced by
choices such as frame angles and scene cuts.

Social-AI research may benefit from emphasiz-
ing richer sources of naturalistic interactions, as
well as interactive sources of data. Examples of
recent work exploring richer sources of social in-
teraction data include multimodal egocentric per-
ception (Grauman et al., 2023) across audio, mo-
tion/position, gaze, vision, pose, and natural lan-
guage, as well as a multi-year study of multimodal
neural and psychological factors related to human
social cognition (Kliemann et al., 2022). Multi-
modal, ethically-collected data sources that pair
natural language, vision, and other neural and sen-
sory modalities (e.g., olfaction, physiology) during
social interactions can be invaluable sources of
data to advance Social-AI research. We also be-
lieve there is great potential to explore techniques
for re-purposing and augmenting existing social
interaction datasets to supplement the curation of
real-world datasets (e.g., reconstructing 3D humans
from 2D videos) (Pavlakos et al., 2022).

Social-AI Benchmarks Curating multimodal
datasets of interactions in-the-wild that include
Social-AI agents and actors situated within mul-
tiple dimensions of social context will be useful to
advancing Social-AI research. There is a scarcity
of shared, longitudinal datasets of real-world in-
teractions across social contexts that can support
researchers in stress-testing algorithms to address
core technical challenges in Social-AI research.
For example, a researcher developing an algorithm
to address the challenge of modeling multiple per-
spectives during social interactions might find it
useful to explore how effective the approach is
when tested for the same actor in different interac-
tion structures, spanning dyadic, multi-party, and
group contexts. There is currently no shared in-
frastructure for systematically performing these
experiments to inform our understanding of Social-
AI agent performance along various dimensions of
social context. This type of understanding is impor-
tant to safely deploy Social-AI agents in-the-wild.

Social-AI Data Annotation Obtaining fine-
grained annotations of multiple social constructs
during social interactions is a resource-intensive
task. In the case of social interaction video data,
a fine-grained annotation might include labels at
different hierarchical social units (e.g., behaviors,
events) that may overlap in video segments. Each
minute of an interaction can take more than an
hour for a trained annotator to analyze and anno-
tate (Morency, 2010). It is important to include
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multiple annotators for each sample and fairly com-
pensate annotators for these types of cognitively-
demanding annotations (Huang et al., 2023).

The challenge of ambiguity in social constructs
amplifies the difficulty of this annotation process,
since annotators can interpret constructs differently,
even when provided with the same initial annota-
tion instructions. It is important to design annota-
tion paradigms that consciously include annotators
from diverse backgrounds, in order to represent
multiple perspectives on social constructs that are
likely to exist across gender, age, culture, nation-
ality, and other demographic factors (Ding et al.,
2022; Santy et al., 2023).

In addition, annotators’ social perception speeds
can also differ when interpreting social interactions,
causing temporal delays between occurrences of so-
cial phenomena and labels across annotators. Tech-
niques to address these temporal delays in annota-
tions must be developed and standardized in mod-
eling paradigms by Social-AI researchers.

Community Resource To accompany the paper
and stimulate community research, we contribute
a repository of resources for researchers interested
in addressing Social-AI challenges: https://
github.com/l-mathur/social-ai. This reposi-
tory contains links to papers, books, doctoral disser-
tations, datasets, benchmarks, simulation environ-
ments, and university courses relevant to Social-AI
research. This resource will be continually updated
for the research community.
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