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Abstract

Machine Translation (MT) evaluation metrics
assess translation quality automatically. Re-
cently, researchers have employed MT metrics
for various new use cases, such as data filtering
and translation re-ranking. However, most MT
metrics return assessments as scalar scores that
are difficult to interpret, posing a challenge to
making informed design choices. Moreover,
MT metrics’ capabilities have historically been
evaluated using correlation with human judg-
ment, which, despite its efficacy, falls short of
providing intuitive insights into metric perfor-
mance, especially in terms of new metric use
cases. To address these issues, we introduce an
interpretable evaluation framework for MT met-
rics. Within this framework, we evaluate met-
rics in two scenarios that serve as proxies for
the data filtering and translation re-ranking use
cases. Furthermore, by measuring the perfor-
mance of MT metrics using Precision, Recall,
and F -score, we offer clearer insights into their
capabilities than correlation with human judg-
ments. Finally, we raise concerns regarding the
reliability of manually curated data following
the Direct Assessments+Scalar Quality Met-
rics (DA+SQM) guidelines, reporting a notably
low agreement with Multidimensional Quality
Metrics (MQM) annotations.

1 Introduction

Over the past few years, Machine Translation (MT)
evaluation metrics have transitioned from heuristic-
based to neural-based, enabling a more nuanced
evaluation of translation quality and a greater agree-
ment with human judgments (Freitag et al., 2022b).
Additionally, recent Metrics Shared Tasks at the
Conference on Machine Translation (Mathur et al.,
2020b; Freitag et al., 2021b, WMT) have seen the
rise of reference-free metrics, which assess trans-
lation quality without the need for human-curated
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Figure 1: Quality assessments returned by COMET (Rei
et al., 2020), MetricX-23-QE-XL (Juraska et al., 2023),
and GEMBA-MQM (Kocmi and Federmann, 2023) for
the provided machine-translated text.

references by comparing translations only to their
sources in the original language. Lately, reference-
free metrics have demonstrated performance on par
with, and sometimes superior to, their reference-
based counterparts (Freitag et al., 2023; Kocmi
et al., 2024a). Thanks to these advancements and
the ability to use metrics without references, sev-
eral new MT metrics use cases have emerged. Fre-
itag et al. (2022a), Fernandes et al. (2022), Farin-
has et al. (2023), Ramos et al. (2024), and Finkel-
stein and Freitag (2024) used MT metrics as utility
functions for Minimum Bayes Risk (MBR) decod-
ing (Kumar and Byrne, 2004; Eikema and Aziz,
2020) and for Quality Estimation (QE) re-ranking.1

Ramos et al. (2024), Gulcehre et al. (2023), He
et al. (2024), and Xu et al. (2024) used MT metrics
as a proxy for human preferences to fine-tune MT
systems using Reinforcement Learning (RL)- and
Direct Preference Optimization (DPO)-like train-
ing objectives. Peter et al. (2023), Alves et al.

1MBR decoding and QE re-ranking are methods used to
identify the best translation from multiple outputs generated
by an MT system for the same source text. MBR decoding typ-
ically relies on reference-based metrics, while QE re-ranking
depends on reference-free metrics.
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(2024), and Gulcehre et al. (2023) used reference-
free metrics to filter parallel corpora – discarding
all translations assigned with a metric score that is
below a certain threshold – with the goal of train-
ing MT systems using higher quality data. These
works leverage MT metrics for applications beyond
their traditional use of measuring incremental im-
provements in the development of MT systems.
However, the lack of a dedicated evaluation, paired
with the inherent opacity of MT metrics, makes it
challenging to determine whether one metric suits
a given task better and what the impact of various
design choices is. For example, Alves et al. (2024),
Peter et al. (2023), and Gulcehre et al. (2023) fil-
ter MT datasets using different MT metrics and
thresholds, leaving it unclear whether an optimal
choice exists. Furthermore, considering the ever-
increasing number of metrics available, researchers
are often limited to grid-searching for the best con-
figuration for each new application, as do Fernan-
des et al. (2022) and Ramos et al. (2024), who
explore by grid-search whether certain metrics are
better suited than others for MBR decoding, QE
re-ranking, and as reward models for RL-based
training. However, the lack of dedicated evalua-
tion setups often requires revisiting these studies
to assess whether their findings hold with newer
metrics, resulting in a non-negligible increase in
experimentation time.

In this work, we address these issues by intro-
ducing a novel and more interpretable evaluation
framework for MT metrics, comprising evaluation
setups designed as proxies for new metric use cases.
In the following sections, we first illustrate the prob-
lem of interpretability, then introduce our frame-
work, and finally present our results.

2 The Interpretability of MT Metrics’
Assessments

In the field of AI, Interpretability is defined as “the
ability to explain or to provide the meaning in un-
derstandable terms to a human” (Barredo Arrieta
et al., 2020), and typically refers to the problem
of understanding the decision-making process of
an AI model. However, our goal here is less ambi-
tious. Instead of focusing on the interpretability of
MT metrics themselves, we are concerned with the
interpretability of their assessments. Specifically,
most state-of-the-art MT metrics are trained to min-
imize the Mean Squared Error (MSE) with human
judgments and return assessments as scalar quality

scores, which are difficult to interpret. Therefore,
we are interested in understanding the meaning of
these scores, rather than the internal workings of
MT metrics.

In light of this, we attribute MT metrics assess-
ments’ lack of interpretability to three main fac-
tors:2

1. Range consistency: it is unclear whether a
difference in metric score has the same mean-
ing if it occurs in different regions of the score
range.

2. Error attribution: scalar quality assessments
do not identify specific translation errors.

3. Performance: metrics capabilities are typi-
cally measured through correlation with hu-
man judgment, which fails to provide users
with a clear understanding of their perfor-
mance and reliability.

In simpler terms, let us consider the example of
Figure 1. Due to the lack of Error attribution we
do not know which translation errors, if any, led
COMET (Rei et al., 2020) to return 0.86. Also, the
metric comes with no Range consistency guarantee,
e.g. whether 0.86 is twice as good as 0.43. Further-
more, different metrics have different score ranges,
making it difficult to compare the assessments from
COMET with those of the other MT metrics in the
figure. Finally, lacking a clear understanding of
COMET’s Performance beyond human correlation,
we cannot be sure whether we can draw conclu-
sions from its assessments safely.

For this reason, some efforts have been made to
design interpretable metrics. For example, among
the primary submissions to the WMT23 Metrics
Shared Task (Freitag et al., 2023), MaTESe (Per-
rella et al., 2022) annotates the spans of a transla-
tion that contain errors, specifying their severity,
xCOMET models (Guerreiro et al., 2024) return an-
notated error spans together with a final regression
value, and GEMBA-MQM (Kocmi and Federmann,
2023) leverages GPT-4 (OpenAI et al., 2024) to
produce detailed quality assessments. However,
these metrics compromise on other aspects to ac-
commodate the increased interpretability. MaTESe
displays a lower correlation with human judgment

2We wish to clarify that we identified these three factors
as notably impactful, but they are non-exhaustive and may
overlap.
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than several regression-based metrics.3 Trading off
performance and interpretability, xCOMET models’
final assessment is based mainly on the regression
component, with annotated spans contributing only
2/9 of the overall score. Finally, GEMBA-MQM is
prohibitively expensive to operate and its assess-
ments are not fully-reproducible, due to its depen-
dence on the closed-source GPT-4.

In this work, we seek to mitigate the inter-
pretability issue by targeting the problem of Per-
formance. Specifically, we take inspiration from
two popular new MT metrics applications, i.e.,
data filtering and translation re-ranking, in order to
study and measure metrics performance in terms
of Precision, Recall, and F -score. Taking ad-
vantage of these measures that are more transpar-
ent than correlation, we aim to shed light on the
meaning and reliability of metrics assessments,
especially concerning such new MT metrics use
cases. We release our evaluation framework as
software at https://github.com/SapienzaNLP/
interpretable-mt-metrics-eval.

3 An Interpretable Evaluation
Framework for MT Metrics

Two popular new MT metrics applications are data
filtering and translation re-ranking. In data filter-
ing, MT metrics separate good-quality from poor-
quality translations. After choosing a threshold
value, all translations below the threshold are la-
beled as poor quality and discarded. In this re-
spect, we are interested in jointly assessing metric
performance and studying the meaning of metric
scores, finding the thresholds that best separate
good-quality ( GOOD ) from poor-quality ( BAD )
translations. Instead, in translation re-ranking, MT
metrics determine the best in a pool of translations
of the same source text. For example, in QE re-
ranking and MBR decoding, metrics are tasked to
identify the best translation among those sampled
from an MT system.

With the aim of facilitating practitioners in mak-
ing design choices for these metrics applications,
and with a focus on the interpretability issue, we
evaluate MT metrics performance in two settings: i)
when metrics are used as binary classifiers, tasked
to separate between GOOD and BAD translations
(acting as a proxy for the data filtering applica-
tion), and ii) when metrics are used to identify the

3While this might be due to several contributing factors,
the limited availability of training data containing detailed
span-level annotations is most likely one of them.

best translation in a group of translations of the
same source (acting as a proxy for translation re-
ranking).

3.1 Metrics as Binary Classifiers for Data
Filtering

Let us consider the MT metric M, which out-
puts scores in the range [m1,m2]. Let us define
M(t) ∈ [m1,m2] as the score assigned by metric
M to translation t. By selecting an arbitrary thresh-
old value τ ∈ [m1,m2], we repurpose M as a bi-
nary classifier: a translation t is deemed as GOOD

by metric M, with threshold τ , if M(t) ≥ τ , oth-
erwise it is deemed as BAD .

Precision, Recall, and F -score Assuming that
we have an oracle H telling us whether a trans-
lation is GOOD or BAD , we can measure the
performance of metric M, with threshold τ , in
terms of standard measures such as Precision, Re-
call, and F -score, which we refer to as PMτ , RMτ ,
and FMτ . Given metric M, oracle H, translation
t, and threshold τ , PMτ estimates the probability
that translation t is GOOD , given that metric M
deems it as such:

PMτ = P̂r(H(t) = GOOD | M(t) ≥ τ). (1)

Similarly, RMτ estimates the probability that met-
ric M deems translation t as GOOD , given that
the oracle deems it as such:

RMτ = P̂r(M(t) ≥ τ | H(t) = GOOD ). (2)

Finally, we aggregate Precision and Recall using
Fβ-score, with β = 1√

2
, which weights Precision

higher than Recall compared to the more common
F1-score. Arguably, false positives – i.e., trans-
lations of low quality that are mistakenly consid-
ered GOOD – could be detrimental to the applica-
tions that see metrics employed as binary classifiers.
For example, in data filtering, false positives corre-
spond to low-quality translations that survive the
filtering, compromising the quality of filtered data.
In contrast, false negatives – i.e., translations of
high quality that are mistakenly assigned with the
BAD label – would more frequently lead to minor

inconveniences, as they correspond to good-quality
translations that are mistakenly discarded. More-
over, we note that MT metrics struggle to achieve
high Precision, meaning that metrics differences
can be best highlighted if Precision is weighted
higher than Recall.
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Therefore, the F -score of metric M, with thresh-
old τ , is defined as follows:

FMτ =
3

2

PMτRMτ

1
2P

Mτ +RMτ
. (3)

3.2 Metrics as Utility Functions for
Translation Re-Ranking

Let us consider the set T = {t1, t2, ..., tn} contain-
ing translations of the same source text. We are
interested in assessing metric performance in rank-
ing the best translation, as determined by human
annotators, in the first position. However, metrics
and humans might return tied assessments, plac-
ing two or more translations together in the first
position. Therefore, we define TM as the subset
of T containing all translations assigned with the
highest score by M. Similarly, TH contains the
translations of T ranked highest by human anno-
tators. The Re-Ranking Precision of metric M is
defined as follows:

RRPM =
|TM ∩ TH|

|TM| . (4)

Unlike in the data filtering scenario, we focus
solely on Re-Ranking Precision, not Recall. This
is because, to serve as a proxy for translation re-
ranking applications, what matters is whether the
returned translation is the best – or among the best
– rather than identifying all the translations ranked
highest by human annotators.

4 Experimental Setup

This section outlines the data employed, the metrics
evaluated, and our methodology. Implementation
details regarding the calculation of Precision, Re-
call, and F -score are in Appendix A.

4.1 The Data

We employ WMT23MQM (Freitag et al., 2023),
which contains human annotations collected within
the Multidimensional Quality Metrics framework
(Lommel et al., 2014, MQM), and WMT23DA+SQM
(Kocmi et al., 2023), which includes human annota-
tions as Direct Assessments + Scalar Quality Met-
rics (Kocmi et al., 2022, DA+SQM). Both datasets
consist of source texts translated by multiple MT
systems, with translation quality assessed by pro-
fessional human annotators. Table 4 in the Ap-
pendix provides additional information regarding
these datasets.

We conduct the evaluation using WMT23MQM,
specifically the ZH→EN language direction, and
use WMT23DA+SQM as a reference for human per-
formance, given that it contains a subset of the
translations in WMT23MQM annotated using a dif-
ferent human evaluation scheme. Results concern-
ing the other language directions in WMT23MQM,
i.e., EN→DE and HE→EN, are reported in the Ap-
pendix.

4.2 The Metrics

We consider the following metrics: COMET,
COMET-QE, and COMET-QE-MQM (Rei et al., 2020,
2021); BLEURT-20 (Sellam et al., 2020; Pu et al.,
2021); MetricX-23, MetricX-23-QE, MetricX-23-
XL, and MetricX-23-QE-XL (Juraska et al., 2023);
CometKiwi and CometKiwi-XL (Rei et al., 2022,
2023a); xCOMET-ENSEMBLE and xCOMET-QE-
ENSEMBLE (Guerreiro et al., 2024); xCOMET-XL

(Guerreiro et al., 2024); MaTESe and MaTESe-
QE (Perrella et al., 2022); GEMBA-MQM (Kocmi
and Federmann, 2023); MBR-MetricX-QE (Naskar
et al., 2023). We refer the reader to Appendix C
for detailed information regarding these metrics,
where we also provide a broader selection, includ-
ing lexical-based and sentinel metrics (Perrella
et al., 2024).

Additionally, following Freitag et al. (2023), we
include the results from a random baseline, i.e.,
Random-sysname, which outputs discrete scores
drawn from several Gaussian distributions, one for
each MT system that translated the texts in the test
set. Each Gaussian has a randomly assigned mean
between 0 and 9, with a standard deviation of 2.

4.3 Selecting the Thresholds τ

In the data filtering scenario, we can measure two
different aspects of metric performance, depending
on how we select the τ value:

1. By selecting τ to maximize the F -score on
the test set, we measure MT metrics’ abil-
ity to separate GOOD from BAD transla-
tions under ideal conditions. This scenario
allows us to measure the maximum achiev-
able F -score for each metric on the test data,
effectively evaluating the metric’s discrimina-
tive power. Metrics whose assessments are
not accurate enough, noisy, or, more gener-
ally, poorly aligned with human judgments,
will achieve a lower optimal F -score than the
others.
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2. By selecting τ to maximize the F -score on a
development set, we estimate the true values
of MT metrics’ Precision, Recall, and F -score
in data filtering applications.

We measure metric performance in both evalua-
tion scenarios. As a development set, we use
WMT22MQM, which contains MQM-based hu-
man annotations (Freitag et al., 2022b). However,
since some of the tested metrics were trained using
WMT22MQM data, we restrict this experiment to
the other metrics.

4.4 Extracting Binary Labels from
Manually-Annotated Datasets

Within the MQM annotation framework, profes-
sional annotators identify span-level translation er-
rors and assign each error a category and severity.
The final MQM score is calculated based on these
errors using the following weighting scheme (Fre-
itag et al., 2021a):

Error severity Category Penalty

Major
Non-translation −25
Others −5

Minor
Punctuation −0.1
Others −1

We map the annotations in WMT23MQM and
WMT22MQM to binary labels by considering trans-
lations with a score above a certain threshold as
GOOD . Specifically, if a translation is assigned

an MQM score h, we label it as GOOD if h ≥ −4,
meaning it contains no Major errors and at most 4
Minor ones (or more if Minor punctuation errors
are present). Additionally, we classify translations
as PERFECT if they contain at most 1 Minor er-
ror, i.e., those with h ≥ −1.4 This allows us to
investigate metrics’ ability to distinguish between
PERFECT and OTHER translations.

5 Results

In this section, we report the performance obtained
by MT metrics when used as binary classifiers to
distinguish between GOOD and BAD , as well as
PERFECT and OTHER translations, and in terms

of their effectiveness in translation re-ranking, i.e.,
in selecting the best translations among candidates
for the same source text.

4We use h ≥ −1 and not h = 0 because the inter-
annotator agreement in MT evaluation is not particularly high
(Freitag et al., 2021a), even with high-cost annotation frame-
works like MQM. Therefore, we argue that selecting only
translations with a score of 0 might overly depend on individ-
ual annotators’ preferences.

5.1 Binary Classification

Table 1 shows MT metrics’ threshold values, Preci-
sion, Recall, and F -score in distinguishing GOOD

from BAD and PERFECT from OTHER transla-
tions, with the optimal threshold τ selected on the
test set. As can be seen, most MT metrics perform
reasonably well in distinguishing between GOOD

and BAD translations, achieving optimal F -scores
as high as 81.59 and 81.40, from GEMBA-MQM

and xCOMET-QE-ENSEMBLE, respectively, and as
low as 75.81, from BLEURT-20. Instead, lower
performance is observed when differentiating be-
tween PERFECT and OTHER translations, with
the highest F -score being 68.47, from xCOMET-
ENSEMBLE. We also note that Precision is al-
most always lower than Recall, despite the optimal
threshold τ being selected to maximize Fβ-score
with β = 1√

2
, which gives more weight to Preci-

sion over Recall. These results suggest that the
metrics may lack the sensitivity required to distin-
guish between high-quality translations that differ
in minor nuances rather than major errors. As a
result, they may resort to lower thresholds, com-
pensating for their lack of Precision with a higher
Recall.

Table 2 reports threshold values, Precision, Re-
call, and F -score when the threshold is optimized
on the development set. Note that we restrict the
set of tested metrics to those that are openly avail-
able and do not employ the WMT22MQM data for
training. As expected, the F -score values are lower
than the optimal ones reported in Table 1. Nonethe-
less, the metric rankings remain stable across the
two settings, with MetricX-23-XL and MetricX-23-
QE-XL outperforming the other metrics among the
reference-based and reference-free ones, respec-
tively.

In general, it is worth noting that the best-
performing openly available, reference-free met-
ric is MetricX-23-QE-XL. This result is consistent
across language pairs (Appendix D). Therefore, we
recommend using MetricX-23-QE-XL for data fil-
tering applications.

Thresholds reliability Our results show that op-
timal thresholds tend to vary when moving from
WMT23MQM to WMT22MQM for their calcula-
tion. For example, MetricX-23-QE-XL’s τ shifts
from −3.57 to −5.45, and from −1.64 to −3.54,
when separating between GOOD and BAD and
PERFECT and OTHER , respectively, and other

metrics display a similar pattern. Optimal threshold
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GOOD vs BAD PERFECT vs OTHER Re-ranking
Metric τ P R F τ P R F RRP Avg.

R
E

F
E

R
E

N
C

E
B

A
S

E
D

xCOMET-ENSEMBLE 0.83 79.91 84.42 81.36 0.91 68.25 68.93 68.47 43.17 −2.38

xCOMET-XL 0.80 78.33 83.63 80.02 0.92 67.55 67.46 67.52 37.49 −2.75

MetricX-23 −4.79 77.43 86.23 80.15 −2.25 63.99 73.20 66.79 39.63 −2.72

MetricX-23-XL −3.52 77.80 84.46 79.90 −1.74 65.60 72.54 67.76 39.52 −2.71

MaTESe −4.00 76.53 78.10 77.05 −1.00 55.75 79.88 61.99 33.07 −3.18

COMET 0.76 74.56 78.76 75.91 0.82 61.25 64.38 62.26 34.25 −3.06

BLEURT-20 0.60 72.76 82.76 75.81 0.67 55.88 69.21 59.71 33.35 −3.07

R
E

F
E

R
E

N
C

E
F

R
E

E

xCOMET-QE-ENSEMBLE 0.83 80.40 83.47 81.40 0.92 70.00 63.60 67.73 41.40 −2.47

MBR-MetricX-QE 0.73 79.00 82.81 80.23 0.80 67.02 65.91 66.64 38.47 −2.40

MetricX-23-QE −3.90 76.73 87.70 80.07 −1.31 67.76 67.85 67.79 37.55 −2.59

MetricX-23-QE-XL −3.57 77.91 83.36 79.64 −1.64 67.15 70.08 68.10 36.09 −2.83

GEMBA-MQM −5.00 82.41 79.99 81.59 −1.00 64.12 74.12 67.14 42.58 −2.30

MaTESe-QE −4.00 73.72 85.64 77.30 0.00 55.43 75.05 60.72 30.34 −3.59

COMET-QE −0.01 75.35 82.53 77.60 0.05 59.64 68.59 62.35 37.35 −2.66

COMET-QE-MQM 0.08 75.40 86.33 78.72 0.10 61.63 73.84 65.22 33.52 −3.59

CometKiwi 0.76 78.62 80.90 79.37 0.80 64.79 66.52 65.35 39.28 −2.61

CometKiwi-XL 0.64 78.04 79.81 78.62 0.71 64.73 65.51 64.99 38.78 −2.60

Random-sysname −5.00 64.06 100.00 72.78 −4.00 42.14 99.99 52.21 29.04 −3.74

DA+SQM 63.50 67.83 95.95 75.18 74.67 48.30 82.61 56.06 32.99 −3.22

Table 1: Metrics’ Precision, Recall, and F -score in binary classification, distinguishing GOOD from BAD ,
and PERFECT from OTHER translations. τ is selected to maximize the F -score on the test set. In the last
two columns, we report metrics’ Precision in translation re-ranking and the average MQM score of the selected
translations. The test set is WMT23MQM and the translation direction is ZH→EN. We report results concerning other
translation directions in Appendix D. The metrics highlighted in grey are not openly available.5

values do not appear stable across language pairs
either, as illustrated in Figures 3 and 4 in the Ap-
pendix. Specifically, optimal thresholds frequently
differ between EN→DE and the other translation di-
rections in the GOOD vs BAD scenario, and are
substantially lower for HE→EN in the PERFECT

vs OTHER scenario. Such differences in the op-
timal thresholds might suggest that metric scores
have different meanings depending on the trans-
lation direction. Furthermore, and as already dis-
cussed, an overly small optimal threshold might
suggest that metrics are not precise enough. How-
ever, threshold values might also be influenced by
the quality of the translations in the dataset. Indeed,
on average, the HE→EN dataset contains higher-
quality translations compared to the other language
pairs (Table 5 in the Appendix). This might incen-
tivize the metrics to “settle” for lower threshold
values in order to maximize Recall.

In general, we believe that the characteristics of
the development set play an important role in de-
termining appropriate thresholds for data filtering
applications. Aside from the translation direction,
evaluation datasets can differ in the MT systems

employed to translate the source texts, the data
domains included, and the human annotators who
assessed translation quality. Therefore, while leav-
ing the investigation of these phenomena to future
work, we recommend estimating optimal thresh-
olds using as much annotated data as possible, to
prevent the peculiarities of any single dataset from
overly influencing the estimated values. To sup-
port this, we are releasing our evaluation frame-
work with options for estimating optimal metric
thresholds across several datasets, depending on
the user’s Precision and Recall requirements.

5.1.1 What is the human performance?
As a reference for human performance, we exam-
ine the agreement between two annotation schemas:

5Due to its dependence on GPT-4, we include GEMBA-
MQM in the group of not openly available metrics. Instead,
openly-available versions of MetricX-23 and MetricX-23-QE
can be found at https://github.com/google-research/
metricx. However, we could not compute their predictions
due to their high parameter count and thus resorted to us-
ing their outputs as submitted to WMT23, which were com-
puted using different checkpoints than those currently avail-
able. Therefore, we include MetricX-23 and MetricX-23-QE
in the group of not openly available metrics as well.
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GOOD vs BAD PERFECT vs OTHER

Metric τ P R F τ P R F

R
E

F
E

R
E

N
C

E
B

A
S

E
D

MetricX-23-XL −3.93 76.58 87.01 79.77 −2.97 57.70 88.80 65.32

COMET 0.77 75.95 75.28 75.72 0.79 55.51 74.57 60.68

BLEURT-20 0.61 73.81 79.92 75.74 0.64 52.45 76.89 58.67

R
E

F
E

R
E

N
C

E
F

R
E

E

MetricX-23-QE-XL −5.45 73.36 91.88 78.64 −3.54 55.63 90.32 63.80

COMET-QE-MQM 0.07 72.57 92.41 78.17 0.08 52.59 93.19 61.53

COMET-QE −0.02 73.77 85.81 77.39 −0.02 50.54 88.44 58.96

CometKiwi 0.74 75.57 85.35 78.58 0.76 53.38 86.73 61.23

CometKiwi-XL 0.62 75.47 83.37 77.93 0.64 53.70 85.03 61.22

Table 2: Metrics’ Precision, Recall, and F -score in binary classification, distinguish GOOD from BAD , and
PERFECT from OTHER translations. τ is selected to maximize the F -score on the development set. The test set

is WMT23MQM and the translation direction is ZH→EN. Results in other translation directions are in Appendix D.

DA+SQM and MQM. We use DA+SQM as a met-
ric and show the results in the last row of Table 1. It
is important to note that DA+SQM annotations do
not fully encompass the set of MQM annotations.
Consequently, we evaluate its performance on a
subset of the data, including ≈ 70% of the data
used for metrics, which means that their scores
are not directly comparable. However, we observe
that DA+SQM performs poorly in absolute terms,
with particularly low Precision and a much higher
Recall. We hypothesize that this might be due
to DA+SQM’s annotation guidelines, which in-
struct annotators to assign only a general quality
score to translations rather than identifying spe-
cific translation errors, as is done within the MQM
framework.6 This might lead to noisy annotations,
rendering DA+SQM less suitable for fine-grained
translation quality assessments.

We further investigate this in Appendix F by re-
stricting the data available to MT metrics to that
of DA+SQM, to estimate their segment-level cor-
relations with MQM scores. We find DA+SQM
annotations correlate less strongly with MQM com-
pared to all tested automatic metrics. We wish to
emphasize that Kocmi et al. (2023) have already
noted that DA+SQM-based annotations exhibit re-
duced precision in distinguishing between MT sys-
tems with similar performance, compared to MQM-
based annotations. Furthermore, in a recent study,
Kocmi et al. (2024b) compared the correlation of
several human annotation schemes with MQM and
found that DA+SQM performed poorly. In line

6Within DA+SQM, human annotators rate a translation
from 0 to 100 using a slider with 7 marked levels, where
each level is paired with a description of the corresponding
translation quality.

with these findings, our results raise additional con-
cerns regarding DA+SQM reliability, showing per-
formance inferior to automatic metrics.

5.1.2 How BAD are false positives?

Our analysis suggests that MT metrics struggle
to achieve high precision in binary classification.
Concerning this, we are interested in assessing how
bad the false positives are – i.e., translations that
metrics mislabel as GOOD or PERFECT . To this
end, we plot in Figure 2 the distributions of the
MQM score ∆ computed for a false positive as the
difference between the MQM score and the human
threshold, which is −4 for a GOOD translation
and −1 for a PERFECT one.

The average false positive ∆ ranges from −4.25
to −2.85 for both GOOD and PERFECT clas-
sifications, indicating that the translations misla-
beled by the best metrics contain an average of
≈ 3 additional Minor errors. Overall, the MQM
∆ distributions of top-performing metrics are low-
variance and skewed to the right, particularly when
classifying PERFECT translations. In contrast,
less accurate metrics exhibit high-variance distri-
butions, with the average ∆ shifting towards lower
values. Again, DA+SQM performance is notably
poor, showing the highest-variance distribution and
the most leftward-shifted average.

5.2 Translation Re-Ranking

We present the results in the last two columns of
Table 1. To facilitate interpretation of these results,
we also calculate the average MQM score of the
translations ranked highest by MT metrics, and
report it in the last column. Additionally, it is im-
portant to note that there are 15 translations per
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gemba-mqm
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CometKiwi

CometKiwi-XL
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BLEURT-20

da+sqm

Perfect

Good

Figure 2: Distribution of the MQM score ∆ between
the openly available metrics’ false positive MQM scores
and human thresholds, i.e., −4 for GOOD and −1 for
PERFECT . The dataset employed is the ZH→EN split

of WMT23MQM. Additional metrics are included in
Figure 5 in the Appendix.

source text.
As shown, metric precision ranges from 30% to

43%, with the highest precision rates being 43.17%
and 42.58%, achieved by xCOMET-ENSEMBLE and
GEMBA-MQM, respectively. Furthermore, the top-
performing metrics yield average MQM scores of
≈ −2.50, indicating that their highest-ranked trans-
lations contain an average of two and a half Minor
errors. In contrast, human judgments suggest that
the average MQM score of the highest-ranked trans-
lations is −0.67.

Notably, reference-based metrics consistently
outperform reference-free ones. By looking at
pairs of metrics of the same family, xCOMET-
ENSEMBLE, MetricX-23, and MetricX-23-XL out-
perform xCOMET-QE-ENSEMBLE, MetricX-23-QE,
and MetricX-23-QE-XL, respectively, in ZH→EN

and across the other translation directions (see Ta-
bles 7 and 8 for results concerning EN→DE and
HE→EN). However, in real-world translation re-
ranking scenarios, references are not available. To
account for this, we assess the performance of
reference-based metrics when used as the utility
function in an MBR decoding-like scenario, there-

ZH→EN EN→DE HE→EN

Metric MBR Tab 1 MBR Tab 7 MBR Tab 8

xCOMET-XL 40.27 37.49 44.03 47.31 65.05 68.31
MetricX-23-XL 41.10 39.52 48.24 47.81 63.71 67.17
MaTESe 35.27 33.07 44.53 43.18 60.20 61.99
COMET 37.20 34.25 45.12 48.26 66.38 70.01
BLEURT-20 36.07 33.35 47.76 48.27 63.70 68.33

#1 REF FREE – 39.28 – 45.71 – 65.61
#2 REF FREE – 38.78 – 45.57 – 63.25

Table 3: Re-Ranking Precision of reference-based met-
rics when used as the utility function for MBR decoding,
compared with the reference-based re-ranking scenario
in the last two columns of Tables 1, 7, and 8. The last
two rows of this table show the performance of the best
and second-best reference-free metrics in translation
re-ranking.

fore not relying on the presence of reference trans-
lations.7

Metric performance in MBR decoding Table 3
shows the translation re-ranking performance of
reference-based metrics when used as the utility
function for MBR decoding, and comparing it to
the reference-based re-ranking scenario presented
in the last columns of Tables 1, 7, and 8. On aver-
age, the absence of reference translations reduces
performance. However, this is not true for all lan-
guage directions, as MBR decoding outperforms
reference-based re-ranking in ZH→EN. We be-
lieve this exception is due to the particularly poor
quality of the references in the ZH→EN split of
WMT23MQM, as discussed by Freitag et al. (2023).

Furthermore, the last two rows of Table 3 present
the performance of the best and second-best openly
available, reference-free metrics in translation re-
ranking. Our results indicate that reference-based
metrics used as the utility function for MBR de-
coding tend to outperform reference-free metrics.
Specifically, the best performance is achieved by
two reference-based metrics: MetricX-23-XL, in
ZH→EN and EN→DE, and COMET in HE→EN.
Again, by looking at metrics of the same family,
MetricX-23-XL outperforms MetricX-23-QE-XL
across the board. These findings suggest that trans-
lation re-ranking using MBR decoding may be
more reliable than QE re-ranking.8 Previous stud-

7MBR decoding seeks the candidate translation that maxi-
mizes an external notion of utility (Eikema and Aziz, 2022).
The set of candidate translations is used as both the set of
hypotheses and to approximate a set of references. Then,
each candidate translation is compared with all the others,
employing reference-based metrics as the utility function.

8This is based on the assumption that using translations
generated by distinct MT systems can serve as an effective ap-
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ies have already compared MT metrics in MBR
decoding and QE re-ranking. For example, Freitag
et al. (2022a) and Fernandes et al. (2022) employ
human annotators to evaluate the quality of trans-
lations produced by MT systems when using one
or the other re-ranking technique. However, due to
the high cost of human annotations, these studies
were limited to including only a few metrics. Fur-
thermore, their findings may need to be revisited
to determine whether they remain valid with the
introduction of new metrics. In contrast, by relying
solely on the human annotations released annually
at WMT, our setup facilitates updating results as
soon as new metrics or datasets become available.

6 Related Work

Previous studies have focused primarily on the
problem of Error attribution. Specifically, the
Shared Task on Quality Estimation at WMT inves-
tigated the ability of MT metrics to predict word-
level annotations (Zerva et al., 2022; Blain et al.,
2023). Fomicheva et al. (2022a) and Rei et al.
(2023b) employed attribution methods to derive
explanations for the predictions of MT metrics,
measuring the faithfulness of such explanations by
comparing them to human annotations. To tackle
the same issue, Perrella et al. (2022), Fernandes
et al. (2023), Guerreiro et al. (2024), Kocmi and
Federmann (2023), and Xu et al. (2023) proposed
metrics that address the lack of Error attribution
by providing explanations in the form of either
span-level annotations or natural language ratio-
nales. Furthermore, recent studies have introduced
dedicated benchmarks to investigate the impact of
specific translation errors, such as disambiguation
errors (Campolungo et al., 2022; Martelli et al.,
2024) and wrongly translated named entities (Co-
nia et al., 2024).

In a different vein, and closer to our work,
some studies explored the meaning of raw metrics
scores in terms of their alignment with human judg-
ments. Mathur et al. (2020a) studied the meaning
of system-level score deltas for BLEU (Papineni
et al., 2002), showing that a statistically significant
increase of 0-3 BLEU points corresponds to signifi-
cantly better MT systems less than half of the time,
in terms of human judgments. Similarly, Kocmi
et al. (2024a) investigated the relationship between
MT metrics’ system-level score deltas and human

proximation of sampling from a single system. We delve into
the differences between MBR decoding and our evaluation
setup in the Limitations.

judgments. Finally, in a recent study, Agrawal
et al. (2024) evaluated MT metrics’ ability to as-
sess high-quality translations by examining their
correlation with human judgments, as well as their
Precision, Recall, and F -score, using a setup simi-
lar to ours. However, instead of calculating metrics
thresholds from data, they arbitrarily assumed that
a metric indicates high-quality only if its normal-
ized assessments fall within the [0.99, 1.00] inter-
val. In contrast, we measure metrics performance
in data filtering without making assumptions about
the meaning of their assessments, aiming to under-
stand this meaning through the evaluation itself.

7 Conclusion

In this work, we introduce a novel evaluation
framework for MT metrics. Within this frame-
work, we measure metrics performance in i) binary
classification, i.e., distinguishing between GOOD

and BAD , and PERFECT and OTHER transla-
tions, and ii) in a proxy scenario for translation
re-ranking, selecting the best among the transla-
tions of the same source text. By measuring perfor-
mance in terms of Precision, Recall, and F -score,
we fulfill a dual purpose. First, we offer a more
intuitive interpretation of metrics’ capabilities, as
compared to correlation with human judgment, and
second, we provide concrete user recommenda-
tions concerning novel MT metric use cases. We
find that MT metrics perform relatively well in
distinguishing between GOOD and BAD transla-
tions, but struggle with Precision, especially when
dealing with higher-quality translations like in the
PERFECT vs OTHER scenario. Our results show

that MetricX-23-QE-XL is the best openly avail-
able metric for data filtering applications, while
MetricX-23-XL and COMET achieve the highest
performance in translation re-ranking. Addition-
ally, we demonstrate that reference-based MT met-
rics, when used as the utility function in an MBR
decoding-like scenario, outperform reference-free
ones, suggesting that MBR decoding may be supe-
rior to QE re-ranking. Finally, we report notably
poor performance for DA+SQM annotations used
as a metric within our evaluation framework, rais-
ing concerns about its reliability.
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8 Limitations

Language coverage We acknowledge that the
scope of our work is limited by the available test
data, covering only a few language directions.
However, our evaluation framework is agnostic to
the test data employed. Therefore, we leave the
investigation of metric performance in more lan-
guage directions to future works, depending on the
availability of new annotated datasets.

Design choices in the data filtering scenario
We made certain arbitrary decisions in the design of
our framework and experimental setup. We chose
Fβ-score to select the optimal threshold τ , with
β = 1√

2
. While we explained our reasons for

giving Precision a higher weight than Recall, it
remains unclear whether β = 1√

2
is the optimal

choice. Furthermore, we selected the human score
thresholds to be −4, for GOOD translations, and
−1 for PERFECT ones. We recognize that practi-
tioners might have different requirements and may
want to narrow or broaden these definitions. There-
fore, we release our evaluation framework leaving
this as an option for users.

Evaluation fairness in the data filtering scenario
In one of the two setups proposed, we selected the
threshold τ to maximize the F -score on the test set
used for the evaluation. This optimization process
might favor metrics whose assessments are more
sensitive to the underlying gold score distribution,
enabling them to achieve a better balance between
Precision and Recall. As a result, discrete metrics –
i.e., those that output scores within a discrete set,
such as the integers in [−25, 0] for GEMBA-MQM–
might be disadvantaged compared to continuous
metrics – i.e., those that output scores within a con-
tinuous interval, such as the real values in [0, 1]
for metrics of the COMET family. However, we
argue that this limitation is inherent to the nature
of discrete metrics rather than a flaw in our eval-
uation framework. Indeed, studying the ability of
MT metrics to distinguish between GOOD and
BAD translations requires identifying the score

threshold that best separates them, and discrete
metrics inherently offer a much more limited set of
options for optimizing this threshold. Nonetheless,
if discrete metrics are indeed disadvantaged, using
a development set could mitigate the impact of this
phenomenon.

Alignment between the translation re-ranking
scenario and the corresponding metric use cases
We designed the translation re-ranking scenario
as a proxy for QE re-ranking and MBR decoding.
However, our setup differs from these two use cases
in two ways:

1. Candidates number: The test datasets we used
feature 15, 12, and 13 translations per source
text, for ZH→EN, EN→DE, and HE→EN, re-
spectively. However, in QE re-ranking and
MBR decoding it is common to work with a
larger number of candidate translations, often
reaching hundreds per source text.

2. Candidates selection: In QE re-ranking and
MBR decoding, candidate translations are typ-
ically sampled from the same MT system. In
contrast, in our annotated datasets, each can-
didate translation was generated by a different
MT system.

In future work, it would be interesting to investigate
whether our results might vary when dealing with a
higher number of candidate translations or when all
candidates are sampled from the same MT system.
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A Implementation Details

Most annotated datasets used for metric evaluation
– such as WMT23MQM and WMT22MQM– contain
a selection of source texts translated by multiple
MT systems. As a result, each source text is paired
with several automatic translations, along with one
or more manually-curated references. In this re-
spect, and to align the data filtering scenario to its
real use case,9 we group the translations accord-
ing to the MT system (or human annotator) that
generated them, computing Precision and Recall
on each group. In MT meta-evaluation, this strat-
egy is called Group-by-System or System Grouping,
by Deutsch et al. (2023) and Perrella et al. (2024),
respectively. Finally, we aggregate these statistics
across systems obtaining average Precision and Re-
call measures, which are used to obtain the F -score
as in Equation 3.

Instead, concerning the translation re-ranking
scenario, translations are grouped according to their

9When used for data filtering, MT metrics filter parallel
corpora that typically contain only one translation per source
text.

source text. This strategy is called Group-by-Item
or Segment Grouping by Deutsch et al. (2023) and
Perrella et al. (2024), respectively. Consequently,
the final Re-Ranking Precision is the average across
the Precision values computed for each source text
as in Equation 4.

Selecting the Thresholds τ For each metric, we
select the threshold τ that maximizes the F -score,
either on the test or development set. To find the
optimal threshold for a metric, we i) collect all its
assessments on the considered dataset, removing
duplicates; ii) measure Precision, Recall, and F -
score corresponding to each candidate threshold
value; and iii) select the threshold that yields the
highest F -score.

B Datasets Statistics

Table 4 presents the number of systems, seg-
ments, and annotations in WMT23MQM and
WMT23DA+SQM.

Table 5 presents the average and median MQM
scores assigned to the translations in WMT23MQM
and WMT22MQM.

C The Metrics

We consider the following metrics:

• COMET, COMET-QE, and COMET-QE-MQM,
(Rei et al., 2020, 2021) are a reference-
based and two reference-free regression-based
metrics, respectively, built upon the XLM-
RoBERTa large architecture (Conneau et al.,
2020), and trained using datasets containing
human annotations in the form of Direct As-
sessments (DA) (Graham et al., 2013). Specif-
ically, COMET was trained on the datasets
released at WMT between 2017 and 2020
(Bojar et al., 2017; Ma et al., 2018, 2019;
Mathur et al., 2020b), while COMET-QE and
COMET-QE-MQM also include the DA-based
datasets released in 2015 and 2016 (Stanoje-
vić et al., 2015; Bojar et al., 2016). COMET-
QE-MQM was further fine-tuned on a split of
the MQM-based corpus released by Freitag
et al. (2021a).10

• BLEURT-20 (Sellam et al., 2020; Pu et al.,
2021) is a regression-based metric built upon
the RemBERT pre-trained language model

10https://github.com/Unbabel/COMET. We used the
version 2.2.1 of the COMET framework.
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ZH→EN EN→DE HE→EN

Sys. Seg. Total Sys. Seg. Total Sys. Seg. Total

WMT23MQM 15 1177 17655 12 460 5520 13 820 10660
WMT23DA+SQM 15 884 13260 12 460 5520 – – –

Table 4: Number of MT systems, source segments, and the total number of annotations in WMT23MQM
and WMT23DA+SQM, excluding official WMT23 references employed by reference-based metrics. Concerning
WMT23DA+SQM, we restricted the annotations to those available in WMT23MQM and discarded the rest.

ZH→EN EN→DE HE→EN

Avg. Median Avg. Median Avg. Median

WMT23MQM −4.21 −2.00 −7.47 −3.00 −2.35 0.00
WMT22MQM −3.21 −1.00 −1.31 0.00 – –

Table 5: Average and Median MQM scores of the translations in WMT23MQM and WMT22MQM.

(Chung et al., 2021). RemBERT was fine-
tuned on DA-based human assessments from
2015 to 2019, along with synthetic data.11

• BERTscore (Zhang et al., 2020) leverages pre-
trained encoders to extract the contextualized
embeddings of the tokens of a translation and
its reference. Then, it computes the cosine
similarity between each pair of embeddings,
greedily matching the most similar ones.12

• MetricX-23, MetricX-23-QE, MetricX-23-XL
and MetricX-23-QE-XL (Juraska et al., 2023)
are regression-based metrics built upon the
mT5-XXL (the first two) and mT5-XL (the
last two) models (Xue et al., 2021). These
metrics are trained using DA-based human
judgments released at WMT between 2015
and 2020 (Stanojević et al., 2015; Bojar et al.,
2016), and further fine-tuned on a combina-
tion of MQM-based human judgments and
synthetic data (Freitag et al., 2021a,b).13

• CometKiwi and CometKiwi-XL (Rei et al.,
2022, 2023a) are reference-free regression-
based metrics, built upon InfoXLM (Chi et al.,
2021) and XLM-RoBERTa XL (Goyal et al.,
2021), respectively. These metrics are trained
using DA-based human judgments released
at WMT from 2017 to 2020, as well as DA
from the MLQE-PE corpus (Fomicheva et al.,
2022b). CometKiwi-XL’s training data also

11https://github.com/google-research/bleurt.
12https://github.com/Tiiiger/bert_score.
13https://github.com/google-research/metricx.

include the DA for Indian languages released
by Blain et al. (2023). 14

• xCOMET-XL (Guerreiro et al., 2024) is a
regression-based metric built upon the XLM-
RoBERTa XL architecture, trained on the con-
catenation of DA-based human judgments re-
leased at WMT from 2017 and 2020 and the
MLQE-PE dataset, and further fine-tuned us-
ing MQM-based annotations coming from
the following datasets: i) WMT data from
2020 to 2022, ii) IndicMT (Sai B et al., 2023),
and iii) DEMETR (Karpinska et al., 2022).
Given a candidate translation, xCOMET-XL

jointly identifies its error spans and assigns it
a scalar quality score. xCOMET-ENSEMBLE

and xCOMET-QE-ENSEMBLE are ensembles
between one XL and two XXL xCOMET

checkpoints that result from different training
stages.15

• MaTESe and MaTESe-QE (Perrella et al.,
2022) are a reference-based and a reference-
free metric, respectively, built upon InfoXLM
and DeBERTaV3 (He et al., 2023). MaTESe
metrics annotate the spans of translations that
contain an error, specifying the error sever-
ity.16

• GEMBA-MQM (Kocmi and Federmann, 2023)
is an LLM-based metric that leverages GPT-4
to return quality assessments in the form of

14See footnote 10.
15See footnote 10.
16https://github.com/SapienzaNLP/MaTESe.
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MQM annotations.17

• MBR-MetricX-QE (Naskar et al., 2023) is
based on the MBR decoding strategy. Given
a translation, it uses an MT system to gener-
ate pseudo-references and a reference-based
MT metric (MetricX-23) as the MBR utility
function.

• BLEU (Papineni et al., 2002) is a precision-
oriented metric that computes the number of
overlapping n-grams between a translation
and its reference.18

• chrF (Popović, 2015) compares a translation
and its reference based on the number of over-
lapping character n-grams.19

• f200spBLEU (Goyal et al., 2022; Team et al.,
2022) computes BLEU scores using sub-
word tokenization done by the standardized
FLORES-200 Sentencepiece models.20

• eBLEU (ElNokrashy and Kocmi, 2023)
matches the n-grams of semantically similar
words between a candidate translation and a
reference using non-contextual word embed-
dings.21

• tokengram_F (Dreano et al., 2023) is de-
rived from chrF++ (Popović, 2017) by replac-
ing word-based n-grams with token-based n-
grams, as obtained from popular tokenization
algorithms such as BPE (Sennrich et al., 2016)
or Unigram (Kudo, 2018).22

In addition, we include three sentinel metrics, i.e.,
metrics designed explicitly to detect issues with the
meta-evaluation (Perrella et al., 2024):

• SENTINELCAND assesses the quality of a trans-
lation without taking its source or reference
as input.

• SENTINELSRC predicts the quality of a transla-
tion based solely on its source, without taking
the translation itself as input.

17https://github.com/MicrosoftTranslator/GEMBA.
18https://github.com/mjpost/sacrebleu.
19See footnote 18.
20See footnote 18.
21https://github.com/munael/

ebleu-mt-metrics-wmt23.
22https://github.com/SorenDreano/tokengram_F.

• SENTINELREF predicts the quality of a trans-
lation based solely on its reference, without
taking the translation itself as input.

Trained with incomplete information, these met-
rics are not supposed to rank high in a fair meta-
evaluation setup. Sentinel metrics are regression-
based and were trained using WMT data. In partic-
ular, they were trained using DA annotations from
2017 to 2020 and further fine-tuned with MQM
scores from 2020 to 2022.

D Additional Results

In this section, we report all our results con-
sidering all the language directions available in
WMT23MQM, i.e., ZH→EN, EN→DE, and HE→EN,
and including all MT metrics mentioned in Ap-
pendix C.

Tables 6, 7, and 8 show the performance of MT
metrics in the data filtering scenario when τ is se-
lected as the one that maximizes F -score on the
test set, i.e., WMT23MQM. The last two columns
contain the performance of MT metrics in the trans-
lation re-ranking scenario. Instead, Tables 9 and
10 show the performance of MT metrics in the data
filtering scenario when τ is selected as the one that
maximizes the F -score on the development set, i.e.,
WMT22MQM, and the performance is measured on
WMT23MQM.

The performance of lexical-based metrics All
lexical-based metrics fail, partially or completely,
at tackling the data filtering task. In most cases,
their optimal threshold is 0.023, indicating that they
lack the sensitivity required to separate GOOD

from BAD and PERFECT from OTHER trans-
lations, and therefore resort to maximizing recall.
Instead, lexical-based metrics achieve a decent per-
formance in the translation re-ranking scenario.
Nonetheless, they still perform worse than most
neural-based metrics.

The performance of sentinel metrics As illus-
trated in Appendix A, we use the System Grouping
strategy to align the data filtering scenario to its
real use case. Specifically, we compute Precision
and Recall on the translations of each MT system
independently and then compute final statistics by
averaging them across MT systems. As demon-
strated by Perrella et al. (2024), this setting is par-
ticularly susceptible to spurious correlations in the

23Note that these metrics’ score range is either [0, 1] or
[0, 100].
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evaluation data, which favor trained metrics over
the rest. As a consequence, the performance of
sentinel metrics is not as low as it would be in a fair
evaluation scenario. However, we highlight that
this scenario was intentionally designed to adhere
closely to the data filtering use case, and adopting
a different grouping strategy could reduce its ef-
fectiveness as a proxy for this task. Therefore, we
argue that careful attention should be given to se-
lecting source texts in evaluation datasets, with the
goal of minimizing the impact of spurious correla-
tions and ultimately ensuring that sentinel metrics
rank at the bottom of the metric rankings. Nonethe-
less, despite sentinel metrics performing better
than they ideally ought to, they still do not sur-
pass most state-of-the-art metrics, differently from
the results obtained by Perrella et al. (2024). Sim-
ilarly, GEMBA-MQM performs decently in many
of our settings, whereas Perrella et al. (2024) re-
port it ranking lower than sentinel metrics when
using System Grouping (specifically, in two out of
three translation directions, namely ZH→EN and
EN→DE).24 Given these observations, we believe
that the binary classification setup lessens the im-
pact of spurious correlations, as compared to the
correlation with human judgment.

Instead, and as expected, sentinel metrics rank
at the bottom in translation re-ranking. Indeed,
the translation re-ranking scenario involves select-
ing the best among the translations of the same
source text, i.e., using the Segment Grouping strat-
egy, which, as shown by Perrella et al. (2024), coun-
ters the impact of spurious correlations in the eval-
uation dataset.

E Additional Figures

In Figures 3 and 4, we report metrics optimal
threshold values across different language direc-
tions. The thresholds were selected to maximize
the F -score on the test set.

In Figure 5 we report the ∆ MQM score between
the false positives and the human thresholds in the
GOOD and PERFECT translations classification

scenario.

24Since GEMBA-MQM was not fine-tuned using human as-
sessments, it should not be able to leverage spurious corre-
lations in metrics’ training data to conduct the evaluation.
Perrella et al. (2024) report GEMBA-MQM ranking lower than
sentinel metrics, suggesting that the evaluation might unfairly
favor metrics that have learned spurious correlations during
training.

F DA+SQM and MQM Correlation

Tables 11 and 12 present the segment-level corre-
lation between the tested metrics and MQM when
considering DA+SQM as a metric. We employ
Pearson’s ρ and Kendall’s τ correlation coefficients,
and acceq accuracy (Deutsch et al., 2023). As rec-
ommended by Perrella et al. (2024), we use Seg-
ment Grouping, meaning that we compute these
statistics on groups of translations of the same
source text, and then average them. To enable a fair
comparison between metrics and DA+SQM, we
restrict the evaluation datasets to the translations
with available DA+SQM annotations.
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GOOD vs BAD PERFECT vs OTHER Re-ranking
Metric τ P R F τ P R F RRP Avg.

R
E

F
E

R
E

N
C

E
B

A
S

E
D

xCOMET-ENSEMBLE 0.83 79.91 84.42 81.36 0.91 68.25 68.93 68.47 43.17 −2.38

xCOMET-XL 0.80 78.33 83.63 80.02 0.92 67.55 67.46 67.52 37.49 −2.75

MetricX-23 −4.79 77.43 86.23 80.15 −2.25 63.99 73.20 66.79 39.63 −2.72

MetricX-23-XL −3.52 77.80 84.46 79.90 −1.74 65.60 72.54 67.76 39.52 −2.71

MaTESe −4.00 76.53 78.10 77.05 −1.00 55.75 79.88 61.99 33.07 −3.18

COMET 0.76 74.56 78.76 75.91 0.82 61.25 64.38 62.26 34.25 −3.06

BLEURT-20 0.60 72.76 82.76 75.81 0.67 55.88 69.21 59.71 33.35 −3.07

BERTscore 0.84 64.33 99.47 72.91 0.92 48.20 69.15 53.62 32.29 −3.20

R
E

F
E

R
E

N
C

E
F

R
E

E

xCOMET-QE-ENSEMBLE 0.83 80.40 83.47 81.40 0.92 70.00 63.60 67.73 41.40 −2.47

MBR-MetricX-QE 0.73 79.00 82.81 80.23 0.80 67.02 65.91 66.64 38.47 −2.40

MetricX-23-QE −3.90 76.73 87.70 80.07 −1.31 67.76 67.85 67.79 37.55 −2.59

MetricX-23-QE-XL −3.57 77.91 83.36 79.64 −1.64 67.15 70.08 68.10 36.09 −2.83

GEMBA-MQM −5.00 82.41 79.99 81.59 −1.00 64.12 74.12 67.14 42.58 −2.30

MaTESe-QE −4.00 73.72 85.64 77.30 0.00 55.43 75.05 60.72 30.34 −3.59

COMET-QE −0.01 75.35 82.53 77.60 0.05 59.64 68.59 62.35 37.35 −2.66

COMET-QE-MQM 0.08 75.40 86.33 78.72 0.10 61.63 73.84 65.22 33.52 −3.59

CometKiwi 0.76 78.62 80.90 79.37 0.80 64.79 66.52 65.35 39.28 −2.61

CometKiwi-XL 0.64 78.04 79.81 78.62 0.71 64.73 65.51 64.99 38.78 −2.60

L
E

X
IC

A
L

B
A

S
E

D

BLEU 0.00 64.06 100.00 72.78 0.00 42.13 100.00 52.20 30.09 −3.50

chrF 0.00 64.06 100.00 72.78 0.00 42.13 100.00 52.20 31.51 −3.39

eBLEU 0.02 64.11 99.82 72.79 0.03 42.20 99.87 52.26 30.16 −3.49

f200spBLEU 0.00 64.06 100.00 72.78 0.00 42.13 100.00 52.20 30.80 −3.46

tokengram_F 0.00 64.06 100.00 72.78 0.00 42.13 100.00 52.20 30.55 −3.44

S
E

N
T

IN
E

L
M

E
T

R
IC

S SENTINELSRC −0.14 75.64 83.31 78.03 0.23 63.00 71.90 65.71 25.77 −4.21

SENTINELREF −0.55 71.74 91.25 77.24 0.08 59.11 73.33 63.19 25.77 −4.21

SENTINELCAND −0.14 75.43 86.92 78.91 0.22 63.16 71.84 65.81 29.38 −3.83

Random-sysname −5.00 64.06 100.00 72.78 −4.00 42.14 99.99 52.21 29.04 −3.74

DA+SQM 63.50 67.83 95.95 75.18 74.67 48.30 82.61 56.06 32.99 −3.22

Table 6: Metrics’ Precision, Recall, and F -score in binary classification, distinguishing GOOD from BAD ,
and PERFECT from OTHER translations. τ is selected to maximize the F -score on the test set. In the last
two columns, we report metrics’ Precision in translation re-ranking and the average MQM score of the selected
translations. The test set is WMT23MQM and the translation direction is ZH→EN. The metrics highlighted in grey
are not openly available.
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GOOD vs BAD PERFECT vs OTHER Re-ranking
Metric τ P R F τ P R F RRP Avg.

R
E

F
E

R
E

N
C

E
B

A
S

E
D

xCOMET-ENSEMBLE 0.90 80.55 70.52 76.90 0.92 75.90 67.86 73.02 48.79 −3.58

xCOMET-XL 0.90 78.49 71.17 75.89 0.94 78.17 65.44 73.41 47.31 −3.91

MetricX-23 −1.71 79.56 67.61 75.14 −1.18 75.21 68.18 72.71 52.61 −3.47

MetricX-23-XL −1.55 77.62 73.98 76.37 −1.07 72.59 70.88 72.01 47.81 −3.74

MaTESe −1.00 71.87 72.92 72.21 0.00 67.42 60.67 65.01 43.18 −4.56

COMET 0.83 72.56 70.81 71.97 0.88 81.10 55.66 70.38 48.26 −3.50

BLEURT-20 0.70 76.49 69.54 74.03 0.74 72.66 63.26 69.23 48.27 −3.64

BERTscore 0.85 57.66 81.22 63.83 0.92 68.12 40.42 55.45 43.11 −4.55

R
E

F
E

R
E

N
C

E
F

R
E

E

xCOMET-QE-ENSEMBLE 0.87 79.99 70.39 76.51 0.91 75.58 66.10 72.13 46.70 −3.90

MBR-MetricX-QE 0.76 78.82 70.50 75.84 0.80 74.25 66.75 71.57 48.81 −3.78

MetricX-23-QE −2.07 75.65 75.84 75.71 −1.09 76.81 64.88 72.37 48.04 −3.58

MetricX-23-QE-XL −1.99 75.86 73.18 74.94 −1.27 74.08 68.44 72.10 45.57 −3.96

GEMBA-MQM −1.00 79.69 66.77 74.86 0.00 75.07 62.04 70.16 42.52 −4.04

MaTESe-QE −2.00 67.48 82.89 71.93 0.00 68.16 63.48 66.52 41.03 −5.14

COMET-QE 0.04 68.75 73.61 70.30 0.07 65.26 62.99 64.49 45.71 −3.84

COMET-QE-MQM 0.08 74.18 73.98 74.12 0.09 73.50 65.64 70.68 41.25 −4.82

CometKiwi 0.82 75.86 68.51 73.24 0.82 64.08 71.37 66.34 41.75 −4.32

CometKiwi-XL 0.69 73.52 70.71 72.56 0.73 67.44 64.13 66.30 43.67 −4.45

L
E

X
IC

A
L

B
A

S
E

D

BLEU 3.29 52.19 99.25 61.99 0.00 39.95 100.00 49.94 42.95 −4.28

chrF 28.67 52.59 99.47 62.39 73.11 62.32 39.61 52.32 41.43 −4.48

eBLEU 0.14 52.12 99.63 61.97 0.75 62.15 37.38 50.90 40.86 −4.76

f200spBLEU 7.02 52.56 98.56 62.25 48.17 53.42 51.43 52.74 43.69 −4.21

tokengram_F 0.29 52.60 99.18 62.36 0.69 54.63 47.20 51.91 42.63 −4.43

S
E

N
T

IN
E

L
M

E
T

R
IC

S SENTINELSRC 0.22 75.96 69.88 73.82 0.37 73.80 62.93 69.78 30.98 −7.47

SENTINELREF 0.17 73.12 68.86 71.65 0.27 68.76 66.90 68.13 30.98 −7.47

SENTINELCAND 0.20 75.73 68.80 73.27 0.28 68.70 69.00 68.80 43.93 −4.72

Random-sysname −4.00 52.07 99.94 61.96 −4.00 39.96 99.92 49.95 40.56 −5.36

DA+SQM 77.33 59.60 85.39 66.27 82.67 48.90 77.21 55.71 37.11 −5.01

Table 7: Metrics’ Precision, Recall, and F -score in binary classification, distinguishing GOOD from BAD ,
and PERFECT from OTHER translations. τ is selected to maximize the F -score on the test set. In the last
two columns, we report metrics’ Precision in translation re-ranking and the average MQM score of the selected
translations. The test set is WMT23MQM and the translation direction is EN→DE. The metrics highlighted in grey
are not openly available.
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GOOD vs BAD PERFECT vs OTHER Re-ranking
Metric τ P R F τ P R F RRP Avg.

R
E

F
E

R
E

N
C

E
B

A
S

E
D

xCOMET-ENSEMBLE 0.84 83.28 85.81 84.10 0.87 83.42 80.69 82.49 69.21 −0.99

xCOMET-XL 0.81 82.00 87.14 83.64 0.85 81.24 82.82 81.76 68.31 −0.98

MetricX-23 −4.26 82.09 86.51 83.51 −3.34 81.78 81.96 81.84 67.20 −1.11

MetricX-23-XL −3.44 81.94 87.23 83.63 −3.39 79.11 88.20 81.92 67.17 −1.07

MaTESe −4.00 84.49 76.57 81.67 −4.00 81.86 77.99 80.53 61.99 −1.51

COMET 0.77 78.96 87.93 81.74 0.81 78.95 81.31 79.72 70.01 −1.03

BLEURT-20 0.67 80.85 83.39 81.68 0.67 77.48 84.02 79.55 68.33 −1.04

BERTscore 0.92 76.33 88.14 79.90 0.93 73.89 85.97 77.52 69.88 −0.88

R
E

F
E

R
E

N
C

E
F

R
E

E

xCOMET-QE-ENSEMBLE 0.82 80.92 86.90 82.82 0.85 80.96 80.60 80.84 66.22 −1.40

MBR-MetricX-QE 0.74 81.57 86.17 83.05 0.74 78.01 86.65 80.69 68.09 −1.25

MetricX-23-QE −1.79 80.27 89.66 83.17 −1.28 79.42 85.60 81.38 63.17 −1.46

MetricX-23-QE-XL −3.46 80.32 86.03 82.13 −3.19 78.27 85.08 80.41 63.25 −1.64

GEMBA-MQM −7.00 79.70 89.24 82.64 −5.00 79.01 83.83 80.55 65.22 −1.26

MaTESe-QE −6.00 74.35 95.01 80.16 −3.00 75.99 81.43 77.72 53.95 −2.28

COMET-QE −0.03 75.62 91.71 80.32 −0.00 74.21 86.43 77.88 61.06 −1.70

COMET-QE-MQM 0.08 76.28 89.22 80.16 0.09 74.16 87.36 78.09 52.57 −2.32

CometKiwi 0.77 80.14 86.48 82.14 0.80 80.02 79.85 79.96 60.42 −1.55

CometKiwi-XL 0.60 77.83 89.83 81.46 0.63 76.90 84.57 79.30 65.61 −1.28

L
E

X
IC

A
L

B
A

S
E

D

BLEU 0.00 71.31 100.00 78.85 0.00 67.89 100.00 76.03 64.46 −1.38

chrF 0.00 71.31 100.00 78.85 0.00 67.89 100.00 76.03 65.61 −1.27

eBLEU 0.02 71.36 99.94 78.88 0.02 67.93 99.94 76.05 65.29 −1.32

f200spBLEU 0.00 71.31 100.00 78.85 7.35 68.71 96.65 76.04 66.04 −1.23

tokengram_F 0.00 71.31 100.00 78.85 0.00 67.89 100.00 76.03 65.30 −1.24

S
E

N
T

IN
E

L
M

E
T

R
IC

S SENTINELSRC −0.10 74.72 91.11 79.48 −0.01 72.89 88.48 77.44 53.09 −2.35

SENTINELREF −0.78 73.28 96.26 79.62 −0.78 70.04 96.66 77.12 53.09 −2.35

SENTINELCAND −0.52 74.56 93.53 79.97 −0.50 71.42 93.81 77.59 45.30 −3.04

Random-sysname −5.00 71.32 99.99 78.85 −5.00 67.89 99.99 76.03 53.51 −2.08

Table 8: Metrics’ Precision, Recall, and F -score in binary classification, distinguishing GOOD from BAD ,
and PERFECT from OTHER translations. τ is selected to maximize the F -score on the test set. In the last
two columns, we report metrics’ Precision in translation re-ranking and the average MQM score of the selected
translations. The test set is WMT23MQM and the translation direction is HE→EN. The metrics highlighted in grey
are not openly available.
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GOOD vs BAD PERFECT vs OTHER

Metric τ P R F τ P R F

R
E

F
E

R
E

N
C

E
B

A
S

E
D

MetricX-23-XL −3.93 76.58 87.01 79.77 −2.97 57.70 88.80 65.32

COMET 0.77 75.95 75.28 75.72 0.79 55.51 74.57 60.68

BLEURT-20 0.61 73.81 79.92 75.74 0.64 52.45 76.89 58.67

BERTscore 0.92 71.44 63.39 68.54 0.93 49.99 59.81 52.88

R
E

F
E

R
E

N
C

E
F

R
E

E

MetricX-23-QE-XL −5.45 73.36 91.88 78.64 −3.54 55.63 90.32 63.80

COMET-QE-MQM 0.07 72.57 92.41 78.17 0.08 52.59 93.19 61.53

COMET-QE −0.02 73.77 85.81 77.39 −0.02 50.54 88.44 58.96

CometKiwi 0.74 75.57 85.35 78.58 0.76 53.38 86.73 61.23

CometKiwi-XL 0.62 75.47 83.37 77.93 0.64 53.70 85.03 61.22

L
E

X
IC

A
L

B
A

S
E

D f200spBLEU 4.86 64.52 89.01 71.03 4.86 42.53 89.35 51.53

BLEU 5.44 64.78 85.99 70.58 5.43 42.73 86.42 51.39

chrF 2.08 64.04 99.84 72.73 2.08 42.09 99.77 52.14

Table 9: Metrics’ Precision, Recall, and F -score in binary classification, distinguish GOOD from BAD , and
PERFECT from OTHER translations. τ is selected to maximize the F -score on the development set, i.e.,

WMT22MQM. The test set is WMT23MQM and the translation direction is ZH→EN.

GOOD vs BAD PERFECT vs OTHER

Metric τ P R F τ P R F

R
E

F
E

R
E

N
C

E
B

A
S

E
D

MetricX-23-XL −2.10 73.10 81.34 75.65 −1.10 71.84 71.41 71.70

COMET 0.72 57.94 94.05 66.44 0.80 53.88 84.32 61.25

BLEURT-20 0.60 63.64 87.97 70.11 0.66 56.99 82.09 63.45

BERTscore 0.68 52.15 99.84 62.03 0.68 40.00 99.79 49.99

R
E

F
E

R
E

N
C

E
F

R
E

E

MetricX-23-QE-XL −2.71 70.68 81.67 74.00 −1.66 67.12 76.24 69.91

COMET-QE-MQM 0.07 72.32 76.27 73.59 0.09 69.07 71.16 69.75

COMET-QE −0.05 56.09 94.26 64.84 −0.01 47.75 87.66 56.29

CometKiwi 0.73 60.98 90.91 68.50 0.79 55.90 83.61 62.84

CometKiwi-XL 0.52 59.13 91.29 67.00 0.62 51.57 86.45 59.59

L
E

X
IC

A
L

B
A

S
E

D f200spBLEU 3.18 52.15 99.74 62.01 3.67 40.05 99.79 50.04

BLEU 0.00 52.05 100.00 61.95 0.00 39.95 100.00 49.94

chrF 0.00 52.05 100.00 61.95 0.00 39.95 100.00 49.94

Table 10: Metrics’ Precision, Recall, and F -score in binary classification, distinguish GOOD from BAD , and
PERFECT from OTHER translations. τ is selected to maximize the F -score on the development set, i.e.,

WMT22MQM. The test set is WMT23MQM and the translation direction is EN→DE.
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zh→en en→de he→en
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Figure 3: Tested metrics’ optimal threshold values across different language directions. The thresholds were selected
to maximize the F -score on the test set in the GOOD vs BAD binary classification scenario. Thresholds are
normalized between 0 and 1 for improved clarity.
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Figure 4: Tested metrics’ optimal threshold values across different language directions. The thresholds were selected
to maximize the F -score on the test set in the PERFECT vs OTHER binary classification scenario. Thresholds are
normalized between 0 and 1 for improved clarity.

20712



−10 −8 −6 −4 −2

False Positive MQM Score ∆

xcomet-e

xcomet-qe-e

xcomet-xl

MBR-MetricX-QE

MetricX-23

MetricX-23-QE

MetricX-23-XL

MetricX-23-QE-XL

gemba-mqm

MaTESe

MaTESe-QE

comet-qe

comet-qe-mqm

CometKiwi

CometKiwi-XL

comet

BLEURT-20

BERTscore

BLEU

chrF

eBLEU

f200spBLEU

tokengram F

sentinelsrc

sentinelref

sentinelcand

Random-sysname

da+sqm

Perfect

Good

Figure 5: Distribution of the MQM score ∆ between metrics’ false positive MQM scores and human thresholds, i.e.,
−4 for GOOD and −1 for PERFECT . The dataset is the ZH→EN split of WMT23MQM.
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Metric τ ρ acceq

GEMBA-MQM 0.36 0.43 0.52
xCOMET-ENSEMBLE 0.30 0.42 0.54
xCOMET-QE-ENSEMBLE 0.26 0.37 0.53
xCOMET-XL 0.26 0.38 0.52
MBR-MetricX-QE 0.29 0.43 0.53
MetricX-23 0.26 0.37 0.53
MetricX-23-QE 0.24 0.35 0.52
MetricX-23-XL 0.25 0.36 0.52
CometKiwi 0.25 0.37 0.52
CometKiwi-XL 0.25 0.38 0.52
COMET 0.25 0.36 0.51
BLEURT-20 0.26 0.37 0.52
MaTESe 0.27 0.33 0.48
COMET-QE-MQM 0.16 0.21 0.48
MaTESe-QE 0.21 0.24 0.44
DA+SQM 0.11 0.20 0.42
Random-sysname 0.02 0.02 0.38

Table 11: Kendall τ and Pearson ρ correlation coefficients, and acceq accuracy (Deutsch et al., 2023), measured
between the DA+SQM- and MQM-based annotations, and between MT metrics and MQM. The data is the
intersection between WMT23MQM and WMT23DA+SQM. The language direction is ZH→EN.

Metric τ ρ acceq

GEMBA-MQM 0.40 0.48 0.57
MBR-MetricX-QE 0.40 0.54 0.58
xCOMET-ENSEMBLE 0.38 0.54 0.60
xCOMET-XL 0.37 0.51 0.60
MetricX-23 0.37 0.51 0.60
COMET 0.37 0.51 0.58
BLEURT-20 0.37 0.49 0.57
MetricX-23-XL 0.36 0.49 0.59
xCOMET-QE-ENSEMBLE 0.36 0.51 0.59
MetricX-23-QE 0.36 0.51 0.60
COMET-QE 0.35 0.47 0.57
MetricX-23-QE-XL 0.35 0.45 0.59
CometKiwi-XL 0.35 0.50 0.57
CometKiwi 0.33 0.46 0.57
COMET-QE-MQM 0.29 0.39 0.54
MaTESe 0.29 0.33 0.53
MaTESe-QE 0.28 0.34 0.52
DA+SQM 0.17 0.29 0.46
Random-sysname 0.08 0.12 0.41

Table 12: Kendall τ and Pearson ρ correlation coefficients, and acceq accuracy (Deutsch et al., 2023), measured
between the DA+SQM- and MQM-based annotations, and between MT metrics and MQM. The data is the
intersection between WMT23MQM and WMT23DA+SQM. The language direction is EN→DE.
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