
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 20749–20779
November 12-16, 2024 ©2024 Association for Computational Linguistics

Let’s discuss! Quality Dimensions and Annotated Datasets for
Computational Argument Quality Assessment

Rositsa V Ivanova and Thomas Huber and Christina Niklaus
University of St. Gallen, Switzerland

{rositsa.ivanova, thomas.huber, christina.niklaus} @unisg.ch

Abstract

Research in the computational assessment of
Argumentation Quality has gained popularity
over the last ten years. Various quality di-
mensions have been explored through the cre-
ation of domain-specific datasets and assess-
ment methods. We survey the related literature
(211 publications and 32 datasets), while ad-
dressing potential overlaps and blurry bound-
aries to related domains. This paper provides a
representative overview of the state of the art in
Computational Argument Quality Assessment
with a focus on annotated datasets. The aim of
the survey is to identify research gaps and to
aid future discussions and work in the domain.

1 Introduction

Argumentation is both a key competence and an im-
portant cultural technique in democratic societies
(Hess, 2009). It serves as a fundamental device
for expressing beliefs, perspectives, or justifica-
tions around a specific claim. The primary goal
of argumentation is to strengthen or weaken the
acceptability of a position by presenting supporting
or opposing evidence (Eemeren et al., 1996).

In recent years, the field of Argument Mining
(AM), i.e., the extraction of arguments from natural
language text, has made significant progress (e.g.,
Trautmann et al., 2020; Morio et al., 2022; Galassi
et al., 2023). However, the automatic quality assess-
ment of argumentation (i.e., Argumentation Quality
- AQ) is still an open challenge, since defining and
measuring the quality of an argument is complex
and multifaceted, involving aspects such as logical
soundness, persuasiveness, and dialectical reason-
ableness (e.g., Ng et al., 2020; Gretz et al., 2020;
Alhamzeh, 2023). The insights and approaches
from AM and AQ have been applied to various
research directions. Argument Search (AS) (e.g.,
Stab et al., 2018; Nilles et al., 2021) makes use of
the quality of arguments as an additional aid for
the ranking of mined arguments (Wachsmuth et al.,

2017b). Argument Improvement (AImp) focuses
on the analysis of the quality of an argument in
terms of their improvement from a previous ver-
sion (Zhang et al., 2016a, 2017; Afrin and Litman,
2018; Skitalinskaya et al., 2021).

This paper surveys the literature on Computa-
tional Argument Quality Assessment. As our main
contributions (1) we summarize the development
of the field and the quality dimensions overtime,
(2) we provide a detailed analysis of the existing
annotated datasets in regards to their size, language,
quality dimensions, annotation scales, annotation
process, and availability, and (3) we identify signif-
icant research gaps and propose concrete research
directions to guide future work in this domain.

2 Methodology

We defined the scope of our survey as the scope
of the view of computer science on AQ and se-
lected the Digital Bibliography and Library Project
(DBLP)1 as our initial source of publication on
the topic. We queried the bibliography using the
search term “argument quality” and collected a to-
tal of 80 items (i.e., journal articles, conference and
workshop papers, informal and other publications)
dated up until the end of March 20242. The search
function treats the words “argument” and “quality”
as individual substrings and matches them to any
of the collected metadata (e.g., author, title, venue,
type, access, volume, year, URL), thus implicitly
expanding the scope of the found publications be-
yond the strict domain of AQ. We excluded du-
plicated items (e.g., preprints), unavailable entries
or those not referring to actual publications, and
work not directly concerning the AQ domain (see
Figure 1). Further, we expanded the scope of our

1https://dblp.org
2We manually searched and included publications from

conference proceedings from EACL 2024, which had not
yet been published on DBLP. This resulted in 4 additional
publications, which are included in the Snowballing count.
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Figure 1: Overview of the applied collection method for
publications in the domain.

study by applying Snowball sampling (Goodman,
1961) in an iterative manner. Here, in a first step,
we extracted references to prior related work. We
then filtered out any publications which were not di-
rectly related to the domains Argumentation Qual-
ity, Argument Mining and Argument Improvement,
such as ones from the philosophical field. At this
point we refrained from narrowing down the dis-
covered further references only to the AQ domain
in order to achieve a more representative overview.
In a second step, we extracted references from the
newly collected publications and proceeded with
the same filtering approach from the first step. This
approach was iterated for all publications until no
new relevant references were discovered. This re-
sulted in a total number of 211 publications (see
Appendix A for a complete list). Lastly, for the
further analysis presented in our paper, we focused
particularly on the publications that are relevant to
the computational assessment of AQ.

Figure 2 offers an overview of the publications
related to the AQ domain over the last 20 years.

Figure 2: Number of publications (blue dashed line
- DBLP (after filtering), green solid line - DBLP and
snowballing) and number of new datasets (red bars)
throughout the last 20 years (2003 to 2023).

Starting from 2003, the blue dashed line describes
all publications found in DBLP, the solid green
line – all publications found in DBLP and the ones
collected via Snowballing, and the red bars indicate
the number of datasets released per year. Despite
the fluctuations in the numbers over the years, we
believe that the plots indicate a still rising interest
in the field of AQ.

We consider this collection to be representative
of the state of the art in Computational Argument
Quality Assessment to the best of our knowledge
but make no claim to completeness. The following
section provides an overview of previous research
by examining the proposed quality dimensions.

3 Dimensions for Computational
Argumentation Quality Assessment

The applications in the NLP community have been
explored in various context. In the field of AQ,
Persing and Ng first put their main focus on au-
tomated essay scoring. They began refining the
holistic scoring schemes used by scoring engines
at that time by addressing more specific quality
dimensions - starting with organization (Persing
et al., 2010), thesis clarity (Persing and Ng, 2014),
prompt adherence (Persing and Ng, 2014), and ar-
gument strength (Persing and Ng, 2015). The lat-
ter shifts the focus towards argumentative essays,
while the others explore essays in general. Never-
theless, slowly but surely the analysis of texts went
beyond the assessment of structural aspects (some-
thing that still remains the strong focus of AM)
and began looking for other means to measure the
quality of arguments.

As more authors took interest in argumentative
texts, they began deriving those from reviews, fo-
rum posts, etc. Wachsmuth et al. (2014), for in-
stance, explored sentiment, while Braunstain et al.
(2016) took interest in the level of support present
in recommendations or opinions. With the increas-
ing number of interactions taking place online, the
interest in these interactions remained and a num-
ber of publications looked at dimensions such as
persuasiveness (e.g., Tan et al., 2016; Persing and
Ng, 2017b) and convincingness (e.g., Habernal and
Gurevych, 2016a) as means to assess the quality of
arguments. In contrast to prior work on persuasion,
El Baff et al. (2018) and Durmus et al. (2019)’s
work accounts for external factors such as the prior
belief of the readers and aims to incorporate and
explain subjectivity in the assessment. A particular
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Figure 3: Overview of quality dimensions for computational argument quality assessment discovered in the surveyed
literature. Note: The figure is an extension of a taxonomy proposed in Wachsmuth et al., 2017a (Figure 1), which is
highlighted by the yellow background.

interest on convincingness and recommendedness
is noticeable in work by researchers at IBM (e.g.,
Gretz et al., 2020), who actively collect the raw
data (i.e., unlabeled data) through crowdsourcing,
instead of extracting it from forums or similar.

In parallel to these developments, which were
rather based on intuitive understandings of the
targeted quality dimensions, Stab and Gurevych
(2017) and Wachsmuth et al. (2017a) based their
work on theoretical frameworks previously pro-
posed in philosophy. Following a detailed research
on quality dimensions for computational assess-
ment and several major theories for argumentation,
Wachsmuth et al. (2017a) created a new taxonomy.
Their concept revolves around three high-level qual-
ity dimensions defined by Blair (2011) - logical,
rhetorical, and dialectical - and adds one more
layer of sub-dimensions to each of them (e.g., logi-
cal: acceptability, relevance, and sufficiency). With
a brief delay, this taxonomy became a significant
reference and found applications for the creation of
new datasets. For instance Ng et al. (2020) aimed
at a domain-diverse set of texts, while Alhamzeh
(2023) assessed conference calls in the financial
domain. As such the work in the field of AQ once
again shifted from an assessment (mostly) of a sin-
gle quality dimension to the consideration (and thus
annotation) of multiple at the same time.

Enhanced Information Utilization for AQ
Assessment. Prior work (Hulpus et al., 2019;
Lauscher et al., 2022; Plenz et al., 2023b) has ar-

gued that it is beneficial to add context to argu-
ment via relevant external knowledge in order to
better assess its quality. On the contrary, others
(e.g. Swanson et al., 2015; Wachsmuth and Werner,
2020; Plenz et al., 2023a) extract syntactic features
(e.g., sentence length, vocabulary richness) from
the provided text to aid the quality assessment. Fur-
ther, Sun et al. (2021) take a look at the syntax of
arguments (i.e., the arrangement of words) and the
coherence between said argument and the topic it
relates to. The authors acknowledge that the two as-
pects may be representative of the cogency, reason-
ableness and clarity, and demonstrate that “incor-
porating both syntactic and coherence information
can boost the classification performance compared
to the models without considering them”. Thus, in
recent years the focus seems to be moving towards
an even more targeted fine-grained analysis of the
dimensions, allowing not only to rate a single qual-
ity aspect (e.g., appropriateness, sentiment), but to
consider potentially related factors (e.g., toxic emo-
tions, aggressiveness) (Ziegenbein et al., 2023; Falk
et al., 2024). With the development of a commonly
used coding scheme, Wachsmuth et al. (2017a) ad-
dress one “key requirement in enhancing reusabil-
ity” (Reed et al., 2008). The authors state that they
do “not propose a specific approach to assess qual-
ity; rather [define] a common ground by providing
a (...) holistic view” (Wachsmuth et al., 2017a).

Argument Quality Taxonomy. Due to the ongo-
ing widespread use of Wachsmuth et al. (2017a)’s
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taxonomy in the domain, we base our overview
of quality dimensions on their proposed taxonomy
and extend it with further dimensions identified in
the surveyed papers3. Figure 3 depicts all of the
quality dimensions found in the surveyed papers.
Here, it is essential to point out that it is far be-
yond the scope of this survey to propose a novel or
updated taxonomy. Yet, we believe that develop-
ments in the field, similarly to such in the field of
philosophy, would sooner or later inevitably lead
to adaptations to the first taxonomy proposed by
Wachsmuth et al. (2017a).

The taxonomy differentiates between three high-
level quality dimensions. Logic / Cogency assesses
whether the premises within an argument are ac-
ceptable, relevant and sufficient to its conclusion.
Dialectic / Reasonableness explores whether an
argumentation would be accepted by the target
audience, whether it is relevant to the issue and
sufficient against counter-arguments. Rhetoric /
Effectiveness addresses the persuasiveness of an
argumentation towards a target audience in terms
of the credibility of the author, the emotional ap-
peal, the style and the appropriateness of the used
language, and the arrangement of the argumenta-
tion. The high-level quality dimensions are then
split into sub-dimensions, which look at individ-
ual quality aspects more precisely. The interested
reader may refer to the work of Wachsmuth et al.
(2017a) for the exact definitions of the individual
(sub-)dimensions.

Throughout the creation of this taxonomy,
Wachsmuth et al. (2017a) analyse existing ap-
proaches to AQ, yet many of them are not included
within the final taxonomy. Instead the authors
leave out some dimensions such as persuasiveness
as they are deemed too close to a high-level di-
mension and add references to further quality di-
mensions previously addressed by the AQ liter-
ature. Our overview includes the taxonomy by
Wachsmuth et al. (2017a), all quality dimensions
explored throughout the creation of the taxonomy,
as well as further dimensions discovered as part
of this survey (i.e., sentiment, objectivity, impact,
strength). As such we aim to recognize their fre-
quent appearance and relevance in the domain (e.g.,
Lukin et al., 2017; Shiota and Shimada, 2020).

Related Fields. In our analysis we categorize

3Note that we exclude sub-dimensions which are repetitive
in their naming such as “thesis clarity” as a sub-category of
“clarity”. This differentiation is not essential in our case as
individual related publications are discussed in Section 4.

work targeting the identification of argument com-
ponents as AM and work targeting the compari-
son between versions of the same argumentation
as AImp. Some prior work has built connections
between the fields. The work of Li et al. (2020)
and Liu et al. (2021) for instance bridges the focus
points of AM and AQ by examining the relation
between the discourse structure of arguments to
persuasiveness. Others describe the analysis of
the structure of the arguments as “the first step in
analysing [argument] quality.” Our overview ac-
knowledges the close connection and oftentimes
blurred boundaries between AQ, AM and AImp,
while taking a closer look at the individual dimen-
sions that are relevant to the quality of the argu-
mentation itself. Further, it may be argued that
Persing et al.’s work (2010; 2013; 2014; 2015) on
student essays is more related to Automated Es-
say Scoring (AES) than AQ, yet it has (also) been
widely accepted by prior work as a contribution
to the assessment of argumentation quality. The
boundary between domains is further blurred when
essays are evaluated based on their argumentative
structure and AM techniques are applied (Stab and
Gurevych, 2014).

The interested reader may refer to Lawrence and
Reed (2020) and Vecchi et al. (2021) for a survey
on AM and to Ramesh and Sanampudi (2022) for
a survey on AES. For the first survey on AQ pro-
viding a “holistic view on argumentation quality
assessment in natural language” see Wachsmuth
et al. (2017a).

4 Annotated Datasets

We found a total of 57 datasets which either ex-
tended existing datasets with further annotations or
were created from scratch. The main purposes that
the datasets target are Argument Mining (Stab and
Gurevych, 2014; Habernal and Gurevych, 2017;
Shnarch et al., 2018), Argumentation Quality, Ar-
gument Improvement (Zhang et al., 2017; Afrin
and Litman, 2018; Skitalinskaya et al., 2021), and
Argument Search (Wachsmuth et al., 2017b; Stab
et al., 2018; Nilles et al., 2021). As our focus lays
on the field of AQ, we take a closer look at the
32 directly relevant datasets of the total surveyed
datasets in regards to their size, language, quality
dimensions, annotation scales, annotation process,
and identified annotation issues. The selection of
the criteria was based on previous studies on an-
notated datasets from related domains (e.g., Van
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Der Lee et al., 2019; Ke and Ng, 2019).
Our overview is based on the datasets, their anno-

tation guidelines and the publications introducing
them. The majority of publications uploaded sup-
plemental material or made it easy to discover or
request the datasets. In 2 out of the 7 attempts to
reach the authors of the respective papers in order
to request the datasets remained without a response,
and for 1 publication none of the authors’ emails
are active anymore.

4.1 Size and Language
The authors of the individual datasets have taken
various approaches to the evaluation of argumenta-
tion quality. As such they have also used various
text entities to measure the size of the final an-
notated datasets4 (e.g., 374 472 comments, 320
arguments, 830 essays). The text entities include:
the number of propositions, premises, claims, ar-
guments, words, sentences, essays, (online) posts,
(discussion/forum) threads, and evidence/argument
pairs. The wide variability in the annotated entity
types and thus the granularity of the annotated qual-
ity dimensions makes a direct comparison of the
dataset sizes quite difficult. A detailed overview of
all datasets is depicted in Table 1 in Appendix A.

In regards to the languages of the datasets, 3
(9.38%) of the publications explicitly state the
language, 28 (87.5%) implicitly indicate it (e.g.,
through the provided examples) or we were able
to detect the language by taking a look at the re-
spective published or received-on-request datasets.
We could not deduct the language of the datasets
described in one publication. One dataset, which
was created for AM, yet includes an overall AQ
score, is multi-lingual (Toledo-Ronen et al., 2020).
All of the remaining datasets were created from
argumentation in English.

Research Gaps and Future Work. While En-
glish is generally over-represented in the NLP com-
munity in terms of datasets, models, tools, etc., we
believe that the numbers here present a far outlier.
One of the limitations of our approach is the initial
use of the English term for the search for publica-
tions. However, it is surprising that even within the
211 discovered publications, we did not find any
dataset that is created in another language (with the
potential exception of the one unknown dataset).
We would like to point out that this is not necessar-
ily the case for AM, where few datasets exist also

4Note that the final size oftentimes differs from the initial
raw dataset size.

for other languages (e.g., Wambsganss and Niklaus,
2022). Future work should address this research
gap by exploring non-English argumentative texts.

Opposing statements were made by prior re-
search in regards to the length of text entities in
the annotation process. Swanson et al. (2015) and
Gienapp et al. (2020) recognize a negative correla-
tion of annotation quality and length of text entity.
In contrast, Wachsmuth and Werner (2020) observe
better judgment for longer arguments. Joshi et al.
(2023) take a closer look at the annotation scores
for various text lengths and discover a normally
distributed curve with “a peak score from 210-270
characters”, contributing it to the idea that too few
characters may be insufficient to make a persuasive
point, yet too many may also be considered not per-
suasive. Yet, future work should explore whether
this ideal length is dependent on the text type (e.g.,
news article vs. online forum) or on the annotated
level of granularity (i.e., premise/conclusion, argu-
ment, or argumentation).

4.2 Quality Dimensions

In the majority of the publications describing the
creation of datasets, the annotated quality dimen-
sions are either explicitly stated or can be deducted
from the publication or supplemental material. A
detailed overview of the surveyed datasets for AQ
with their respective annotated quality dimensions
can be found in Appendix A. Here, we only in-
cluded the argument aspects annotated for AQ and
excluded those better fitting to related areas (e.g.,
refutation method in Wei et al., 2016). The dimen-
sions used for the creation of the overview are a
subset of the ones described in Figure 3.

In some of the cases, however, the assignment of
the described quality aspects to a specific quality
dimension may be ambiguous. El Baff et al. (2018)
explore “whether an editorial brings readers of op-
posing belief closer together or rather increases the
gap between them”. Here, the quality perspective
is not clearly covered by a single sub-dimension.
Therefore we resort to the general categorization
made by the authors themselves and assign the
dataset to the high-level dimension reasonableness
(i.e., dialectic). The dataset created by Tan et al.
(2016) is another such example. The authors col-
lect Reddit5 data where an original poster (OP)
asks other users to change their view on a topic and
make use of a parameter indicating whether a par-

5https://reddit.com/r/changemyview
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ticular response changed their opinion (i.e., delta
label) to explore persuasion in online discussions.
However, due to the contrasting opinions of the OP
and the responding user, the label can be viewed as
an indication of global acceptability.

Toledo et al. (2019), Gretz et al. (2020), and
Joshi et al. (2023) explore whether the annota-
tors would “recommend” to use an argumentation
in a speech. We believe that this aspect is most
closely connected to the global relevance of an
argument (i.e., “it contributes to the issue’s resolu-
tion” (Wachsmuth et al., 2017a)). On the contrary,
we categorize the measure of a “relevance level” in
Dumani and Schenkel (2019) as local relevance,
as it explores the relevance of claims in pairs of
hquery claim, result claimi.

Zhang et al. (2016b) take a look at the different
styles of argumentation in moderated live debates.
For each debate the “winning side” is described
as the higher delta between the received votes pre
and post-debate. Here our approach aligns with
Wachsmuth et al. (2017a) as we do not further cat-
egorize this dataset into a sub-dimension.

The majority of the surveyed datasets are based
on text from essays, online debate portals, forums,
news articles, but only few of them originate from a
more specific domain. Alhamzeh (2023) created a
dataset consisting of 80 quarterly organized events
of public traded companies. The annotated dimen-
sions included generally relevant quality dimen-
sions for argumentation (e.g., strength, specificity,
persuasiveness), but also specific ones targeting the
financial domain (e.g., Which quarter/year does the
argument refer to?). One of the annotated aspects
states whether an argument is “objective” or not,
which seems closely related to emotional appeal
(Wachsmuth et al., 2017a).

Research Gaps and Future Work. The sur-
veyed literature (Wachsmuth et al., 2017a; Haber-
nal and Gurevych, 2016b; Liu et al., 2023) often-
times refers to existing argumentation theories such
as Toulmin (1958)’s model for the quality of the
general argument structure. Prior work has taken
a closer look at the relation between the use of
Toulmin’s model and the quality of an argument.
To the authors’ surprise “[not] only did the Toul-
min model create arguments with decreased clarity,
but it also decreased the personal relevance, sense
of urgency, and drastically decreased the overall
level of agreeability” (Dorton et al., 2021). This
raises questions as to whether the currently used
quality dimensions are the best suit for the quality

assessment. Future work should take a closer look
at the suitability of current approaches for the task
at hand and explore further related perspectives on
argumentation quality.

4.3 Absolute vs. Relative Quality
Prior work mostly describes individual approaches
and datasets based on the quality dimensions that
they analyze. In addition, we consider whether
the individual quality dimensions were regarded in
a relative or in an absolute manner following the
distinction made by Toledo et al. (2019).

The relative quality analysis evaluates the rela-
tion between pairs of text entities instead of regard-
ing them as individual statements. The most fre-
quently observed type of relative evaluation is the
preference comparison of an argument A over an ar-
gument B (Habernal and Gurevych, 2016b; Gleize
et al., 2019; Toledo et al., 2019; Gienapp et al.,
2020). This approach is used to reduce the annota-
tion complexity by requiring no prior knowledge
from the annotators (Gienapp et al., 2020). While
the relative quality offers less specific evaluation, it
allows for a new best argument to be defined at all
time (i.e., as it is simply tagged as better than the
previous best) (Dumani and Schenkel, 2020). An-
other common evaluation is done by categorizing
the relation between pairs of text entities (e.g., Wei
et al., 2016; Habernal and Gurevych, 2016a).

From an absolute point of view arguments are
analyzed as individual text entities (e.g., single
argument) or in conjunction with further related
text entities (e.g., a topic and an argument). In-
dividual text entities such as sentences are then
analyzed in terms of their organization, sentiment,
clarity, strength, relevance, sufficiency, persuasive-
ness, winning side, reasonableness, or a mixture of
multiple quality dimensions (see Appendix A for a
complete overview). Overall 23 publications took
an absolute approach, 6 took a relative one, and
Toledo et al. (2019) applied both in their work, cre-
ating two distinct datasets. This categorization (i.e.,
absolute vs. relative) is not to be confused with the
differentiation between intrinsic and extrinsic qual-
ity dimensions. An intrinsic evaluation is based
only on the text of the argument (e.g., Wachsmuth
and Werner, 2020), while an extrinsic one requires
previous knowledge such as background or context
(e.g., Potash et al., 2017).

Research Gaps and Future Work. Gienapp
et al. (2020) distinguish between rating methods
that use an interval scale (e.g., Likert scale) and
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“relative comparison”, where annotators view two
texts at a time and are asked to state their pref-
erence (i.e., relative quality) in terms of the ar-
gumentation quality. They observe better overall
inter-annotator agreements when a relative com-
parison is used. This is assumed to be related to
two major drawbacks of absolute rating scales in
this context. On the one hand, the use of an inter-
val scale may lead to incorrect conclusions based
on statistical methods. This is because “assessors
rarely perceive labels as equidistant, thus produc-
ing only ordinal data [which] leads to a misuse of
statistical tests and results in low statistical power
of subsequent analyses” (Gienapp et al., 2020). On
the other hand, such rating has proven to be dif-
ficult for annotators without previous knowledge.
This claim is supported by the results of the anno-
tation by Lauscher et al. (2018), where the various
inter-annotator agreement scores “suggest that the
difficulty of the task is highly dependent on the
domain”.

In general, higher quality datasets are required
in order for tools to be able to perform better. We
acknowledge that relative comparison yields better
agreements, yet also recognize that over 75% of
all datasets are annotated in an absolute manner,
which may be an indication of its better suitability
for further use. Therefore, we suggest that future
work explores ways to translate relative annotations
to absolute ones. In addition, one could address the
absolute quality assessment in particular with an
aim to better understand the difficulties in annota-
tion from the point of view of the annotators.

4.4 Annotation Scales
Across the surveyed datasets we find annotation
scales of various types. While relative quality is
mostly measured by stating a preference of one
argument over another (Toledo et al., 2019; Gleize
et al., 2019; Gienapp et al., 2020), Habernal and
Gurevych (2016b) included an option where both
arguments are equally convincing.

Previous attempts have been made to refine
the coarse granularity of the relative annotations.
Habernal and Gurevych (2016b) apply PageRank
on a directed acyclic graph derived from their an-
notated data. Chen et al. (2013) introduce an on-
line sampling method based on the Bradley-Terry
model (Bradley and Terry, 1952). The shortcom-
ings of online sampling methods for crowdsourcing
(i.e., not allowing multiple workers to annotate si-
multaneously or to not have a preference) have

been addressed by Gienapp et al. (2020) in an of-
fline sampling method, which produces scalar rank-
ing scores from the preference annotations. Britner
et al. (2023) point out that no attention has been
given to justifying why a certain argument is pre-
dicted to be better than another and introduce an ap-
plication which addresses this gap. Their approach
makes use of various absolute quality dimensions.

Annotation scales following the absolute ap-
proach have a higher variety. A point scale is used
in 48% of the surveyed datasets, in which argu-
ments are evaluated individually. However, even
within these datasets different ranges for scales are
used: 1-3, 0-2, 1-5, 1-6, 1-4 at half point incre-
ments, -5 to 5. Also here, there are few cases (e.g.,
Dumani and Schenkel, 2020) where the annotators
are allowed to state that they “cannot judge”. Marro
et al. (2022) initially chose an interval scale (i.e., 0,
5, 10, 15, 20, 25), yet switched to an ordinal scale
(i.e., 0, 15, 25) to achieve higher annotation quality.

In addition to an interval scale, the annotators
in Persing and Ng (2017a,b) were asked to iden-
tify “five errors that could have a negative impact
on (...) persuasiveness”, while Alhamzeh (2023)
included further domain-specific dimensions with
a categorical scale. Similarly, Falk et al. (2024)
assessed sentiment via three categories. Durmus
et al. (2019) took a different approach by using
labels: no impact, low impact, medium impact,
high impact, very high impact, which in contrast to
the aforementioned examples are not assigned to
interval-scale values.

Some annotations (e.g., Swanson et al., 2015;
Falk et al., 2024) took a simplified approach and
used binary alternatives for the tagging of argu-
ments. Similarly to the refining of the coarse-
grained relative annotation approaches, Toledo et al.
(2019), Gretz et al. (2020) and Toledo-Ronen et al.
(2020) convert the binary tags to a more precise
quantitative score value between 0 and 1 after the
annotation has been completed. Swanson et al.
(2015) skip this step by using a slider from 0 to 1,
simplifying the task for the annotators, yet preserv-
ing the finer granularity of the evaluations.

Research Gaps and Future Work. The anal-
ysis of the rating scales used for the annotation
of the surveyed datasets shows that point scales
are most frequently used. However, the variety of
their range and the different annotation guidelines
often lead to different meanings behind the same
numbers. Due to the high costs associated with the
annotation of datasets, future work should explore
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options to port the different scales in an aim to
increase the reusability of already existing datasets.

4.5 Annotation Process
One of the most frequently chosen annota-
tion approaches is crowdsourcing (e.g., Ama-
zon’s Mechanical Turk, Figure-Eight) (Wachsmuth
et al., 2014; Swanson et al., 2015; Habernal
and Gurevych, 2016a,b; Braunstain et al., 2016;
Shnarch et al., 2018; Gleize et al., 2019; Toledo
et al., 2019; Ng et al., 2020; Gretz et al., 2020;
Gienapp et al., 2020). Another choice is the use of
a graphical user interface (El Baff et al., 2018; Du-
mani and Schenkel, 2019, 2020; Alhamzeh, 2023).
Due to the vastly different approaches for the an-
notation task, the number of annotators also varies
accordingly. With crowdsourcing the number of
annotators per entity varied from 3 to 17 and per
dataset from 90 to 3 900. Oftentimes, certain cri-
teria were applied to ensure the quality of the an-
notators’ work (e.g., native or proficient speakers,
having a high acceptance rate of their previous an-
notations). When other approaches were chosen,
the number of annotators varied between 2 and
8. In these cases the criteria for the annotators
selection could be made more precisely. While
the language proficiency is also a factor here, the
criteria further included among others a linguistic
background, an expertise in AM, or an expertise in
the arguments’ domain.

The annotation quality is predominantly eval-
uated via inter-annotator agreement scores. The
majority of the datasets calculated Cohen’s kappa
between pairs of annotators (0.322 - 0.848), Fleiss’
kappa (0.457 - 0.86) or Krippendorff’s alpha (0.00
- 0.935). A few authors (e.g., Toledo et al., 2019;
Gretz et al., 2020; Falk et al., 2024) included further
techniques with the aim to increase the quality of
the annotations such as adding test questions, orga-
nizing small pilot annotations, offering annotators
a test run to familiarize them with the task.

Various quality levels of annotators’ work may
be addressed in the post-processing of the data by
applying scoring functions for annotations. MACE
probability (Hovy et al., 2013) uses a generative
model to estimate the true label and annotator re-
liability (Habernal and Gurevych, 2016b,a; Joshi
et al., 2023), while Weighted Average factors in
the annotator reliability weight their judgments as
means to reduce the influence of non-reliable anno-
tators on the final quality score (Gretz et al., 2020;
Joshi et al., 2023). Simpler methods include the use

of a majority agreement, full agreement or similar
(Persing et al., 2010; Persing and Ng, 2013, 2015,
2017b,a; El Baff et al., 2018; Wachsmuth et al.,
2017a).

Research Gaps and Future Work. Overall,
the achieved inter-annotator scores oftentimes indi-
cated that the tasks are difficult for humans (Persing
et al., 2010; Gleize et al., 2019; Ng et al., 2020).
Dumani and Schenkel (2020) identify the nomi-
nal scores for reasonableness as having the highest
level of disagreement. Stab and Gurevych (2017)
link the use of modal verbs (e.g., can) and unspe-
cific quantifiers (e.g., some, many, various) to a
decrease in the agreement among annotators, sug-
gesting to address the issues by providing more
precise annotation guidelines. Alhamzeh (2023)
connects the later issue to a perception of “low de-
grees of specificity, strength, and persuasiveness”.

Further, subjectivity is also recognized as a rea-
son for low inter-annotator agreement. Habernal
and Gurevych (2016a) suggest that some quality
dimensions may require a description of the target
audience due to their subjective nature. Wei et al.
(2016) found some sub-categories in their annota-
tion to be difficult to distinguish (e.g., target losing
argument and refutation), leading to mismatches in
the annotation. Ng et al. (2020) observe a higher
disagreement in cases where a particular topic is
“deemed ’less worthy’ of being discussed, and (...)
humorous in nature or had trivial consequences.”
In addition, statements including sarcasm, irony
or rhetorical questions are deemed difficult to an-
notate. Future work should look into better suited
annotation approaches for these particular issues in
the annotation process.

5 Further Aspects and Related Fields

Falk and Lapesa (2023) differentiate between the
AQ perspectives discussed in the AM community
and those in the Deliberative Theory. The former
focus “on the logical dimension or specific aspects
of persuasion”, while the later “puts the discourse
as a whole and the interaction between discourse
participants into the focus”. Future work should
explore the suitability, the overlap, and the compati-
bility of the two perspectives, as the progress made
in the one domain could potentially contribute to
the work in the other.

The recent survey by Guerraoui et al. (2023)
discusses feedback systems specifically for argu-
mentation by categorizing argument feedback into
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four categories - Richness, Visualization, Interactiv-
ity, Personalization. They note that future research
should focus on considering the author’s skill level
for the feedback. We follow this statement and
suggest to consider the personal background (e.g.,
school level, native language) of an argument’s au-
thor also when measuring the argumentation qual-
ity. In the surveyed datasets the education level,
setting and personal skill level of the authors of the
argumentative texts were typically not stated. Reed
et al. (2008) point out that restricting the goal of a
corpus “is to permanently restrict the scope of what
they can support”. Further, Kasneci et al. (2023)
note that training data for Large Language Models
(LLM) should be diverse to reduce bias towards
any particular group. We believe that this is also
essential for the training of any models in the AQ
domain to ensure a more versatile and precise as-
sessment. When we consider the various philosoph-
ical and cultural view points and understandings
of what a good argument is (e.g., Perelman, 1971,
Wenzel, 1990), such richness in the datasets could
reduce the risk of creating a very narrow view on
AQ within the NLP community.

Gienapp et al. (2020) describes the varying refer-
ence frames of crowdsourcing annotators as an is-
sue due to its negative effect on the inter-annotator
agreement scores. On the contrary, Plank (2022)
points out that “a crucial assumption of today’s
learning systems is to rely on a single gold label per
instance”, which disregards the various opinions
and subjective interpretation of annotators when
language is involved. This issue is transferable
to the assessment of AQ as the task is also subjec-
tive. While the issue of ambiguity in gold standards
(Poesio and Artstein, 2005) is not new, it is worth
considering whether an alternative annotation for-
mat such as multi-layer labeling (e.g., Bamman
et al., 2019 in Named Entity Recognition for En-
glish literature) could also be beneficial to the AQ
domain. This aspect is essential to argumentation,
as the perceived quality of an argument is often-
times influenced by external factors such as the
personal view of an annotator or their familiarity
with a topic, to name a few.

The evaluation of AQ can be explored beyond
the textual form. Previous work has looked at other
types of media such as video and audio to detect
trembling in the voice, gesticulation, face expres-
sions of participants during debates (e.g., Shiota
and Shimada, 2020; Hasan et al., 2021). While this
research field is one of the most closely related to

the quality of textual argument, it is beyond the
scope of this paper to discuss the various aspects
of behavioral analysis and its potential correlation
to argumentation quality. Yet, considering the fact
that text is merely one of the attributes of in-person
discussions, it is worth exploring whether the tools
and datasets created for the analysis of written text
can also be applied to texts extracted from face-to-
face discussions.

6 Conclusion

While the AQ domain is multi-faceted, posing a
complex challenge, prior research has tackled it
from various perspectives. The interdisciplinary
nature of the quality assessment task offers the op-
portunity to gain knowledge from related research
fields, while also being able to contribute back to
the related fields e.g., through the creation of an-
notated datasets and the evaluation of hypotheses
about the significance or relations of the individual
quality dimensions. We present a survey of exist-
ing argumentation quality perspectives for compu-
tational assessment and annotated datasets created
or suitable for the domain. We outline potential
shortcomings and research gaps from prior work,
and suggest future work that may be beneficial to
the further development of approaches and tools.

7 Limitations

The initial search for related work used a keyword
which is quite general, yet we reduced the scope
to publications in the field of computer science
by limiting the initial collection to the DBLP li-
brary. To compensate for this shortcoming, we
applied the Snowballing approach, which allowed
us to increase the number of discovered publica-
tions almost 3 times. Nevertheless, our approach
does not guarantee that less frequently cited publi-
cations which may be related to the topic have not
remained undiscovered.

Further, the overview of the annotated datasets
was created based on the surveyed work. In our
case all but one available and received (on request)
datasets annotated arguments in English. There-
fore, despite our aim to cover the domain of Ar-
gumentation Quality as representatively as possi-
ble, we cannot guarantee that there are no other
branches of the domain that target other languages.
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A Annotated Datasets for Computational
Argumentation Quality Assessment

The following section gives a tabular overview
of the annotated datasets, which we discovered
through this survey on the domain of Computa-
tional Argumentation Quality Assessment. In some
cases, the datasets have been given a name. When
this is not the case, they can be clearly identified
based on their authors’ reference and publication
year. Next, the size and the annotation approach
are presented. While some quality dimensions are
mentioned explicitly in the respective descriptions
of the datasets or can be easily deducted, for others
we categorized them in one of the quality dimen-
sions previously described in the literature. In these
cases, the assumed category is added in brackets
and in an italic font next to the originally described
quality dimension. Following, we list the rating
scales used for the annotation of the respective di-
mensions. Lastly, the availability is given as “Yes”,
“On Request”, or “Not Reachable”. The latter is
a case where the dataset is not shared, cannot be
found online, and none of the authors’ emails are
active anymore.

6Name given by Gretz et al. (2020)
7The dataset was described and used for AQ by Zhang et al.

(2016b). The dataset was created as part of public debates
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B References to Surveyed Corpus

In this list of references we first introduce all publi-
cations discovered through DBLP which matched
the targeted domain (i.e., Argument Quality) and
were therefore considered for our analysis. Here,
we have removed 9 entries from the initial list
of publications, which were either duplicated,
preprints (e.g., arXiv entries8), or not actual publi-
cations (e.g., presentations).

Second, we list the publications found through
the initial search with DBLP, yet excluded from the
further analysis for at least one of the following rea-
sons: the topic is not related or has a different focus
(e.g., uses the argument quality to measure its effect
on consumer behavior) or the paper discusses a dif-
ferent type of quality (e.g., argumentation applied
to food quality).

Third, we introduce all publications which we
collected from the EACL 2024 proceedings. Note
that we manually added these for completeness, as
the conference venue had just finished at the time
of our final paper collection, however none of the
EACL 2024 paper had been yet been published on
the DBLP platform and would have thus remained
unintentionally excluded.

Lastly, we present a list of all publications dis-
covered through Snowballing - i.e., publications,
which were referenced within the DBLP corpus,
which passed the exclusion process. At this step,
preprints were excluded from the list. Note that
the scope of the publications discovered through
Snowballing is somewhat broader, thus allowing
us to expand the surveyed corpus to a total of 211
publications.

8arxiv.org
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