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Abstract

Sentence segmentation is a linguistic task and
is widely used as a pre-processing step in many
NLP applications. The need for sentence seg-
mentation is particularly pronounced in clinical
notes, where ungrammatical and fragmented
texts are common. We propose a straightfor-
ward and effective sequence labeling classifier
to predict sentence spans using a dynamic slid-
ing window based on the prediction of each
input sequence. This sliding window algo-
rithm allows our approach to segment long
text sequences on the fly. To evaluate our ap-
proach, we annotated 90 clinical notes from
the MIMIC-III dataset. Additionally, we tested
our approach on five other datasets to assess
its generalizability and compared its perfor-
mance against state-of-the-art systems on these
datasets. Our approach outperformed all the
systems, achieving an F1 score that is 15%
higher than the next best-performing system
on the clinical dataset.

1 Introduction

Sentence segmentation is the task of automatically
identifying the boundaries of sentences in a written
document, where a sentence is commonly defined
as a sequence of grammatically linked words end-
ing with a punctuation mark (PM). It is often the
first pre-processing step for other natural language
processing (NLP) tasks such as sentiment analy-
sis (Medhat et al., 2014), information extraction
(Angeli et al., 2015; Xu et al., 2020; Zhang and
Bethard, 2023; Zhang et al., 2024), semantic tex-
tual similarity (Agirre et al., 2013), question an-
swering ((Zhang et al., 2021b), and machine trans-
lation (Liu et al., 2020). Even tasks that operate
at the paragraph or document level, such as coref-
erence resolution (Stylianou and Vlahavas, 2021)
or summarization (Pilault et al., 2020), often make
use of sentences internally. Errors in segmentation

*These two authors contributed equally.

could have detrimental effects on downstream task
performance, e.g., in machine translation (Minix-
hofer et al., 2023), language modeling (Ek et al.,
2020), and simultaneous speech translations (Wang
et al., 2019). Detecting sentence boundaries is es-
pecially crucial for processing and understanding
clinical text, as most clinical NLP tasks depend on
this information for annotation and model training
(Fan et al., 2013; Gao et al., 2022).

Despite its importance, sentence segmentation
has received much less attention in the last few
decades than other linguistic tasks. For non-clinical
text, high-performing baseline systems use simple
rule-based (Jurafsky and Martin, 2000; Manning
et al., 2014) or machine learning-based (Gillick,
2009; Schweter and Ahmed, 2019) approaches that
capture obvious and frequent sentence ending PMs
(EPMs) such as [.!?”]. Such baselines leave little
room for further improvement on traditional bench-
marks derived from formal news(wire) sources or
published articles. The focus on formal or edited
text assumes EPMs as sentence boundaries, which
is not directly applicable to real-world data such
as clinical text (Read et al., 2012) or web text.
These type of texts often contain fragmented and
incomplete sentences, complex graphemic devices
(e.g. abbreviations, and acronyms), and markups,
which present challenges even for state-of-the-art
sentence segmentation approaches, e.g., 70-85%
F1 score on English Web Treebank (Straka, 2018;
Qi et al., 2020). Another comprehensive evaluation
of sentence segmentation in the clinical domain
reveals that four standard sentence segmentation
tools perform 20-30% worse on clinical texts com-
pared to general-domain texts (Griffis et al., 2016).

Here, we present a sentence segmentation ap-
proach specifically tailored for real-world data,
particularly clinical notes. Our method uses a se-
quence labeling classifier to predict sentence spans
over a sliding window. During inference, we dy-
namically slide the window based on the predic-
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tion of each input sequence, such that the window
always starts with a complete predicted sentence.
This allows our approach to segment long text se-
quences on the fly without needing to pre-split the
text. Moreover, the sequence labeling classifier
does not rely on PMs for segmentation. To evalu-
ate our approach on real-world clinical texts that
can be shared, we annotated 90 clinical notes from
MIMIC-III. Additionally, we extensively tested our
method on five other datasets to assess its generaliz-
ability. Unlike other studies (Wicks and Post, 2021;
Udagawa et al., 2023) that have modified datasets
for sentence segmentation, we retained the origi-
nal raw text, preserving their form and document
structure.

Our work makes the following contributions:
• We propose a sentence segmentation approach

capable of handling texts from diverse genres
and domains without relying on specific text
formats or EPMs. Our sliding-window algo-
rithm segments long sequence texts on the fly,
eliminating the need for pre-processing.

• We release a new sentence segmentation
dataset based on MIMIC-III corpus. To the
best of our knowledge, this is the first manu-
ally annotated sentence segmentation dataset
using clinical notes.

• We comprehensively compare our approach
against seven widely used off-the-shelf tools
across six datasets. Our approach outperforms
all these tools on five datasets, with particu-
larly large margins on clinical datasets.

The code for our proposed approach and the new
dataset are available at https://bitbucket.org/
hlpgonzalezlab/hlp_segmenter.

2 Related Work

Existing sentence segmentation approaches can
be categorized into rule- and learning-based ap-
proaches. Rule-based approaches (Aberdeen et al.,
1995; Koehn et al., 2007; Dridan and Oepen, 2012;
Sadvilkar and Neumann, 2020) utilize handcrafted
rules, abbreviation lexicons, and linguistic features
to decide whether a PM belongs to a token (an ab-
breviation or a number), or indicates the end of a
sentence. For instance, Stanford CoreNLP toolkit
(Manning et al., 2014) utilizes rules such as sen-
tence ending PMs, or two consecutive line breaks
to segment text. However, one major limitation of
rule-based approaches is that the handcrafted rules
are language- or domain-specific, making them dif-

ficult to maintain and adapt to new texts.
As an alternative, other systems aim to automat-

ically learn segmentation rules through machine
learning algorithms. When working with unlabeled
data, unsupervised approaches (Mikheev, 2002;
Kiss and Strunk, 2006) automatically curate infor-
mation about abbreviations and proper names from
large corpora and use them to determine whether
the token preceding a period is an abbreviation and
whether the token following a period is a proper
name. One representative algorithm of the ap-
proach is in the Punkt system (Kiss and Strunk,
2006), as it computes the likelihood ratio of the
truncated words and the following periods to iden-
tify abbreviations. An implementation of Punkt
is bundled with the NLTK tool (Bird and Loper,
2004). Although these unsupervised approaches
do not require extensive lexical resources or man-
ual annotations and are easily adaptable to new
domains, they can only segment sentential units
(SUs) that use periods as sentence boundaries.

With the increasing availability of annotated cor-
pora, supervised learning approaches have become
predominant. One type of supervised approach
combines a regular-expression-based detector to
generate candidate SUs with a binary classifier. For
generating candidate SUs, researchers have focused
on only periods (Riley, 1989; Gillick, 2009), multi-
ple EPMs (Reynar and Ratnaparkhi, 1997; Palmer
and Hearst, 1997; Schweter and Ahmed, 2019),
or more complex regular expressions (Wicks and
Post, 2021). For classifying candidate SUs, most
approaches employ binary classifiers with various
features, e.g., a feedforward neural network with
POS tags features (Palmer and Hearst, 1997), an
SVM classifier with features such as length and
the case of the words occurring before and after
the PMs (Gillick, 2009), deep neural models using
characters from the surrounding context (Schweter
and Ahmed, 2019) of candidate SUs, or a two-layer
Transformer encoder using the surrounding context
words (Wicks and Post, 2021). However, all these
approaches focus on proofread and edited docu-
ments, always assuming the existence of EPMs
in all SUs. This assumption does not hold for in-
formal, user-generated text or clinical notes with
minimal proofreading and post-editing. As a conse-
quence, several studies noted a substantial decline
in performance when these systems move to texts
with less formal language (Read et al., 2012; Rudra-
pal et al., 2015).

Another competing supervised approach treats
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Figure 1: Sliding window algorithm for sentence segmentation. We segment the text using three sliding windows
sequentially (SW-1, SW-2, and SW-3). Each sliding window contains up to 8 tokens. The final sentence segmentation
tags are at the top (Pred) of the diagram.

sentence segmentation as a sequence labeling task,
assigning a tag to each input unit to mark sentence
boundaries (Evang et al., 2013; Toleu et al., 2017;
Du et al., 2019; Geng, 2022). This approach has
the advantage of not relying on EPMs and can seg-
ment ungrammatical and fragmented texts. For
example, Elephant (Evang et al., 2013) uses a CRF
classifier to jointly segment tokens and sentences.
By tagging each character in the input sequence,
their classifier can identify SUs ending with var-
ious characters. Several works (Du et al., 2019;
Rehbein et al., 2020; Udagawa et al., 2023) apply
BERT-based sequence labeling classifiers for sen-
tence segmentation. Due to the sequence length
constraint of BERT models, these approaches split
the original documents/texts into smaller sequences
as inputs for BERT. This splitting is achieved either
through domain knowledge, such as identifying
pauses, speaker turns, or discourse markers from
spoken language transcripts (Du et al., 2019), or by
using an existing sentence segmentation tool (Uda-
gawa et al., 2023). In contrast, our approach em-
ploys a sliding window to segment long sequence
text on the fly, requiring no domain knowledge or
off-the-shelf tools for pre-processing, which makes
it easily applicable to texts from different domains
and genres.

The approach proposed by Udagawa et al. (2023)
shares similarities with ours in extending sentence
segmentation beyond formal, standardized text us-
ing BERT-based sequence labeling classifier. Their
method involves a two-step process: firstly, apply-
ing ERSATZ (Wicks and Post, 2021) – a segmen-
tation tool based on punctuations – to the raw text;
and secondly, using a classifier on the segmented
text to detect sentence boundaries. However, in
their evaluation, they ignore the boundaries of frag-
mented sentences generated by ERSATZ. Addi-
tionally, instead of directly identifying sentence
boundaries during the sequence labeling step, as

in our approach, they use a dynamic programming
algorithm to infer labels for the entire document.

3 Methods

We approach sentence segmentation as a sequence
labeling task using a BIO tagging scheme (shown
in Figure 1). In this scheme, each token in an input
sequence is assigned a tag to mark sentence bound-
aries: B indicates the Beginning of a sentence, I
represents Inside of a sentence, and O denotes Out-
side of a sentence. We chose this tagging schema as
it allows not only to segment sentences from a doc-
ument but also to differentiate SUs (labelled as B
and I) from non-SUs (labelled as O), also known as
sentence identification task (Udagawa et al., 2023).
Non-SUs typically include metadata from email
attachments, markups in web text, irregular series
of nouns, repetition of symbols for separating texts,
and plain text tables in clinical notes, among other
examples. All these non-SUs require additional
text cleaning for downstream tasks. Unless oth-
erwise specified, we do not differentiate between
sentence identification and sentence segmentation
in the following sections.

Formally, let T = [t0, t1, ..., tn−1] represent an
input sequence that consists of n tokens; Y =
[y0, y1, ..., yn−1] represent a sequence of BIO la-
bels. So the goal of sentence segmentation task is
to find a label sequence Y which satisfies:

• yi = B, when ti is the first token of a SU.
• yi = I , when ti is any token within a SU

except for the first token.
• yi = O, when ti is any token outside of a SU.
Pre-trained language models (PLM) (Edunov

et al., 2019) have shown great improvements
in NLP tasks, encompassing text classification,
named entity recognition, or question answering,
among others. Here, we use BERT (Devlin et al.,
2019) in a sequence labelling configuration, where
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Algorithm 1 Sliding window algorithm for sen-
tence segmentation.

1: function SEGMENT_TEXT(T , l)
2: S ← [], wi ← 0
3: repeat
4: Y ← [], ei ← None, bi+1 ← None
5: while not_found(ei, bi+1) do
6: Tw ← T [wi : wi + l]
7: Yw ← Sequence_Labeller(Tw)
8: Concatenate Yw to Y
9: bi ← find_start_index(Y,B, 0)

10: bi+1 ← find_start_index(Y,B, 1)
11: ei ← find_end_index(Y, I, bi+1)
12: wi ← wi + l

13: wi ← bi+1

14: Append (bi, ei) to S
15: until wi ≥ len(T )
16: return S

we feed a list of input tokens T to BERT, followed
by a Softmax classification layer to predict the con-
ditional probability of P (Y |T ).

3.1 Sliding window algorithm

Because of the quadratic computational cost along
with the sequence length of the self-attention in
transformer architecture (Vaswani et al., 2017), and
the pre-training configuration of BERT-style PLMs,
BERT models can only take input sequences with
up to 512 tokens. Although the development of
sparse attention mechanisms in transformer net-
works has improved the capability of PLMs for
long sequence text (Beltagy et al., 2020), it is still
challenging to take an entire clinical note as one
input sequence. To segment long sequence text
using BERT models, we propose a sliding window
algorithm to process the input text, and then repeti-
tively tag the text within a smaller sliding window
(shown in Figure 1).

Let l be the maximal sequence length of any
PLMs, and Tw be a sliding window of l tokens
from the text input. The main idea of our algorithm
is to tag each token within a sliding window, and
then slide the text window based on the predicted
sentence boundary. Specifically, for each sliding
window, we find the start index of the first sentence
bi by locating the first B label in Y (line 9 of algo-
rithm 1), the start index of the second sentence bi+1

by locating the second B label in Y (line 10), and
the end index of the first sentence ei by locating the
last I label preceding bi+1 in Y (line 11). We then

BNeuro:E<\n>
* <\n>
BMental status: Sedated.E_BNo response to verbal
stimuli.E_BGrimaces<\n>
to noxious.E_BNo speech output.E_BNot following
commands.E<\n>
<\n>
BCranial Nerves:E<\n>
BI.: Not testedE<\n>
BII.: Pupils equally round and minimally reactive to light, 3
to<\n>
2 mm bilaterally.E_BBlinks to threat on right.E_BUnable to
appreciate<\n>
fundiE<\n>
BIII, IV, VI: Assessment of oculocephlic limited by neck<\n>
stiffness.E<\n>
BV, VII: Obscurred by ETT.E<\n>
BVIII: Unable to assess.E<\n>
BIX, X: +Gag.E<\n>
B[**Doctor First Name 81**]: Unable to assess.E<\n>
BXII: ETT.E<\n>

Figure 2: Sentence boundary annotation from a small
portion of a discharge summary note. We use B and E to
mark the beginning and end of a sentence, respectively;
“_” to mark an empty space between sentences; “<\n>”
to mark a newline character from the original note.

slide the input window to the start of the second
sentence bi+1. If there is no second sentence from
the current sliding window (line 5), we slide the
window by l tokens (line 12), and predict the labels
for the new sliding window. We then concatenate
the labels of multiple text windows to find the sec-
ond sentence. During the training, since we already
know all the sentence boundary indices beforehand,
we generate the training instance by directly mov-
ing the sliding window along each sentence, where
each text window always starts with the first token
of a sentence, and has a length of l tokens.

4 Datasets

4.1 MIMIC-III dataset annotation

To the best of our knowledge, there is no man-
ually annotated sentence segmentation dataset in
clinical domain. Zhang et al. (2021a) created a
silver-standard treebank from clinical notes in the
MIMIC-III using the default CoreNLP tokenizer
(Manning et al., 2014), and later train and evaluate
the Stanza (Qi et al., 2020) on such treebank for
syntactic analysis. However, their treebank dataset
was not reviewed by domain experts, and the eval-
uation on their treebank basically reflects how well
other sentence segmentation approaches master the
segmentation rules in Stanford CoreNLP library.
There are also other clinical datasets (Uzuner et al.,
2007, 2011, 2012; Sun et al., 2013) containing
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sentence boundary information, where the clini-
cal notes have already been pre-processed with
each sentence placed on a separate line. How-
ever, this modified structure does not reflect the
format of real-world clinical notes. To address this
gap, we collected a subset of clinical notes from
the MIMIC-III corpus (Johnson et al., 2016), and
manually annotated sentence boundaries without
changing the original structure of clinical notes.

MIMIC-III contains de-identified clinical notes
from 38,597 distinct patients admitted to a Beth Is-
rael Deaconess Medical Center between 2001 and
2012. It covers 15 note types including discharge
summary, physician note, radiology report, social
work, among others. We randomly sampled 6 notes
for each note type for annotation, yielding 90 notes
in total. We stratified the notes into training, devel-
opment, and test sets (57/15/18), respectively.

Clinical text presents unique challenges for syn-
tactic annotation due to the irregular usage of punc-
tuation, incomplete or fragmented sentences, and
a blend of structured and narrative text formats, as
illustrated in Figure 2. Guidelines designed for syn-
tactic annotation in texts following typical struc-
tural and writing conventions might not be suit-
able for detecting sentence boundaries within the
clinical domain. To mitigate these challenges, we
developed a detailed annotation guideline and sum-
marized what constitutes a sentence in the clinical
note genre (more details in appendix A.1):

• Grammatically linked words written in an un-
interrupted sequence that follow the conven-
tional rules of a sentence in English, with or
without an appropriate EPM.

• A text fragment that conveys a complete
thought, e.g., a section header, or each item
in a form or bulleted list, such as "Lab Test",
"Results", or "Diagnosis", among many oth-
ers.

One major challenge in our annotation is to distin-
guish a table from a list in clinical notes. Table
text typically contains column headers, row labels,
and texts from individual cells. We can not sim-
ply separate table text into multiple sentences by
rows or cells because interpreting each cell requires
an understanding of the original tabular structure,
which is not typically included (and usually cannot
be included due to technical limitations) in a data
export from electronic health record systems such
as EPIC. Thus, we assign O labels to the entire ta-
ble text and leave parsing table text into sentences

for future work.
Two annotators independently annotated each

note, with the lead annotator being an expert in
annotating clinical notes. At the first iteration, the
annotators independently annotated the entire 90
notes, and notes without complete agreement were
discussed until resolution during the second itera-
tion. During the first iteration (on 15 notes), it took
an average of 5.7 minutes to annotate each note.
Before resolution, the inter-annotator agreement
was 0.89 F1 (Hripcsak and Rothschild, 2005) on
sentence boundary annotation which is considered
moderate to strong agreement (McHugh, 2012).

4.2 Other datasets
To check whether our proposed approach is data-
agnostic, we extensively evaluated our approach
on other standard corpora from different domains
and genres, including 1) biomedical domain with
clinical notes (i2b2-2010), and abstracts of biomed-
ical articles (Genia); and 2) the general domain,
including various sources of English texts (Brown
and WSJ) and web text (EWT). We summarize
the dataset statistics in Table 1. Specifically, we
examined whether the dataset format had any mod-
ifications during pre-processing or remained in its
original form. For the general domain corpora, they
assume each document is a disjoint union of sen-
tences (no document information and no O tokens).
However, since WSJ and EWT provide the origi-
nal documents where each sentence belongs, we
processed their annotations, and mapped each sen-
tence into its original document (Original row in
Table 1). We also analyzed statistics related to dif-
ferent sentence structures, such as sentences ending
with EPMs, alphanumeric characters, or PMs other
than EPMs (OPM). These sentence characteristics
contribute to the complexity faced by different sen-
tence segmentation approaches.
i2b2-2010 The i2b2-2010 corpus (Uzuner et al.,
2011) consists of 426 labeled clinical notes
(43,940 sentences). The corpus was released in
2010 i2b2 shared task focused on identifying con-
cepts, assertions, and relations in discharge sum-
maries and progress reports. This corpus had
already been pre-processed, with each sentence
placed on a separate line for each note. This pre-
processing step simplifies both the original i2b2
shared task and the sentence segmentation task,
as original clinical texts typically contain multiple
newline characters within a sentence and multiple
sentences within a single line. For our experi-
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Biomedical Domain General Domain

MIMIC-III i2b2-2010 Genia EWT Brown WSJ

Documents 57/15/18 120/50/256 1,399/400/200 540/318/316 350/50/100 1,876/55/381
Original Y N Y Y N Y
Sentence 4,142 43,940 16,479 16,621 57,340 49,208
Sentence-EPM 39.0% 52.0% 99.8% 77.3% 91.6% 92.4%
Sentence-Alphanum 44.4% 23.8% 0.0% 14.9% 2.0% 0.9%
Sentence-OPM 16.6% 24.2% 0.2% 8.1% 6.4% 6.7%
Sentence-Sep-Nl 70.2% 99.0% 0.0% 22.3% 0.0% 86.3%

Table 1: Dataset statistics. Original indicates that a dataset has its original format (Y=Yes). Sentence-EPM indicates
the percentage of sentences ending with a EPM. Sentence-Alphanum indicates the percentage of sentences ending
with an alphanumeric character. Sentence-OPM indicates the percentage of sentences ending with a PM other than
an EPM. Sentence-Sep-Nl indicates the percentage of sentences separated by at least one newline character.

ments, we maintain the same train/dev/test splits
as in the 2010 i2b2 challenge.

Genia The Genia corpus (Kim et al., 2003) is a col-
lection of 1,999 MEDLINE abstracts with 16,479
sentences related to transcription factors in human
blood cells. These abstracts are unstructured text,
and meticulously edited to include complete sen-
tences. We use the split in Griffis et al. (2016) and
randomly sample 400 and 200 documents for the
development and test sets, respectively.

EWT The English Web Treebank (Silveira et al.,
2014) comprises 1174 samples of web text
sourced from five distinct genres: blog posts,
newsgroup threads, emails, product reviews and
answers from question-answer websites. Simi-
lar to the clinical corpus, EWT contains incom-
plete and fragmented sentences, but in general
domain English language. We use the standard
train/dev/test splits.

Brown The Brown corpus (Francis and Kucera,
1964) contains 500 samples of running text of
edited American-English prose. Each sample be-
gins at the beginning of a sentence but not nec-
essarily of a paragraph or other larger division,
and it ends at the first sentence ending after 2000
words. The text is drawn from a variety of sources
such as books, newspapers, magazines, and tran-
scripts of spoken language. Thus, this corpus
have much formal sentence units. In our experi-
ments, we load the corpus from the NLTK library
(Bird and Loper, 2004), where sentences from
each document are separated by empty spaces.
We randomly sample 10% and 20% files for the
development and test sets, respectively.

WSJ The WSJ corpus (Paul and Baker, 1992)
contains 2312 samples of running text primarily
sourced from the Wall Street Journal newspaper,
covering a wide range of topics related to business,

finance, economics, and current affairs. We pre-
process this corpus to keep the original format of
each running text based on their raw text file. We
follow the configuration in Bird and Loper (2004)
to keep section 24 for validation, and sections
03-06 for test.
A major difference between these datasets is

their sentence structure. For clinical notes, MIMIC-
III and i2b2-2010 have only around 39% and 52%
of sentences end with EPMs (Sentence-EPM), re-
spectively, compared against around 90% of sen-
tences with EPMs in Brown and WSJ, and 99% of
sentences in Genia. For approaches that purely rely
on EPMs for sentence segmentation, they could
only detect up to 52% of sentences for clinical
notes, while 90% for general domain texts. This in-
dicates the limitation of purely using EPM informa-
tion for sentence segmentation. Clinical notes and
web texts (EWT) have more sentences ending with
alphanumeric characters (Sentence-Alphanum) or
non-sentence ending PMs (Sentence-OPM) than
the general domain texts or biomedical articles;
they also often use newline characters to separate
sentence. This indicates the importance of under-
standing text contents and text formats for sentence
segmentation, especially for clinical notes and web
texts.

5 Experiments

5.1 Comparisons with related approaches

We compared our proposed approach against
seven off-the-shelf sentence segmentation systems:
NLTK (Bird and Loper, 2004), CoreNLP (Man-
ning et al., 2014), cTAKES (Savova et al., 2010),
Syntok1, spaCy2, Stanza (Qi et al., 2020), Trankit

1https://github.com/fnl/syntok
2https://spacy.io/
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Approach MIMIC-III MIMIC-IIIp i2b2-2010 Genia EWT Brown WSJ Avg. Rank

NLTK 39.14 70.84 39.59 97.31 66.48 64.75 81.57 6.83
CoreNLP 39.08 70.75 42.94 98.47 66.59 84.64 93.14 5.67
cTAKES 21.66 26.81 92.99 70.35 32.64 69.50 76.65 7.50
Syntok 37.81 70.67 45.51 96.93 66.65 82.18 90.79 6.50
Spacy 16.74 47.87 23.69 98.92 60.86 88.22 16.00 6.83
Stanza 40.00 72.20 53.59 97.04 89.31 86.43 93.78 4.50
Trankit 51.87 60.20 58.68 97.18 91.00 88.01 97.18 3.50

Our Segmenter-Data 87.86 88.34 97.89 99.82 92.42 98.60 93.43 1.67
Our Segmenter-Domain 85.41 87.03 97.71 99.91 91.10 98.39 93.55 2.00

Table 2: Comparison of our proposed approach against off-the-shelf sentence segmenters. MIMIC-IIIp is an
alternative evaluation on MIMIC-III dataset, where we post-processed the segmented outputs from all the off-the-
shelf tools, and removed non-sentential tokens for a fair comparison. The last column Avg. Rank shows the average
rank of each segmentation system across the datasets. We excluded the MIMIC-IIIp column when computing Avg.
Rank, as it is not the real-world setting. The system with the best average rank is highlighted in grey; the best F1
scores on each dataset are bolded.

(Nguyen et al., 2021). We selected these seg-
menters because they are state-of-the-art and easy-
to-run standard NLP tools, and therefore widely
used "as is" by the community when processing
text data. We provide a detailed description of each
tool in appendix A.2.

5.2 Experiment details

As our MIMIC-III dataset contains non-sentential
tokens (tagged as O) such as table text, for a fair
comparison between these tools and our approach
on the MIMIC-III dataset, we created an alterna-
tive evaluation, MIMIC-IIIp (shown in table 2).
Specifically, we post-process the segmented out-
put from off-the-shelf tools with six rules that take
into account the text structures, such as removing
multiple empty spaces or newline characters from
the sentence boundary if they are at the end of a
sentence. We also remove non-sentential tokens
before segmentation during evaluation.

For clinical notes (MIMIC-III and i2b2-2010),
and biomedical articles (Genia), we chose PubMed-
BERT (Gu et al., 2021) for our sequence label-
ing classifier. PubMed-BERT is a domain-specific
language model pre-trained on biomedical text
from scratch; it has achieved state-of-the-art perfor-
mances on multiple biomedical NLP tasks. While
for the general domain corpus (EWT, Brown, and
WSJ), we chose RoBERTa-base (Liu et al., 2019).
One limitation of BERT-style PLMs is that their
tokenizers remove newline characters from input,
which makes it challenging to segment text when
newline characters are the only sentence separators.
To mitigate this issue, we insert the newline char-
acter as a special token in the tokenizer to keep the

text format signal. Training details are illustrated
in appendix A.3.

We trained two types of models: 1) Segmenter-
Data, where we trained one model on each dataset
(six models in total); 2) Segmenter-Domain,
where we combined datasets from each domain,
and train one model on the biomedical domain, and
one model on the general domain.

5.3 Evaluation

We evaluated each system by comparing the pre-
dicted sentence spans against the gold annotations
in the test sets. We measured the performance us-
ing the standard F1 evaluation metric, consistent
with the evaluation adopted in the 2018 UD Shared
Task for sentence boundary detection (Zeman et al.,
2018). A sentence span is defined as a pair of off-
sets representing the first and last characters of a
sentence. A predicted sentence span is considered
accurate only if both offsets in the predicted pair
match those in the gold annotation pair.

6 Results

On the MIMIC-III dataset, table 2 shows that our
models outperform off-the-shelf tools by large mar-
gins (p=03), ranging from 35.99% to 71.12% of
F1. For a fair comparison, after post-processing the
segmented outputs from all the tools and remov-
ing non-sentential tokens, we improve the perfor-
mances of each tool by up to 32.86% of F1 (see
column MIMICp), but they are still lower than our
best model (Segmenter-Data) with 88.34% of F1.

Across five other standard benchmark datasets,
table 2 also shows that our two type of models,

3We used a paired bootstrap resampling significance test.
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Figure 3: Cross-domain evaluation of our two Segmenter-Domain models. The blue bars show the performance of
the segmenter trained on a combination of three biomedical corpora, while the red bars represent the performance of
the segmenter trained on a combination of three general domain corpora.

Segmenter-Data and Segmenter-Domain, consis-
tently achieve the best F1 on four datasets (except
the WSJ dataset), for an average rank of 1.6 and 2,
respectively. Trankit achieves the best performance
on the WSJ dataset, with an average rank of 3.5.
Compared against Segmenter-Data models that are
trained on each individual datasets, Segmenter-
Domain models that are trained on the combination
of datasets from each domain, achieves nearly iden-
tical performances. This suggests that instead of
maintaining six separate models, we can effectively
use just two models for the segmentation task.

On another clinical dataset – i2b2-2010, all tools
except cTAKES achieve less than 58.68% of F1;
while on a well-formed dataset – Genia, all tools
except cTAKES achieve more than 96.93% of F1.
Along with the evaluation on MIMIC-III dataset,
we find that tools developed on the general domain
texts struggle with clinical texts; however, they
still achieve great performances on biomedical arti-
cles. This indicates that sentence segmentation is
influenced not only by domain-specific language,
such as terminology and abbreviations, but also
by sentence structure and text form. Surprisingly,
comparing the performances of cTAKES on i2b2-
2010 and MIMIC-III, we see a big performance
drop. This is probably because the training data
used in cTAKES is more similar to the i2b2-2010
corpus.

Following the rankings of our models, only
Trankit and Stanza achieve competitive perfor-
mances on all three general domain datasets, with
results exceeding 89.31% on EWT, 86.43% on
Brown, and 93.78% on WSJ. Both CoreNLP and
Syntok achieve slightly worse on Brown and WSJ,
while much worse performances on EWT (around

Approach EPM Alphanum Nl

CoreNLP 75.78 0.97 45.67
Syntok 76.51 1.25 46.55
Stanza 82.63 9.73 53.22
Trankit 87.49 30.31 63.08

Segmenter-Domain 97.73 95.93 98.00

Table 3: Comparison of our Segmenter-Domain models
against top 4 off-the-shelf-tools on different forms of
sentences: Sentence-EPM, Sentence-Alphanum, and
Sentence-Sep-Nl. These sentences are from the test sets
of MIMIC-III, i2b2-2010, EWT, and WSJ

66%). This is likely because both CoreNLP and
Syntok fail to account for characteristics of web lan-
guage, such as fragmented text and the absence of
EPMs. Besides cTAKES, which is designed specifi-
cally for the clinical domain, both NLTK and Spacy
achieve the worst performance on one of the three
general domain datasets. We analyzed the sentence
segmentation experiments with Spacy on the WSJ
corpus, and found that newline characters caused
many segmentation errors. After removing newline
characters from the documents, we achieved an F1
score of nearly 96%.

7 Discussion

From the evaluation of off-the-shelf tools, we can
see inconsistent performances on different datasets.
This is expected because of language variation, sen-
tence structures, and text form. To check whether
such a phenomenon also exists in our approach,
we conducted a cross-domain evaluation for our
Segmenter-Domain models, i.e., evaluating mod-
els trained on biomedical domain datasets on the
general domain datasets, and vice versa. Figure 3
shows similar findings as other tools: except on Ge-
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nia and WSJ, there are around 27% of F1 drop on
biomedical datasets, and around 20% of F1 drop
on general domain datasets. We also performed
cross-dataset evaluation (models that are trained on
one dataset and then evaluated on other datasets)
for Segmenter-Data models, but the decline in per-
formance was even more pronounced. We posit
that Segmenter-Domain models hold better appli-
cability in real-world scenarios due to their ability
to generalize across multiple datasets.

To understand how each tool and our approach
work on different text form, we compute the recall
of top 4 off-the-shelf tools (based on their average
rank in table 2) and our domain models on differ-
ent forms of sentences (see table 1). We combine
texts from test sets of multiple corpora including
MIMIC-III, i2b2-2010, EWT, and WSJ to balance
the amount of sentences in each subset. Table 3
shows the performances on each sentence subset.
Firstly, sentences ending with alphanumerics are
the most challenging for off-the-shelf tools, while
our models successfully detect more than 95% of
them. Although most tools particularly target on
sentence ending with PMs, but they still miss 10%
to 25% of such sentences. Lastly, as a notable fea-
ture for sentence segmentation task, we can see
newline characters are not effectively utilized in
off-the-shelf tools.

8 Conclusion

In conclusion, our proposed sentence segmentation
approach addresses the challenges posed by real-
world, ungrammatical, and fragmented text used
in the daily, often harried and hectic hospital en-
vironment when typing clinical notes. Utilizing a
sequence labeling classifier with a dynamic sliding
window, our approach effectively segments long
text sequences on the fly without requiring pre-
splitting or relying on PMs. Additionally, we con-
tribute a new sentence segmentation dataset derived
from the MIMIC-III corpus, providing a valuable
resource for future research in this domain. The
evaluation on our annotated clinical notes, along
with extensive testing on five additional datasets,
demonstrated the generalizability and effectiveness
of our approach over seven commonly used tools.

9 Limitations and future work

Similar to other sentence segmentation approaches
using BERT-style PLMs (Nguyen et al., 2021; Uda-
gawa et al., 2023), our method faces the limitation

of high computational cost. The primary reason
for this is the self-attention mechanism in BERT
models, which causes the computational cost to in-
crease quadratically with the input sequence length.
Additionally, the inference time scales linearly with
the number of times we slide the input window over
the sequence. To address these challenges, future
work could explore more efficient PLMs. Potential
alternatives include ALBERT (Lan et al., 2019),
which reduces model size and improves efficiency
through parameter-sharing techniques; and Distil-
BERT (Sanh et al., 2020), which is a smaller, faster,
and lighter version of BERT achieved through
knowledge distillation.
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A Appendix

A.1 Comprehensive guidelines for annotating
sentences in clinical notes

The guidelines for annotating sentences within sec-
tion headers, text forms, text lists, and text tables
in clinical notes are as follows.

A.1.1 Section header
Section headers may be in all capital letters and
may be followed by a colon or hyphen. If a header
is followed by a colon or hyphen and is immedi-
ately followed by text that directly relates to the
header, both the header and its corresponding text
should be considered part of the same sentence.
These elements may span across separate lines but
should remain within the same sentence annotation.
However, if a header followed by a colon or hy-
phen is succeeded by a different structure, such as
a form, the header itself should be annotated as a
separate sentence.

A.1.2 Text form
Text forms should appear within a sentence that in-
cludes only the label and its response (if provided).
These forms can be identified as phrases that are
not entirely capitalized and are always immediately
followed by a colon. Both the label and its cor-
responding response should be part of the same
sentence. If there is no response and another form
begins immediately after the colon or on a new
line, the label and colon should form a separate
sentence.

When there is no clear indication of the end of a
label/response (such as a period, new line, or semi-
colon), annotators should extend the sentence until
the next distinct idea, fragment, or text structure. A
label without a response may resemble an uncap-
italized section header; however, both structures
should be annotated similarly.

Nested forms can occur if the response to a label
includes a list separated by commas or semicolons.
In such cases, only the outer label and its direct
response should be considered part of the annotated
sentence, encompassing all nested forms within it.
Forms separated by different characters, such as
new lines, should not be treated as nested.

A.1.3 Text list
Numbered or bulleted lists should be annotated so
that each list item, including its number or bullet,
is treated as a separate sentence. List items may
appear on a single line or be separated by newline

characters. In cases where a list item’s number or
bullet is on one line and its text on the next, both
should be included in the same sentence annota-
tion. If a list item contains multiple sentences, the
bullet or number should be associated with the first
sentence, while subsequent sentences are annotated
normally.

Bullets can consist of various symbols such as
‘-’, ‘#’, or ‘*’. Some lists, like those detailing drugs
or tests performed, may not be explicitly bulleted
or numbered. However, when annotating, these
should be treated similarly to standard bulleted or
numbered lists, with each item in the list annotated
as a separate sentence.

A.1.4 Text table
Text formatted in a table typically cannot be seg-
mented into individual sentences. Therefore, the
entire contents of the table should be labeled as
Non-SUs. If there is a section header that marks
the beginning of the table, the header should also
be included in the Non-SU annotation.

A.2 Off-the-shelf NLP tools
NLTK The Natural Language Toolkit contains the

Punkt sentence tokenizer (Kiss and Strunk, 2006)
for sentence segmentation – an unsupervised sys-
tem that uses frequency of occurrences of input
features such as casing, punctuation, and length,
to identify whether a period is from an abbrevia-
tion or a sentence ending PM. Punkt was trained
on the WSJ corpus.

CoreNLP The Stanford CoreNLP toolkit uses a
rule-based splitter: it first tokenizes the entire doc-
ument into tokens, and then identifies whether a
sentence-ending PM serves as sentence bound-
aries. The rules of the system were developed
using WSJ, GENIA, and other general domain
English text. We evaluated the same system on all
our datasets.

cTAKES The Apache cTAKES, a toolkit for ana-
lyzing electronic medical record clinical free-text,
contains a sentence segmentation component that
extends the OpenNLP’s supervised ME sentence
detector tool. It predicts whether a period, ques-
tion mark, or exclamation mark ends a sentence.
This model was trained on three corpora: Penn
Treebank, Genia, and a corpus of clinical notes
sampled from Mayo Clinic EMR.

Syntok The syntok package provides rule-based
modules for tokenization and sentence segmenta-
tion. Similar to CoreNLP, the sentence segmen-
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tation module takes a token stream from the to-
kenizer as input, and split the token stream into
sentences by checking whether a token is a sen-
tence terminal marker.

spaCy The current version of spaCy library4 fea-
tures transformer-based models for sentence seg-
mentation, where it uses a sequence labeller to
identify the first token of each sentence. In our
experiments, we evaluated on the EWT, Brown,
and WSJ, the default labeller of the pipeline, a
RoBERTa-based model trained on blogs, news
and comments. We evaluated on the MIMIC-III,
i2b2-2010, and Genia corpora the labeller of the
biomedical pipeline, a scibert-base model trained
on biomedical text.

Stanza Stanza combines tokenization and sen-
tence segmentation from raw text into a single
module. It provides trained neural network mod-
els to perform tagging tasks over character se-
quences, where the models predict whether a
given character is the end of a token, end of a
sentence, or end of a multi-word token. Similar to
spaCy, we evaluated three different Stanza mod-
els on our corpora: on EWT, Brown, and WSJ,
the default English model trained on the English
portion of the Universal Dependencies v2.5 tree-
banks; on Genia, the default biomedical model
trained on the Genia treebank; on MIMIC-III and
i2b2-2010, the default clinical model trained on
EWT and a silver-standard corpus collected from
the MIMIC-III database.

Trankit Trankit is a light-weight transformer-
based toolkit for multilingual NLP. It provides
a trainable pipeline that jointly perform tokeniza-
tion and sentence segmentation over word-piece
based input, where the model predict whether
a wordpiece is the end of a single-word token,
end of a sentence, or end of a multi-word token.
Trankit utilizes the state-of-the-art multilingual
pretrained transformer XLM-Robert (Conneau
et al., 2020), and is further trained on 90 Uni-
versal Dependencies treebanks. We evaluated the
multilingual model on all our datasets.

A.3 Training details

Unless specifically noted otherwise, we kept the
default hyper-parameters as in huggingface’s py-
torch implementation across all datasets. For all the
datasets, we kept the same hyper-parameters: learn-
ing rate = 3e-5, sequence length = 512, the batch

4spaCy v3.6

size = 32, epoch size = 10. We selected the best
models based on the performances on the develop-
ment set in a single run. We trained our models on
one A100 GPU.
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