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Abstract
Compositional languages leverage rules that
derive meaning from combinations of simpler
constituents. This property is considered to
be the hallmark of human language as it en-
ables the ability to express novel concepts and
ease of learning. As such, numerous studies in
the emergent communication field explore the
prerequisite conditions for emergence of com-
positionality. Most of these studies set out one-
to-one communication environment wherein a
speaker interacts with a single listener during
a single round of communication game. How-
ever, real-world communications often involve
multiple listeners; their interests may vary and
they may even need to coordinate among them-
selves to be successful at a given task. This
work investigates the effects of one-to-many
communication environment on emergent lan-
guages where a single speaker broadcasts its
message to multiple listeners to cooperatively
solve a task. We observe that simply broadcast-
ing the speaker’s message to multiple listeners
does not induce more compositional languages.
We then find and analyze two axes of environ-
mental pressures that facilitate emergence of
compositionality: listeners of different interests
and coordination among listeners.

1 Introduction

The field of emergent communication studies the
core environmental factors in language emergence
and the characteristics of emergent languages in re-
lation to those of humans. The recent developments
in artificial neural networks have spurred research
on the field utilizing communication simulations of
neural agents (Lazaridou and Baroni, 2020). This
has served as a crucial testbed for studying evo-
lution of language (Briscoe, 2002), which often
lacks concrete physical trace. The field has also
demonstrated promising application possibilities in
numerous domains leveraging language’s desirable
properties (Mu et al., 2023; Yao et al., 2022; Xu
et al., 2022).

Compositionality (Janssen and Partee, 1997) is
one of the most prominent features of human lan-
guages. Compositional languages can express com-
plex meaning with combinations of simpler at-
tributes leveraging systematic rule structures. This
enables the ability to express novel concepts by
combining familiar attributes. Compositionality is
also attributed to enhancing languages’ learnabil-
ity (Ren et al., 2020; Davidson, 1965) and gives
rise to robustness to noisy communication channel
(Kuciński et al., 2021).

Determining the prerequisite environmental pres-
sures for emergence of compositionality has been
extensively studied in the field. These factors in-
clude language’s learnability (Ren et al., 2020;
Chaabouni et al., 2020; Smith et al., 2003; Li
and Bowling, 2019), agents’ capacity (Resnick
et al., 2020), reliability of communication channel
(Kuciński et al., 2021), task difficulty (Chaabouni
et al., 2022; Choi et al., 2018; Mu and Goodman,
2021; Bouchacourt and Baroni, 2018; Lazaridou
et al., 2017), and communication channel capacity
(Lazaridou et al., 2018; Chaabouni et al., 2020).
Recently, populations of agents have been investi-
gated as a driving force for emergence of compo-
sitionality (Rita et al., 2022a; Michel et al., 2023)
following prior sociolinguistic findings that larger
population sizes tend to derive more structured lan-
guages (Raviv et al., 2019).

Most of these studies take one-to-one communi-
cation regime where only a single speaker-listener
pair interacts with each other during an instance of
game play. Even when there are multiple listeners
in the system, a speaker’s message is only sent to
a single listener (Chaabouni et al., 2022; Michel
et al., 2023; Rita et al., 2022a; Kim and Oh, 2021;
Tieleman et al., 2019). Consequently, they fail to
model the effects of one-to-many communication
in emergent languages.

This work investigates the effects of one-to-
many communication regime on the compositional-
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ity of emergent languages. In real-world communi-
cations, a single message often concerns multiple
parties: an advertisement of a product, a sergeant’s
command to a squad, etc. In these scenarios, there
are more than one interested entity for a given mes-
sage. This environment opens two interesting as-
pects of communication, and we find that these
aspects each introduce a new environmental pres-
sure that facilitates emergence of compositionality.

First, the listeners may not share the same inter-
ests. In the case of the advertisement of a product,
some of the viewers of the advertisement may only
be interested in certain characteristics of the prod-
uct such as colors and sizes, while others may only
care about the price and brand name. While it is
still the case that the advertisement must contain all
of the relevant information for the product, we ar-
gue that it introduces a new pressure that forces the
message to be easier to understand for listeners that
are only interested in certain parts of the attributes.
We hypothesize that these listeners would prefer
messages that are easily interpretable, without the
need to understand other details corresponding to
attributes that they are not concerned with.

Second, listeners may need to coordinate among
themselves to be successful at the task at hand. In
the case of the sergeant’s command to a squad, co-
ordination among the squad may be required for
them to have successfully carried out the mission.
Hence, a misinterpretation of the command from
a single listener may result in failure for the entire
squad. We argue that the pressure that the language
be simultaneously understood by multiple listeners
forces the language to be more compositional. Intu-
itively, it is plausible that one listener may develop
a compositionally inferior language, but it is less
likely to be shared by other listeners in the group
due to its inferior compositionality.

Extensive experiments confirm the hypotheses
that agents of different interests and coordination
among agents are crucial environmental pressures
for emergence of compositionality. We find that
simply broadcasting a speaker’s message to mul-
tiple listeners does not enhance compositionality
of induced languages. We observe emergence of
compositionality when listeners of different inter-
ests are introduced or coordination pressures are
injected to the environment. We then analyze what
kinds of compositionality structures are derived
from these pressures with various compositionality
measures.

2 Related work

Emergent communication and its applications
Human languages exhibit a number of universal
characteristics (Greenberg, 1961). The emergent
communication field strives to close the gap be-
tween the communication protocols emerged from
artificial agents and the natural languages with re-
gard to these language universals. The studied char-
acteristics include Zipf’s law of abbreviation (Zipf,
1949; Chaabouni et al., 2019; Ueda and Washio,
2021; Ueda and Taniguchi, 2024), word bound-
aries (Harris, 1955; Ueda et al., 2023; Ueda and
Taniguchi, 2024), trade-off between word-order
and case-marking (Comrie, 1989; Blake, 2001;
Lian et al., 2023) and compositionality (Chaabouni
et al., 2020; Rita et al., 2022b). On a more practical
note, the language-like properties of induced pro-
tocols facilitate numerous applications. Mu et al.
(2023) leverage emergent languages’ superior func-
tional expressivity for embodied control task. Yao
et al. (2022) demonstrate the effectiveness of emer-
gent languages in low-resource language modeling,
and similar results are reported in machine transla-
tion (Li et al., 2020; Downey et al., 2023). Xu et al.
(2022) show emergent languages’ competitive as
a representation learning method. Techniques for
inducing compositionality in emergent languages
(Zheng et al., 2024; Li and Bowling, 2019; Ren
et al., 2020) find applications in improving generic
neural networks’ abilities (Ren et al., 2023; Zheng
et al., 2024; Noukhovitch et al., 2023).

Environmental pressures for compositionality
Prerequisite conditions for emergence of compo-
sitionality are extensively studied. Kuciński et al.
(2021) theoretically prove that compositional lan-
guages are more robust to message corruption and
empirically verify that noisy channels facilitate
compositionality. Several studies explore how ca-
pacity of communication channel (Lazaridou et al.,
2018; Chaabouni et al., 2020) or capacity of neural
agents (Resnick et al., 2020) affect compositional-
ity. Cheng et al. (2023) observe that compositional
languages are easier to imitate and suggest that
imitability may also be a driving force for compo-
sitionality. Chaabouni et al. (2022) emphasize the
task difficulty in terms of scale. Iterated learning
(Smith et al., 2003; Li and Bowling, 2019; Ren
et al., 2020) framework investigates the effects
of language transmission across generations and
finds that languages’ learnability for newly created
agents provides crucial pressure for compositional-
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ity.

Community structures in emergent communica-
tion Our study on the one-to-many communica-
tion regime is closely related to a line of works that
investigates the effects of community structures
on emergent languages. Harding Graesser et al.
(2019) explore how independently formed com-
munities’ languages evolve when these communi-
ties start to interact with each other. Kim and Oh
(2021) investigate the effects of different communi-
cation graphs on the languages’ properties. Several
studies observe that naively increasing the popula-
tion size does not yield more structured languages
(Chaabouni et al., 2022; Kim and Oh, 2021). Rita
et al. (2022a) argue that different learning speeds in
populations facilitate language structures. Michel
et al. (2023) observe that limiting the communica-
tion graph with partitioning induces compositional-
ity and generalization to unseen partners. However,
all of these studies focus on one-to-one game play;
hence, does not model the effects of one-to-many
communication. Chaabouni et al. (2022) consider
a simple voting mechanism of listeners only at in-
ference time. Li and Bowling (2019) utilize naive
message broadcasting when studying the effects
of population size in iterated learning, but do not
observe substantial improvements. Yu et al. (2022)
employ message broadcasting in their work, but
their main focus lies on adversarial aspects of com-
munication, and they do not analyze composition-
ality of induced languages.

3 One-to-many communication game

We analyze emergent languages of agents play-
ing a variant of Lewis reconstruction game (Lewis,
1969). The process of the game is as follows.
Speaker πθ observes an object x ∈ XK and pro-
duces a message m ∼ πθ( · | x) describing the
object. An object contains K attributes and each
attribute can take one of |X | possible values. A
message m ∈ WT is a sequence of symbols of
fixed length T and each symbol belongs to vocab-
ulary W . The game contains a set of N listeners
{πϕi

}Ni=1. Each listener πϕi
is concerned with Ki

attributes, where 1 ≤ Ki ≤ K. Let xi ∈ XKi

denote the Ki attributes’ values the listener πϕi
is

concerned with in object x, e.g., if Ki = K, then
xi = x.

For each round of game play, the set of listeners
are randomly partitioned into M groups {Gj}Mj=1

such that ∪M
j=1Gj = {πϕi

}Ni=1 and ∩M
j=1Gj = ∅.

Upon receiving message m, listener πϕi
outputs

its prediction for the object as x̂i ∼ πϕi
( · | m).

Let G(i) denote the indices of listeners in the
group that listener πϕi

belongs to. Listener πϕi

receives a reward of 1 if all of the listeners’ predic-
tions in its group are correct, i.e., RLi(x) = 1 if
∀j ∈ G(i), x̂j = xj and 0 otherwise. The speaker
receives the average reward of all listeners as a
reward, which is equal to the fraction of success-
ful listeners: RS(x) =

1
N

∑N
i=1RLi(x). See Ap-

pendix A for graphical illustrations.

4 Experimental setup

Dataset We represent each attribute’s value with
one-hot encoding. The number of attributes, K, is
set to 4, and the number of values, |X |, is set to 10.
We set aside 10% of all attribute-value combina-
tions as test set and use the rest as train set.

Speaker architecture One-hot encoded object
x passes through a linear layer and initializes a
single-layer GRU (Cho et al., 2014) of hidden size
500. It recurrently processes the input in total of
T = 5 time steps. In each time step, the output is
fed to a linear layer and then goes through Softmax
activation to produce a vocabulary distribution of
dimension |W| = 10.

Listener architecture A listener πϕi
is a single-

layer GRU of hidden size 500. The listener se-
quentially processes the speaker’s message m, the
last output of which is then passed to Ki linear
layers corresponding to the number of attributes
the listener is interested in. They each go through
Softmax activation and produce a distribution of
size |X | corresponding to the number of possible
values an attribute can take.

Optimization We maximize each of the listen-
ers’ and speaker’s expected reward with the REIN-
FORCE algorithm (Williams, 1992). The expected
reward for listener πϕi

is written as JLi(ϕi) =
Ex∼pEm∼πθ( · |x)RLi(x) and that of the speaker
is written as JS(θ) = Ex∼pEm∼πθ( · |x)RS(x),
where p denotes the uniform distribution over
XK . We also utilize entropy regularization for the
speaker to facilitate exploration and cross-entropy
loss from listeners for stable training. We apply
early stopping if the train set accuracy reaches 99%.
Full description of the setup is in Appendix B.

Reporting We report average scores over 10 ran-
dom seeds unless stated otherwise. Throughout
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the paper, we use error bars to indicate 95% confi-
dence interval and ± to denote standard deviation.
Bold and underline indicate the best and second
best results.

5 Evaluation metrics

Topographic similarity (TopSim) Let Dobj :
XK×XK → R+ and Dmsg : WT×WT → R+ be
distance measures over the objects and messages,
respectively. Topographic similarity (Brighton and
Kirby, 2006) is Spearman’s rank correlation of Dobj
and Dmsg over the joint uniform object, message
distribution. High TopSim scores indicate that sim-
ilar objects are mapped to similar messages. For
Dobj and Dmsg, we use cosine distance and Leven-
shtein distance (Levenshtein, 1965), respectively.

Positional disentanglement (PosDis) Let mi

denote the symbol in the i-th position of mes-
sage m. Let ai1 denote the attribute that has the
highest mutual information with mi, i.e., ai1 =
argmaxa I(mi; a). Similarly, let ai2 denote the at-
tribute that has the second highest mutual informa-
tion with mi, i.e., ai2 = argmaxa̸=ai1

I(mi; a). Po-
sitional disentanglement (Chaabouni et al., 2020) is
equal to 1

T

∑T
i=1

I(mi;a
i
1)−I(mi;a

i
2)

H(mi)
, where H(mi)

denotes the entropy of the i-th position in messages.
This measures the degree to which a single position
is responsible for conveying information about an
attribute.

Bag-of-symbols disentanglement (BosDis) Let
ni denote the number of occurrences of the i-th
symbol from vocabulary W in a message. Other
notations follow from positional disentanglement.
Bag-of-symbols disentanglement (Chaabouni et al.,
2020) is equal to 1

|W|
∑|W|

i=1
I(ni;a

i
1)−I(ni;a

i
2)

H(ni)
. This

measures how much a symbol univocally refers to
an attribute. We provide a detailed description of
PosDis and BosDis in Appendix E.

Compositional generalization Compositional
generalization is the average task success rate on
unseen attribute combinations. This is calculated
using the test set without regard to the group.

6 Experiments

6.1 Does naive one-to-many communication
enhance compositionality of languages?

Setup In naive one-to-many communication
regime, all listeners share the same interests, and
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Figure 1: Language properties under varying num-
bers of listeners in naive one-to-many communication
regime.

there is no coordination required among the lis-
teners. More specifically, the number of attributes
each listener is interested in is identical to the num-
ber of attributes the speaker observes (Ki = K),
and each group contains only a single listener
(|Gj | = 1).

Naive message broadcasting does not improve
compositionality Figure 1 compares languages
from naive one-to-many communication regime
with varying numbers of listeners (N ) against the
single-listener one-to-one communication regime
(N = 1). While some of the cases exhibit im-
provements, none of the differences are statistically
significant (two-tailed t-test with p = 0.05). The
results suggest that simply broadcasting a message
does not introduce a meaningful pressure on lan-
guage emergence.

6.2 How do listeners of different interests
affect language properties?

Setup We devise three kinds of listener forma-
tions for this experiment. The partial-interest for-
mation contains

(
K
Ki

)
listeners that are only con-

cerned with Ki attributes. Each of
(
K
Ki

)
listeners’

interests are distinct attribute combinations. The
mixed-interest formation is the same as the partial-
interest formation except that it contains one ad-
ditional listener that is concerned with all of the
K attributes. The full-interest formation contains
1 +

(
K
Ki

)
listeners all of which are interested in all

of the K attributes. As there is no coordination
required, each group Gi contains a single listener.
The test set accuracy is calculated only with the
listeners that are interested in all of the attributes.
Appendix G contains experiments on a larger setup.

Readability pressure from different interests fa-
cilitates more structured languages In Figure
2a, we observe a trend that the more the listeners
can disregard other parts of a message that they are
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Figure 2: Comparison of language properties in listeners of different interests regime. † and ‡ denote statistically
significant differences for the partial- and mixed-interest formations compared to the full-interest formation (one-
tailed t-test with p < 0.05).

not concerned with, the more compositional the
languages tend to be. The formations with smaller
number of interested attributes (Ki) exhibit higher
TopSim, and the partial-interest formation’s lan-
guages tend to exhibit higher TopSim compared
to the mixed-interest formation. Languages from
the two formations are more compositional than
those of a similarly sized full-interest formation. In
Figure 2d, we observe a similar trend for composi-
tional generalization ability. We hypothesize that
listeners of different interests prefer more struc-
tured languages, so that they can more easily infer
the attributes of interest from a message without
needing to understand other details that are not re-
lated to their interests. We confirm that the results
do not stem from the relative easiness of the task
in Appendix F.

Listeners of different interests prefer symbol-
wise structures rather than position We an-
alyze what kinds of language structures are pro-
moted by listeners of different interests. One pos-
sible structure is to denote each attribute within a
certain position of a message. However, we do not
observe such positional structures in regard to the
number of interested attributes from Figure 2b. An-
other possible strategy is to associate the number
of occurrences of a certain symbol to an attribute.
In Figure 2c, we observe a clear trend that listeners
of different interests prefer this kind of association
when listeners are interested in smaller subsets of
the whole attributes.

Languages from listeners of different interests
are easier to learn We test if listeners of different
interests indeed facilitate more structured, hence
easier to learn languages. We take languages from
the partial-interest formation with the number of
interested attributes set to one (Ki = 1) and the
full-interest formation of equal size. We randomly
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Figure 3: Learnability comparison in different interests
regime. Shades indicate one standard deviation.

initialize new listeners of two different interests;
one is only interested in one randomly sampled
attribute (Ki = 1), and the other is interested in
all of the four attributes (Ki = 4). We train these
listeners by letting them play the game with the
frozen speakers of respective languages. In Figure
3, we observe that in both cases the languages from
the partial-interest formation are easier to learn.

6.3 How does coordination pressure affect
language properties?

Setup We construct 50 listeners of the same in-
terests (Ki = K). For each round of game play,
the listeners are randomly split into equally sized
groups. We explore the effects of coordination pres-
sure in terms of group size (|Gj |). A larger group
size forces more listeners to be simultaneously suc-
cessful at understanding the speaker’s message.
The test accuracy is calculated by taking average of
all listeners’ success rates regardless of the group.

Coordination pressure amplifies preference for
compositionality In Figure 4a, we observe in-
crease in TopSim as sufficient degrees of coordina-
tion pressure are introduced to the game. Increases
corresponding to group sizes greater than 2 are sta-
tistically significant. TopSim increases with the
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Figure 4: Comparison of language properties under varying degrees of coordination pressure. † denotes statistically
significant difference compared to group size of 1 (one-tailed t-test with p < 0.05, averaged over 20 random seeds).

group size up to 5, then tends to decrease at larger
group sizes. A more steady increase is observed
in test set accuracy in Figure 4d. We hypothesize
that the coordination pressure amplifies the degree
of preference for the language’s compositionality
from the listeners, as it requires the listeners to
have a simultaneously shared understanding of a
message.

Coordination pressure induces position-wise
structures rather than symbols In Figure 4b,
we observe increase in PosDis when sufficient de-
grees of coordination pressure are injected to the
game, suggesting that coordination pressures in-
duce more position-wise structures. A reverse trend
is observed in BosDis in Figure 4c. The emer-
gent languages under coordinate pressure tend to
rely less on the number of occurrences of a sym-
bol when determining an attribute’s value. The
results indicate that to effectively express more
complicated concepts (larger number of attributes)
position-wise structures are preferred.

6.4 Coordination pressure in relation to
iterated learning framework

Iterated learning Iterated learning framework
(Smith et al., 2003) simulates languages’ transmis-
sion across generations. Li and Bowling (2019)
find that periodically resetting listener’s parameters
forces the speaker to develop languages that are
easier to teach and more compositional. In their ex-
periments with populations of listeners, the authors
hypothesize that resetting one listener at a time in
a staggered manner instead of resetting them all at
once could yield more structured languages as the
population would contain more diverse listeners
with varying degrees of experience. However, they
observe that simultaneously resetting all of the lis-
teners at the same time yield more compositional
languages compared to the staggered reset regime

and suggest that improvements of iterated learn-
ing can be attributed to the abrupt changes induced
from simultaneous resets of listeners.

Setup We conduct a small-scale experiment with
two listeners to explore how coordination pressure
impacts languages in iterated learning. We consider
three different listener reset regimes. In simultane-
ous reset regime, we reset all listeners every 1,000
epochs. Staggered reset regime resets one listener
at epochs {500, 1500, 2500, . . .} and the other lis-
tener at epochs {1000, 2000, 3000, . . .}. No-reset
regime does not perform any listener resets. We
also consider a single-listener system under no-
reset and simultaneous reset regimes. We train the
agents for 10,000 epochs.

Coordination pressure enhances compositional-
ity in more realistic population dynamics In
Table 1, we compare the single-listener system to
the two-listener systems with and without coordina-
tion pressure (group size of 2 and 1, respectively).
Without coordination pressure, staggered reset pro-
duces less compositional languages compared to
the simultaneous reset regime. When coordination
pressure is introduced to the game, staggered reset
exhibits comparable compositionality to the simul-
taneous reset regime. Under coordination pressure,
a newly reset listener may affect the game perfor-
mance of another listener as they are required to
coordinate. We hypothesize that this introduces
abruptness to the system and that the language prop-
erties of the staggered reset regime are enhanced
by this added abruptness. The experimental results
suggest that coordination pressure is an important
dimension in iterated learning framework as it can
enhance the language structure in a more realistic
setup of population dynamics. It is often less likely
that the entire population is replaced at once than
that it is to undergo a gradual change, as is the case
in the staggered reset regime.

20799



Metric
Single Listener (N = 1) Without Coordination (N = 2) With Coordination (N = 2)

No-Reset Simultaneous No-Reset Simultaneous Staggered No-Reset Simultaneous Staggered

TopSim 25.97±3.0 33.36±3.6 25.77±3.0 34.62±3.4 29.52±3.1 27.60±4.0 34.79±6.2 34.25±5.0†

Generalization 61.82±8.5 84.44±6.2 61.13±9.4 81.74±6.6 69.77±9.0 69.08±15.3 85.08±10.6 84.25±8.6†

Table 1: Effects of coordination pressure on emergent languages in iterated learning environment. † indicates
statistically significant difference from the corresponding reset regime in the middle block (one-tailed t-test with
p < 0.05).
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Figure 5: Comparison of language properties in general
one-to-many communication regime.

6.5 Listeners of different interests under
coordination pressure

We explore how the readability pressure from listen-
ers of different interests and coordination pressure
interact with each other in language emergence.

Setup To observe the interaction in a more gran-
ular scale, we increase the number of attributes,
K, to 8. The number of possible values, |X |,
is in turn reduced to 2 to stabilize training. The
length of messages, T , is also reduced to 3. We
construct three kinds of listener formations. The
single-interest formation contains eight listeners
that are interested in each of the eight attributes
(Ki = 1). The mixed-interest formation is the
same as the single-interest formation but contains
one additional listener that is interested in all of
the attributes. The full-interest formation contains
nine listeners that are interested in all of the eight
attributes (Ki = K). We test how these listener
formations behave under varying degrees of coordi-
nation pressure expressed by group sizes of 1, 2, 4,
8. We note that the mixed-interest formation leaves
one single-listener group at group sizes greater than
1 as it contains one additional listener.

Readability and coordination pressures can
clash in different directions In Figure 5a, a
slight decreasing tendency in TopSim is observed in
the single- and mixed-interest formations as group
size is increased. This is in contrast to the case
of the full-interest formation where TopSim val-

ues exhibit an increasing tendency with increase
in the group size. We observe a similar trend in
Figure 5b for test set accuracy. These observations
suggest that coordination pressure can counteract
readability pressure induced from listeners of dif-
ferent interests regime. Results in §6.2 show that
the more the listeners can disregard other parts of
a message that they are not concerned with, which
is manifested in lower numbers of interested at-
tributes, the more compositional the languages tend
to be. We hypothesize that coordination pressure
may conflict with readability pressure as coordi-
nation among listeners forces larger numbers of
attributes to be predicted correctly at the same time.
From the speaker’s point of view, these listeners
act as though they are interested in a larger number
of attributes.

7 Experiments with raw images

We expand our study to more realistic scenarios
employing datasets that consist of raw pixel im-
ages.

7.1 Listeners of different interests with raw
pixel data

Experimental setup We explore the effects of
readability pressure introduced by listeners of
different interests in a more realistic setup with
3dshapes dataset (Kim and Mnih, 2018). The
dataset contains images of 3D shapes. Each image
is characterized by 6 attributes such as the object’s
color and shape. We sample 4 values from each of
these 6 attributes and perform the same experiment
as in §6.2. Full description of the experimental
setup is in Appendix C.

Results Overall, we observe similar trends to
those of the attribute-value dataset, suggesting that
the findings in §6.2 hold in more complex environ-
ments. In Figure 6a, we find that smaller numbers
of attributes of interest yield more compositional
languages, and Figure 6d shows that they exhibit
stronger generalization ability. We obtain more

20800



1†‡ 2†‡ 3†‡ 4†‡ 5‡20

30

40

50

# of Interested Att. (Ki)

To
po

gr
ap

hi
c

Si
m

ila
ri

ty Partial Mixed Full

(a)

1†‡ 2†‡ 3 4 5
0

5

10

15

20

# of Interested Att. (Ki)

Po
si

tio
na

lD
is

en
t. Partial Mixed Full

(b)

1†‡ 2†‡ 3‡ 4 5
0

10

20

30

# of Interested Att. (Ki)

B
ag

-o
f-

Sy
m

bo
ls

D
is

en
t.

Partial Mixed Full

(c)

1‡ 2‡ 3 4‡ 5
50

60

70

80

90

100

# of Interested Att. (Ki)

G
en

er
al

iz
at

io
n

Mixed Full

(d)

Figure 6: Comparison of language properties in listeners of different interests regime on 3dshapes dataset. † and ‡

denote statistically significant differences for the partial- and mixed-interest formations compared to the full-interest
formation (one-tailed t-test with p < 0.05).

pronounced effects in terms of symbol- or position-
wise structures of emergent languages. There is a
clear tendency that smaller number of interested
attributes produce languages that are less reliant on
positional structures of messages as can be seen
in Figure 6b. In Figure 6c, we also observe the
tendency to denote an attribute with number of
occurrences of a symbol in listeners of different
interests regime. We evaluate the degree of associ-
ation between values of attributes and symbols in
Appendix H.

7.2 Coordination pressure in large scale
image discrimination game

Discrimination game We explore the effects
of coordination pressure in a large-scale image
discrimination game with ImageNet dataset (Rus-
sakovsky et al., 2015). The rules of the game are
as follows. The speaker observes the target image
x and sends a message m containing descriptions
of the image to a set of listeners {πϕi

}Ni=1. A lis-
tener πϕi

is tasked to determine which one is the
target among its context Ci containing other images
and rewarded if all of the listeners in the group it
belongs to correctly predict the target.

Scramble resistance (ScrRes) Let m′ denote
a randomly permuted version of message m and
πϕi

(x | m, Ci) denote the probability assigned
to the target object x by listener πϕi

given mes-
sage m and context Ci. Scramble resistance
(Bernard and Mickus, 2023) is calculated as
min(πϕi

(x|m,Ci),πϕi
(x|m′,Ci))

πϕi
(x|m,Ci) . A high scramble re-

sistance score indicates that the language is less
affected by positional perturbations.

Experimental setup We use representations of
images processed by a ResNet-50 (He et al., 2016)
encoder pretrained on ImageNet with BYOL (Grill
et al., 2020) as in Chaabouni et al. (2022); Michel

Group Task Success Rate Compositionality
Size Test (OOD) Val (ID) TopSim ScrRes

1 86.92±0.5 93.03±3.3 20.59±1.4 35.23±2.3

2 88.06±1.0† 93.66±4.1 19.40±1.6 35.75±4.7

5 87.76±0.7† 93.46±3.7 20.38±1.8 35.46±3.7

10 89.69±0.3† 94.55±1.7† 21.68±2.3 30.55±1.6†

Table 2: Results on image discrimination game. † de-
notes statistically significant difference compared to
group size of 1 (one-tailed t-test with p < 0.05).

et al. (2023). The context size |Ci| is set to 100 for
all listeners. We use the train, validation, test splits
from Chaabouni et al. (2022). We set aside 10%
of the classes in the dataset as in-distribution (ID)
classes and the rest as out-of-distribution (OOD)
classes. We perform training and validation with
ID samples in each split and evaluation with the test
set containing only OOD samples. TopSim is cal-
culated with respect to the image’s representations
using cosine distance. We construct 10 listeners
and observe the effects of coordination pressure
under varying group sizes. Full description of the
experimental setup is in Appendix D.

Results We report the accuracies on each split as
well as compositionality measures in Table 2. We
observe that coordination pressure induces stronger
generalization ability in both OOD and ID samples.
Group size of 10 exhibits the highest generaliza-
tion ability. We do not observe a clear correlation
in TopSim and generalization ability. Prior works
(Chaabouni et al., 2022; Michel et al., 2023) also
report that TopSim does not correlate with gener-
alization ability and suggest that it may be an in-
adequate measure of compositionality for complex
data forms. A lower value of ScrRes at group size
of 10 indicates that coordination pressure also in-
duces more position-wise structures in languages in
more complex setups, but its effect at lower group
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sizes is not as clear.

8 Conclusion

This work investigates how one-to-many commu-
nication affects language emergence. We find that
one-to-many communication introduces two as-
pects of communication that facilitate emergence
of compositionality. First, listeners of different in-
terests exert readability pressure. This forces the
language to be more structured as listeners prefer
messages that do not require understanding of other
aspects unrelated to the attributes of interest. Sec-
ond, coordination among listeners forces languages
to take more structured forms as it makes languages
easier to be simultaneously understood by multiple
listeners. Additionally, we find that coordination
promotes emergence of compositionality in more
realistic population dynamics. We verify that our
findings hold in more complex environments with
experiments on raw image data. Our work sheds
light on the importance of one-to-many communi-
cation in the emergent communication field.

Limitations

Task complexity This work analyzes emergent
languages with basic attribute-values and image
datasets. While these datasets are widely employed
in the emergent communication community and
permit a detailed analysis of compositionality, they
lack the complexities of real-world environments.
Recent studies propose various tasks that require
more abstract reasoning (Guo et al., 2023; Zhou
et al., 2024; Mihai and Hare, 2021; Patel et al.,
2021). Future work may explore how our findings
apply in more complex task scenarios.

Compositionality measures Measuring compo-
sitionality of a language is a challenging task, and
existing metrics are known to measure only crude
forms of compositionality (Korbak et al., 2020).
This hinders scaling up task complexity as existing
measures may not be adequate for more complex
forms of compositionality (Chaabouni et al., 2022;
Michel et al., 2023). This also limits assessing
the implications and impacts of our work as exist-
ing metrics may fail to reflect more nuanced and
complex aspects of compositionality of human lan-
guages.

Complex communication structures This study
sets a basic one-to-many communication of a sin-
gle speaker and the speaker’s message is broadcast

to all listeners in the system. However, more com-
plex communication structures are possible. There
could be multiple speakers and a speaker’s mes-
sage may be relayed to only certain portions of
the listeners. The effects of population size (Rita
et al., 2022a; Michel et al., 2023) and more com-
plex communication graphs (Kim and Oh, 2021;
Harding Graesser et al., 2019; Michel et al., 2023)
could be further explored. On the coordination side,
instead of forming new groups for each game play,
longer listener group formation frequency could be
explored. We also note that the effects of skewed
interests of listeners are not explored in this work
as we simply utilized all combinations of interests.

Exploration of applications Our work does not
explore immediate application areas of the findings.
However, the emergent communication field has
demonstrated numerous application possibilities in
diverse domains. Some of these find applications in
improving foundation models (Noukhovitch et al.,
2023; Zheng et al., 2024). It may be an interest-
ing research direction to investigate our findings
in relation to alignment of large language mod-
els (Ouyang et al., 2022; Rafailov et al., 2023) as
human preferences can be decomposed into multi-
ple attributes (Lou et al., 2024), e.g., helpfulness,
politeness, etc. Our findings suggest that devis-
ing separate preference models, each concerning a
certain preference aspect, could be beneficial for
compositional generalization in terms of these pref-
erences. As for the coordination pressure, multiple
preference models of different value systems could
be explored for simultaneously satisfying a wide
range of users of varying cultural backgrounds.

Theoretical analysis Through extensive experi-
ments, we empirically verify that listeners of dif-
ferent interests and coordination among listeners
play crucial roles in emergence of compositional-
ity. However, more fine-grained analyses of the
process would enhance the understanding of these
factors and facilitate application possibilities. One
could theoretically analyze the processing efforts
required for listeners of different interests are in-
deed lower when the language is more composi-
tional, or theoretically validate that the chances of
any two listeners to stumble upon the same protocol
are higher when the language is compositional.

We provide further discussions on limitations in
Appendix I.
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A Graphical illustration of one-to-many
communication game

Figure 7 illustrates listeners of different interests in
one-to-many communication game. The speaker’s
message is broadcast to three listeners. These lis-
teners each have their own distinct interests. The
first listener is only interested in the color of the
object, while the second listener is only interested
in the shape of the object. The third listener is inter-
ested in both the color and the shape of the object.
The predictions of these listeners reflect their inter-
ests, hence exclusively pertain to the attributes of
interest.

Figure 8 illustrates coordination among four lis-
teners. Each of the four listeners are assigned to a
group of size 2. The speaker’s message is broadcast
to the listeners, and each listener predicts the ob-
ject’s attributes. Both listeners in the first group cor-
rectly predict the object’s attributes and the group
is considered to be successful at the task. One of
the listeners in the second group produces an incor-
rect prediction and this results in a failure of the
task for the entire group.

B Experimental details

We utilize EGG framework (Kharitonov et al.,
2021), which is available under MIT license.
Speaker’s symbol embedding size is 5 and listen-
ers’ symbol embedding size is 30. We use Adam
optimizer (Kingma and Ba, 2015) with learning
rate of 0.001. The batch size is set to 5120. We
utilize REINFORCE with baseline (Sutton et al.,
1999) where the baseline function is the average of
the past rewards for the corresponding speaker or
listener agent. We report compositionality metrics
from the full dataset as they exhibit high correla-
tion across splits, except for §6.5, where results
on test set are reported as weak correlation is ob-
served. We exclude a few runs that do not reach
train accuracy of 99% in experiments not involving
coordination pressure (§6.1, §6.2, §7.1). For experi-
ments on coordination pressure with attribute-value
datasets, training is performed for 5,000 epochs in
§6.3 and 30,000 epochs in §6.5. At inference time,

messages are constructed by selecting the symbol
that has been assigned the highest probability by
the speaker at each time step. Experiments on raw
pixel datasets follow the same setup unless other-
wise specified.

Cross-entropy loss The training objective con-
tains cross-entropy loss from listener to stabilize
training process. The cross-entropy loss for listener
πϕi

is written as − 1
Ki

∑Ki
k=1 log πϕi

(x
(k)
i | m),

where x
(k)
i refers to the k-th attribute in the ob-

ject of interest xi for the listener. For the speaker,
listeners’ average cross-entropy loss is added to the
reward after taking its negative. For the listeners,
each listener’s own cross-entropy loss is added to
the reward in a similar manner. In addition to that,
we directly backpropagate the cross-entropy loss
for each listener. Each cross-entropy loss term is
multiplied by a scaling hyperparameter λ. This loss
is coordination-agnostic in that it is not affected by
the group members’ success or failure. In exper-
iments that do not involve coordination pressure
(§6.1, §6.2, §7.1), the value is set to 1.0. For exper-
iments that involve coordination (§6.3, §6.5, §7.2),
a lower value of 0.01 is utilized to better observe
the effects of coordination pressure, except for iter-
ated learning experiments in §6.4, where the value
is set to 0.03 to offset the narrow training window
induced from the parameter resets.

Entropy regularization We add entropy regular-
ization term in the speaker’s symbol distribution to
promote exploration. The magnitude of the regular-
ization is controlled by a scaling hyperparameter γ,
which is multiplied to the entropy term. γ is set to
induce successful language emergence on the train
set of each dataset. For the experiments in §6.1,
§6.2, the value is set to 0.5. In the experiments
with 3dshapes dataset, the value is set to 1.0. In the
experiments that involve coordination (§6.3, §6.5,
§7.2), the value is set to 0.01. In experiments on
iterated learning, the value is set to 0.02.

C Experimental details on 3dshapes

We set the vocabulary size |W| to 6 and the length
of messages T to 6. The batch size is set to 5,120.
We stop training when the train accuracy reaches
99%. We run each experiment with 20 random
seeds and report the average. The dataset is avail-
able under Apache-2.0 license.

Dataset construction An image is characterized
by 6 attributes: object’s shape, object’s color, ob-
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Figure 7: Illustration of listeners of different interests in one-to-many communication game. Each listener is
interested in a different set of attributes and its predictions only pertain to the attributes of interest.

Figure 8: Illustration of coordination among listeners in one-to-many communication game. Listeners are split
into groups and each listener is rewarded if and only if all of the listeners in the same group correctly predict the
attributes.
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Figure 9: A sample of 3dshapes dataset.

ject’s size, color of the wall, color of the floor, and
viewing orientation. Figure 9 shows a sample of
the 3dshapes dataset. The number of values these
attributes can take range from 4 to 14. We take
4 values from each attribute (|X | = 4). For the
attribute that correspond to the scale of the object,
we choose values 0, 2, 4, 7 out of all the available
values which range from 0 to 7. For the viewing
orientation attribute, we choose values 0, 4, 9, 14
out of all the available values which range from 0
to 14. We construct each of the other attributes’ 4
values by random sampling.

Agent architecture The speaker processes the
image with a two-layer convolutional neural net-
work (CNN) (Schmidhuber, 2015) each of which
is accompanied by a max pooling layer. The out-
put then goes through a linear layer before being
processed by the single-layer GRU as described
in §4. This produces a message m. CNNs have
kernel size of 8, stride of 1, and filter size of 8. We
utilize same padding. Max pooling layer has kernel
size of 2 and stride of 2. The linear layer projects
activations of dimension 2,048 to 500. A listener
with the same architecture as in §4 processes the
message m and outputs its prediction for the values
of the image’s attributes.

D Experimental details on ImageNet

The speaker processes the target image’s represen-
tation of dimension 2,048 with a linear layer pro-
ducing activations of dimension 500. They are then
processed by the single-layer GRU as described in
§4. This produces message m containing descrip-
tions of the target image.

A listener πϕi
processes each of the images’ rep-

resentations in its context Ci with a linear layer
then computes similarity scores of them with the
message representation from the single-layer GRU
described in §4. The message representation is
computed from the last hidden state of the the
single-layer GRU after it is passed through a lin-

ear layer. The resulting message representation
has a dimension of 500. We use the dot product
as the similarity score function. These scores are
then passed to Softmax activation to produce a dis-
tribution over the context Ci. We construct each
listener’s context by randomly sampling images
without replacement.

The vocabulary size |W| and message length T
are both set to 10. The batch size is set to 2,048.
Training is performed for 2,000 epochs and eval-
uation is performed with the checkpoint that ex-
hibits the highest accuracy on the validation set.
We repeat each experiment with 10 different ran-
dom seeds and report the average. Scramble resis-
tance is calculated with respect to one randomly
selected listener. We report compositionality met-
rics from the test set. The image representations of
ImageNet dataset are available under Apache-2.0
license.

E Detailed description of PosDis and
BosDis

The entropy H(mi) in the description of PosDis
from §5 refers to the i-th position’s entropy in mes-
sages. Let P(mi = w) denote the probability that
i-th symbol of a message is equal to the symbol w.
Then,

H(mi) = −
∑

w∈W
P(mi = w) logP(mi = w)

where W denotes the vocabulary.
Similarly, let ni denote the number of occur-

rences of the i-th symbol in vocabulary W . The
entropy H(ni) in the description of BosDis from
§5 is written as

H(ni) = −
T∑

c=0

P(ni = c) logP(ni = c)

where T is the length of messages and P(ni = c)
denotes the probability that the i-th symbol occurs
c times in a message.

For both entropies, the probabilities are calcu-
lated by computing each symbol’s frequency in
messages.

F Effects of relative model capacity in
listeners of different interests regime

We validate that higher compositionality exhibited
from listeners of different interests regime do not

20808



500 750 1,0
00

1,2
50

1,5
00

1,7
50

2,0
00

10

20

30

40

Hidden Size

To
po

gr
ap

hi
c

Si
m

ila
ri

ty
Mixed Full

(a)

500 750 1,0
00

1,2
50

1,5
00

1,7
50

2,0
00

40

60

80

100

Hidden Size

G
en

er
al

iz
at

io
n

Mixed Full

(b)

Figure 10: Language properties under varying values
of listener hidden sizes in the full-interest formation in
comparison with the mixed-interest formation of a fixed
listener capacity.

stem from the relative difficulty of the task as the
number of attributes that need to be determined is
lower in that regime. To that end, we increase the
hidden size of listeners in the full-interest formation
from 500 to larger values and compare them with
the mixed-interest formation with Ki = 1. The
experimental setup follows from §4. The hidden
size of listeners in the mixed-interest formation is
fixed to 500. Both formations contain the same
number of listeners, N = 5.

In Figure 10a, we observe that the values of Top-
Sim stay almost the same as the listeners’ capacity
is increased in the full-interest formation. This sug-
gests that the relative capacity of the listeners in
listeners of different interests regime is not the core
contributing factor for the emergence of compo-
sitionality. Similarly, in Figure 10b, we observe
a decrease in generalization ability as the capac-
ity of the listeners in the full-interest formation is
increased. These observations confirm that it is
not the relative easiness of the task that induced
more compositional languages in the listeners of
different interests regime.

G Experiments on larger configurations

We test whether our findings hold on a larger num-
ber of attributes as well as vocabulary size. We
double the number of attributes from 4 to 8 and
the vocabulary size from 10 to 20. To keep the
numbers in a manageable scale, the number of val-
ues an attribute can take is decreased from 10 to
5. This setup represents about a 39-fold increase
in terms of the number of possible attribute-value
combinations and a 32-fold increase in terms of the
number of possible messages.

We conduct the same experiments as in §6.2
to see how listeners of different interests affect

language properties in this increased setup. We
construct three kinds of listener formations. The
single-interest formation contains eight listeners
that are interested in each of the eight attributes
(Ki = 1). The mixed-interest formation is the
same as the single-interest formation but contains
one additional listener that is interested in all of
the eight attributes. The full-interest formation
contains nine listeners that are interested in all of
the eight attributes (Ki = K).

Figure 11 presents the results. The induced lan-
guages’ compositionality in terms of TopSim is
higher when messages are more frequently read
by listeners that are interested in smaller parts
of the whole attributes. They also exhibit more
symbol-wise structures rather than position-wise
structures. Interestingly, the generalization ability
of the mixed-interest formation is lower. We hy-
pothesize this could be due to the larger ratio of
single-interest listeners to the full-interest listener
(8:1).

H Evaluation with concept-best-matching

Let C be the set of possible concepts, where a con-
cept represents a value manifestation in an attribute,
so that |C| = |X | ·K. A weighted graph P is con-
structed between the set of symbols, W , and the
set of concepts, C, characterized by edges E , where
an edge ei,j ∈ E represents connection from the
i-th concept to the j-th symbol with a weight that
is equal to the number of joint occurrences of the
concept, symbol pair. An optimal pairing of sym-
bols and concepts is sought, such that no two edges
connect the same symbols or concepts, while max-
imizing the sum of edge weights. Concept-best-
matching (Carmeli et al., 2024) metric is defined
as a normalized sum of the edge weights of such
an optimal bipartite graph induced from the full
weighted graph P . High concept-best-matching
scores indicate unique association of a symbol to a
concept.

We conduct evaluation with concept-best-
matching metric on 3dshapes dataset and present
the results in Table 3. The experimental setup fol-
lows from §7.1. Association of a concept with a
symbol gets pronounced when listeners are inter-
ested in smaller subsets of the whole attributes,
as can be seen by the larger values in concept-
best-match score when the number of interested
attributes is low. This trend is similar to the bag-of-
symbols disentanglement results in Figure 6c.
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Figure 11: Effects of listeners of different interests in a larger configuration. † denotes statistically significant
difference from the full-interest formation (one-tailed t-test with p < 0.05).

Listener Formation
Number of Interested Attributes

1 2 3 4 5

Partial-Interest 47.46±2.3† 45.20±1.6† 43.86±2.1 44.57±2.6 44.84±2.6

Full-Interest 44.86±3.1 43.88±2.2 45.01±2.0 43.88±2.2 44.86±3.1

Table 3: Evaluation results on concept-best-matching. † denotes statistically significant difference compared to the
full-interest formation (one-tailed t-test with p < 0.05).

I Further discussion on limitations

Causes and implications of different composi-
tionality structures In §6.2, we observe that lis-
teners of different interests induce more symbol-
wise structures in languages rather than position-
wise structures, and we find a reverse trend when
coordination pressure is exerted to the environment.
We hypothesize that the effects may stem from the
fact that an object cannot be described with the
number of occurrences of a symbol when the num-
ber of attributes is large. This forces the language
to describe an object with multiple symbols; hence
the order in which the symbols appear may have
a relatively higher chance of playing an important
role. However, when a listener is only interested
in a small subset of the whole attributes, these sub-
sets may be sufficiently described by the number
of occurrences of a symbol. Combined with the
fact that GRUs do not utilize explicit positional
encodings, may give rise to the preference of de-
scribing an attribute with occurrences of a specific
symbol. A further investigation into the underlying
mechanisms that cause these phenomena and their
implications still remains to be conducted. Future
work may also explore how these kinds of compo-
sitionality structures affect performance in down-
stream tasks from the perspective of representation
learning.

Relationship to other environmental pressures
As we discuss in §2, there are various environmen-
tal factors involved in emergence of composition-
ality, e.g., noisy channel (Kuciński et al., 2021).

The relationship between these and the pressures
investigated in this work could be further explored.
For instance, we explore coordination pressure in
relation to iterated learning in §6.4.

Effects of one-to-many communication on other
language universals Our work focuses on one-
to-many communication’s effects on composition-
ality. However, there are other language universals
that are actively studied in the emergent communi-
cation field as discussed in §2. Future work may
explore how one-to-many communication affects
other language universals.

Availability of attribute labels In the experi-
ments with listeners of different interests, the lis-
teners’ interests are derived from labeled attributes.
However, a dataset in question may lack such labels.
Future work may investigate the ways in which in-
terests can be formed in an unsupervised manner.
One could devise information bottlenecks so that
each listener would have a specialized role in the
cooperative task.

J Reproducibility

For training, we utilized NVIDIA A100 80GB,
NVIDIA RTX A6000 Ada, NVIDIA RTX A6000,
NVIDIA RTX A4000, NVIDIA GeForce RTX
4090 and NVIDIA GeForce RTX 3090. The most
demanding task in terms of compute required less
than 24GB of VRAM and took about 2 or 3 hours
to complete per random seed. The number of pa-
rameters of an agent is far less than 1M in all ex-
periments.
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We make our code publicly available at:
https://github.com/hy18284/onetomany.
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