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Abstract

In recent years, large language models (LLMs)
have achieved remarkable success in the field of
natural language generation. Compared to pre-
vious small-scale models, they are capable of
generating fluent output based on the provided
prefix or prompt. However, one critical chal-
lenge — the hallucination problem — remains
to be resolved. Generally, the community refers
to the undetected hallucination scenario where
the LLMs generate text unrelated to the input
text or facts. In this study, we intend to model
the distributional distance between the regular
conditional output and the unconditional out-
put, which is generated without a given input
text. Based upon Taylor Expansion for this
distance at the output probability space, our ap-
proach manages to leverage the embedding and
first-order gradient information. The resulting
approach is plug-and-play that can be easily
adapted to any autoregressive LLM. On the
hallucination benchmarks HADES and other
datasets, our approach achieves state-of-the-art
performance.

1 Introduction

In recent years, large language models, such as
GPT-4 (OpenAI, 2023), LLaMa (Touvron et al.,
2023) and PaLM (Chowdhery et al., 2022), have
achieved tremendous successes. LLMs generate
fluent output based on given texts and prompts.
They have been applied in various real-world sce-
narios, such as dialogue systems and information
retrieval systems (Mialon et al., 2023). How-
ever, despite their powerful generative capabilities,
LLMs still suffer from the problem of hallucina-
tions: Given an input, the model generates text
unrelated to the source or even contradictory (Ji
et al., 2023). Even the most advanced language
model currently available, GPT-4, has been shown
to experience hallucinations (Bang et al., 2023).
These hallucination issues severely compromise
the fairness and safety of LLMs, hindering their

large-scale deployment.
Indeed, to solve this issue, the task of hallu-

cination detection, aiming to determine whether
hallucination occurs, has attracted more and more
attention from the community. The existing meth-
ods for hallucination detection primarily focus on
detecting at the token level in the output (Zhang
et al., 2023). Some methods utilize uncertainty
metrics at the token level to determine hallucina-
tion (Yuan et al., 2021; Fu et al., 2023), while some
other methods design prompts to query the model
multiple times to assess the hallucination (Mündler
et al., 2023). Despite the prior efforts, we be-
lieve that white-box hallucination detection is
not much studied. The white-box detection setting
can both benefit the open-sourced LLM community
— such as LLaMA or Mistral (Jiang et al., 2023)
— and prompt the LLM owners to provide extra
services upon the current forms of API. Contrary
to the black-box setting, a white-box setup may
utilize the full token probability matrices and the
embedding layers in the transformer. In this work,
we dive into this white-box setup and prove that
this internal information may significantly benefit
detecting hallucinations.

However, given the current parameter scale of
the LLM, devising a white-box detector is non-
trivial. This means we need to systematically deter-
mine what portion of the information in the LLM is
discriminative to raise the hallucination case. The
motivation for this study stems from a rather simple
and straightforward idea, as follows. We translate
the verbal definition of hallucination to be more for-
mal. Take the QA task as an example, where Q and
A represent the question and the model’s answer,
respectively. P (A|Q) and P (A) represent the prob-
ability distributions of the model outputting A un-
der conditional Q and unconditional scenarios. The
hallucination detection task can be considered as a
task to determine how much the model answer A
depends on the question Q, that is, modelling the
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Figure 1: Two query forms of our method. Conditional query jointly inputs the question-answer text, while
unconditional query only inputs the answer text. We use zero padding in the unconditional query to align the
dimension.

difference between P (A) and P (A|Q) as denoted
as D(P (A), P (A|Q)).

Indeed, one can directly use metrics like KL
divergence, cross-entropy or others to calculate
the difference between P (A) and P (A|Q). How-
ever, these measurements would only offer a single-
dimensional output as the indicator, which we
found quite imprecise towards the detection of hal-
lucination. We argue that simply using the probabil-
ity space for this problem overlooks the complex-
ity of the hallucination issue due to the massive
amount of information wasted and dropped. In
our approach, by contrast, we first conduct Tay-
lor series of D(P (A), P (A|Q)). We further show
that the subitems from the resulting series can be
modelled by the embeddings in the transformer
combined sophistically with the first-order gradient
information. This result paves the way to effec-
tively detect hallucinations.

Figure 1 provides a visual example of our ap-
proach, named EGH (Embedding and Gradient-
based Hallucination detection method). More
specifically, inspired by Filippova (2020), we con-
struct a dual form, (i)-the conditional tuple jointing
the source-output text versus (ii)-its unconditional
counterpart with only the output text. After feed-
ing both forms through the LLM, we yield the
D(P (A), P (A|Q)) mentioned above. We cache
the corresponding necessary information, includ-
ing embedding and gradient, alongside the two
feedforward passes. On top of them, we train a
simple classifier to discriminate if the hallucination
occurs.

Our method is a model-agnostic solution for
white-box hallucination detection, which relies on
model internal signals (embedding and gradient in-
formation) to perform. In order to make our method
solid, we managed to experiment with multiple
LLMs as base models. On several common hallu-

cination detection datasets, including HaluEval (Li
et al., 2023), SelfCheckGPT (Manakul et al., 2023),
and HADES (Liu et al., 2022), EGH establishes a
set of state-of-the-art performances.

2 Related Work

2.1 Hallucination in LLMs

In recent years, large language models, such as
GPT-4 (OpenAI, 2023), LLaMa (Touvron et al.,
2023), and PaLM (Chowdhery et al., 2022) have
become the mainstream research direction in the
field of natural language processing. According
to the scaling law (Kaplan et al., 2020), as the
number of parameters increases, the capabilities of
these large language models (LLMs) also improve,
allowing them to generate fluent output based on
existing text. However, due to the uncertainty in the
outputs, large language models (LLMs) also face
hallucination issues, which significantly hinder the
development of LLMs.

Ji et al. (2023) define hallucination as natural
language generation models generating unfaithful
or nonsensical text. In a more granular classifi-
cation, we can categorize hallucinations into two
types: intrinsic hallucination and extrinsic halluci-
nation. Intrinsic hallucination refers to generated
text that contradicts the input, while extrinsic hallu-
cination refers to outputs that cannot be derived
from the input, meaning unrelated to the input.
While Zhang et al. (2023) categorize hallucina-
tions into three types: Input-conflicting hallucina-
tion, where LLMs generate content that deviates
from the source input provided by users; Context-
conflicting hallucination, where LLMs generate
content that conflicts with previously generated in-
formation by itself; Fact-conflicting hallucination,
where LLMs generate content that is not faithful to
established world knowledge.

Recent work indicates that hallucinations in
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large language models are inevitable (Kalai and
Vempala, 2023; Kang et al., 2024; Xu et al., 2024).
Therefore, we need to detect hallucinations during
the model’s output process.

2.2 Hallucination Detect Method

One simple detection method utilizes numerical
metrics such as ROUGE (Lin, 2004) and PAR-
ENT (Dhingra et al., 2019). Some researchers
have also explored using models to detect hallu-
cinations. FActScore (Min et al., 2023) retrieves
external knowledge based on the question, and af-
ter obtaining this external knowledge, it utilizes a
language model (such as LLaMa-65b) to assess the
consistency between the answer and the external
knowledge in order to determine the hallucination.
Filippova (2020) proposed a language model-based
detection method where they trained a conditional
LM and an unconditional LM separately, using
their respective losses to measure the presence of
hallucination.

Besides, some methods allow LLMs to au-
tonomously assess hallucinations by designing
prompts to query the model multiple times.
Mündler et al. (2023) design dedicated prompts
to query an evaluator LLM (e.g.ChatGPT) whether
the subjective LLM contradicts itself under the
same context and report classification metrics, in-
cluding precision, recall, and F1 score.

Existing hallucination detection methods mostly
perform hallucination detection at the token level.
However, when the model loses much of the in-
ternal information while outputting tokens, it un-
doubtedly significantly increases the difficulty of
hallucination detection. Therefore, this paper de-
signs a white-box hallucination detection method
that utilizes the internal information of the model
to detect hallucinations.

3 Method

3.1 Preliminary

To simplify representation, in this section, we take
a question-answering task as an example for illus-
tration. The input source text is the question in the
QA task, denoted as Q = {Q1, Q2, · · · , Qm}, and
the text generated by the model is the answer to
the question, denoted as A = {A1, A2, · · · , An}.
Here, m and n represent the number of tokens
of Q and A, respectively. Our task is to classify
A and obtain its hallucination label yhal, where
yhal ∈ {0, 1}.

3.2 Overview
Our method is based on the assumption that dur-
ing the process of generating hallucinations, the
model tends to incorporate less information from
the source text, and the output is unrelated to the
source text. Therefore, the extent to which the
model accesses the source text can, to a certain
degree, represent the level of hallucination. For
a language model LLM , question Q, and output
text A, we feed Q and A into the model in two dif-
ferent forms,where [, ] represent the concatenation
operation:

• Concatenate Q and A together and feed into
the model. This input method simulates the
model’s output in the presence of conditions
Q.

• Only feed A into the model. This input
method corresponds to simulating the model’s
output without any conditions. To align with
the dimension in the first case, We adopt the
zero-padding method, which involves insert-
ing 0 of length m before A, where 0 =

{
m︷ ︸︸ ︷

0, 0, · · · , 0}. Since the zero-padding parts
are masked in the forward pass, this input
method is equivalent to directly inputting A.

After completing the input in the two afore-
mentioned forms, We have the following definition:

Definition (D[Q,A]). the difference in out-
put between the conditional input and the
unconditional input.

Consider the probability distributions of the an-
swer part in two input modes, denoted as P (A|Q)
and P (A|0), D[Q,A] can be represented as the dis-
tribution difference between P (A|Q) and P (A|0):

D([Q,A]) = Difference(P (A|Q), P (A|0)) (1)

where Difference() is the differentiable indicators
representing differences in probability distributions,
such as KL divergence, cross-entropy, and so on.
During the generation of hallucinated outputs, we
believe that the model receives less information
from Q, resulting in a smaller relationship between
the model’s output and Q. The gap D([Q,A]) is
smaller. Conversely, when the model outputs nor-
mally, it fully utilizes information from Q, leading
to a larger gap D([Q,A]). Therefore, D([Q,A])
can be the extent to which the model accesses the
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Figure 2: The algorithm schematic of the EGH. The step 1 part of the figure represents the extraction process of
feature E = E(A|Q)−E(A|0), while the step 2 part represents the extraction process of feature G = ∇D([0, A]).
Only the step 3 part (Hallucination Detector) in the figure undergoes parameter updates during the training process.

source text and then represents the degree of hallu-
cination further.

Since Difference() is differentiable by def-
inition, together with the language model it-
self being differentiable, D([Q,A]) is a differ-
entiable function. Consider the first-order Tay-
lor polynomial of D([Q,A]) at point [0, A] =

{
m︷ ︸︸ ︷

0, 0, · · · , 0, A1, A2, · · · , An}:

D([Q,A]) = D([0, A])

+ [∇D([0, A])]T ([Q,A]− [0, A])

+R1([Q,A]) (2)

It’s clear that D([0, A]) is a constant.
R1([Q,A]) is a term of higher order, such
as a second derivative, with a high computational
cost to model. Considering the high computational
cost and difficulty of R1, we ignore the use of
R1 in this article and only focus on whether
hallucination detection can be performed based on
the other terms. And the remaining two terms in
Equation 2, [Q,A] − [0, A] and ∇D([0, A]), can
be used as factors influecing D([0, A]). EGH aims
to identify which internal parts affect hallucination
generation rather than fully modelling the entirety
of D([0, A]). Therefore, we only extract features
to represent the two factors above. In the following
two sections, we demonstrate the features used to
represent both entities.

3.3 Embedding Information

For the factor [Q,A]− [0, A], as shown in step 1 of
Figure 2, it means the difference between [Q,A]
and [0, A]. When it comes to the token level, sub-
tracting two tokens has no practical significance.
Therefore, we consider using embedding layers
as an alternative. E(A|Q) means the embedding
under condition Q, while E(A|0) means the em-
bedding under condition 0 (unconditional). The
difference vectors of two embeddings can be used
as representations of [Q,A]− [0, A]. Let E(A|Q)
and E(A|0) be the embedding vectors correspond-
ing to the answer part in two input modes, we use
the differential embedding vector between E(A|Q)
and E(A|0) to represent this feature, denoted as
E = E(A|Q)− E(A|0).

3.4 Gradient Information

For the factor ∇D([0, A]), as shown in step 2 of
Figure 2, since we used the embedding layer above,
we calculate the gradient of its corresponding layer
as the representation. Consider the probability dis-
tributions of the answer part in two input modes,
D([Q,A]) can be expressed as the sum of KL di-
vergences corresponding to each token in the two
probability distributions:

D([Q,A]) =
n∑

i=1

DKL[P (Ai|Q)||P (Ai|0)] (3)

After computing the KL divergence, we perform
gradient backpropagation to obtain the gradients
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Algorithm 1 Algorithm of EGH
Input: The Question: Q = {Q1, Q2, · · · , Qm},
The Answer A = {A1, A2, · · · , An}, The Func-
tion eLLM() is to get the final embedding of the
LLM. The Function pLLM() is to get the Proba-
bility of the LLM’s outputs. The Function dKL()
means Calculate KL Divergence. The Weight Pa-
rameter λ.
Output: The hallucination label yhal ∈ {0, 1}.

1: [Q,A]← {Q1, Q2, · · · , Qm, A1, A2, · · · , An}

2: [0, A]← {
m︷ ︸︸ ︷

0, 0, · · · , 0, A1, A2, · · · , An}
3: P (A|Q)← pLLM([Q,A])
4: P (A|0)← pLLM([0, A])
5: D([Q,A])←∑n

i=1 dKL[P (Ai|Q)||P (Ai|0)]
6: G← ∇(D[0, A])
7: E(A|Q)← eLLM([Q,A])
8: E(A|0)← eLLM([0, A])
9: E ← E(A|Q)− E(A|0)

10: yhal ← f(λE + (1− λ)G)
11: return yhal

corresponding to the embedding layer, which is the
feature that represents the factor∇D([0, A]). We
denote it as G = ∇D([0, A])

3.5 Embedding and Gradient-based
Hallucination Detection Method

The overall algorithm is shown in Figure 2. Follow-
ing the input methods described in Section 3.2, we
input Q and A to the LLM in two different forms.
For feature E, we take the last hidden layer as the
embedding, extract them, and obtain the difference
vector E ∈ Rn×h, where h is the hidden size. For
feature G, we first calculate the Kullback-Leibler
divergence between the two output probability dis-
tributions and then perform gradient backpropaga-
tion to obtain G ∈ Rn×h. So far, our operations
have been solely focused on obtaining the two fea-
tures, and the parameters involved during this pro-
cess are frozen.

After extracting the aforementioned two features,
E and G, the label of hallucination, yhal ∈ {0, 1},
can be represented as:

yhal = f(αE + βG), (4)

where f() is a trainable function instantiated by a
simple MLP as the end-point hallucination detector.
α, β are hyper-parameters weighing E and G. To
simplify the representation, we introduce a variable

λ = α
α+β to rewrite the above formula into a more

standardized form:

yhal = f(λE + (1− λ)G) (5)

In the actual implementation process, after fus-
ing the E and G, we take the average pooling of
the outputs to obtain a representation vector Rh

for the whole answer text. Finally, we simply use
a three-layer MLP model as f to obtain the final
hallucination label, yhal ∈ {0, 1}. We use the train-
ing data to train the parameters of this part and
ultimately obtain the hallucination detector.

4 Experiment

4.1 Dataset
HaluEval (Li et al., 2023) HaluEval is one of the
benchmarks for hallucination detection. It consists
of 5000 general examples and 30000 task-specific
examples, covering three tasks: question answer-
ing, knowledge-grounded dialogue, and text sum-
marization. For general examples, the questions
come from the Alpaca (Taori et al., 2023) instruc-
tion fine-tuning dataset, where each data consists
of ChatGPT’s response and hallucination labels.
For task-specific examples, each data includes a
question, ChatGPT’s generated correct answer, and
a hallucinated answer.
SelfcheckGPT (Manakul et al., 2023) The dataset
contains 1908 sentences from 298 articles gener-
ated by GPT-3. Each sentence is labelled with one
of the three veracity labels: “Accurate”, “Minor
Inaccurate” and “Major Inaccurate”. In the experi-
ments, “Major Inaccurate” and “Minor Inaccurate”
sentences are labelled as hallucination class, while
sentences labelled as “Accurate” are considered
non-hallucination class.
HADES (Liu et al., 2022). HADES is a token-
level hallucination detection dataset consisting of
8,754 training and 1,000 validation examples. The
dataset annotates certain specific tokens in a sen-
tence to determine whether these labelled tokens
contain hallucinations.

4.2 Experiment Setup
Selection of LLM Ideally, EGH should detect
during the hallucination generation process, di-
rectly utilizing a model that generates hallucina-
tions. However, since we cannot reproduce the
generation process of these datasets, we opt to use
other language models to simulate the generation
process. This language model must be open source
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Method Model QA Dialogue Summary General

Baseline

GPT-3 49.71 50.42 51.03 77.47
text-davinci-002 59.56 61.23 47.77 48.23
text-davinci-003 49.65 68.37 48.10 87.05
ChatGPT 63.03 67.82 61.74 86.01

CoNLI (Lei et al., 2023)
GPT-3.5 85.00 - 64.10 -
GPT-4 86.20 - 72.50 -

KnowHalu (Zhang et al., 2024) GPT-3.5 80.70 - 68.50 -
SAPLMA (Azaria and Mitchell, 2023) LLaMa2-7B 95.31 73.59 93.68 79.23

EGH LLaMa2-7B 97.19 77.10 95.08 83.01
OPT-6.7B 96.26 74.96 92.23 81.46

Table 1: Results in HaluEval Benchmark. The baseline method utilizes prompts to query the model, prompting it
to determine whether the answer exhibits hallucinations. We reproduced the experiments in the baseline on our
partitioned test set. EGH has achieved state-of-the-art results in three task-specific tasks.

Method Setup PR-AUC

SelfCheckGPT

w/BERTScore 81.96
w/QA 84.26

w/Unigram(max) 85.63
Combination 87.33

Wang et al. (2023) trained on SelfCheckGPT 86.45

EGH trained on HaluEval 87.23
trained on SelfCheckGPT 89.82

Table 2: Results on the SelfCheckGPT dataset. We train
two models on two different datasets, 10% of the Self-
CheckGPT and HaluEval. The latter results demonstrate
that our method possesses a certain degree of general-
ization.

since we need to leverage white-box information.
We chose LLaMa-2-7B and OPT-6.7B as base lan-
guage models for the feature extraction step. For
the HADES dataset, to align the settings in the
baselines, we use BERT, RoBERTa and GPT-2 as
the base model, which are the same as baselines.
Training Process For the HaluEval dataset, due
to there being four tasks in HaluEval (for uniform
representation, we also consider the general exam-
ples as a task), we trained a separate model for
each task. For a specific task, We randomly select
10% of the data as the training set to train the hal-
lucination detector and use the remaining 90% of
the data as the testing set for testing. For the Self-
CheckGPT dataset, we conducted separate tests
with and without training: the untrained test uti-
lized a model trained on HaluEval for evaluation,
while the trained test involved training on 10% of
the data from SelfCheckGPT and testing on the re-
maining 90% of the data. For the HADES dataset,

we use the training data of HADES to obtain the
hallucination detector model and test it on the vali-
dation set.
Baselines For the HaluEval dataset, we adopt the
LLM test methods from the original paper as the
baselines. The baseline experiments utilized the
following prompts: You should try your best to de-
termine if the answer contains non-factual or hallu-
cinated information according to the above hallu-
cination types. The answer you give MUST be “Yes”
or “No”. We evaluate four state-of-the-art LLMs as
baselines: GPT-3(davinci), text-davinci-002, text-
davinci-003 and ChatGPT. We reproduced the ex-
periments in the baseline on our partitioned test set
(as described above) as the final baseline result. We
also compare the results in Zhang et al. (2024) and
Lei et al. (2023). Additionally, since our method
is a white-box method, we used the method from
Azaria and Mitchell (2023) as a white-box baseline
for comparison with our approach. For the Self-
CheckGPT Dataset, we use the results from the
original paper as the baseline. We also compare
the results in Wang et al. (2023). For the HADES
dataset, since the HADES dataset does not have a
publicly available labelled test set, we replicated
the benchmark experiments on the validation set,
which serves as the baseline.
Training Hyperparameters Our hallucination de-
tector is a three-layer MLP, where the first two
layers scale the feature dimension to half of the
preceding layer, and the final layer transforms it
into probabilities. The ReLU (Glorot et al., 2011)
function is chosen as the activation function. In
Equation 5, λ is set to 0.8, respectively. In Section
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Method Model Acc G-Mean (↑) BSS (↓) AUC
Not Hallucination Hallucination

Precision Recall F1 Precision Recall F1

Benchmark
GPT-2 70.60 69.66 19.68 75.86 68.16 80.11 73.66 74.31 60.57 66.74
BERT 71.20 70.09 20.61 75.56 68.35 81.67 74.42 75.71 60.16 67.05
RoBERTa 71.00 69.78 19.46 77.39 68.01 82.06 74.38 75.85 59.34 66.59

EGH
GPT-2 71.30 70.16 19.34 75.87 70.35 75.44 72.81 71.49 65.88 68.56
BERT 73.00 72.69 18.86 78.84 73.62 72.91 73.26 71.75 72.48 72.11
RoBERTa 72.60 71.77 19.24 77.62 70.18 80.51 74.99 75.19 63.22 68.68

Table 3: We utilize the same base model to obtain gradient information and compare the results of our method with
the benchmark. Our approach consistently outperforms the benchmark in terms of performance.

5.1, we provide a detailed discussion of the impact
of λ on the results.

4.3 Results in HaluEval

Table 1 presents the results of our experiments
on HaluEval. EGH has achieved state-of-the-art
(SOTA) results in three task-specific tasks. In
the QA task, EGH achieved a 97% accuracy rate,
which is 35% higher than the baseline and 10%
higher than the CONLI method. In the Dialogue
task, EGH achieved a 77.1% accuracy rate, which
is 5% higher than the baseline. In the Summary
task, EGH achieved a 95% accuracy rate, which
is 35% higher than the baseline. In the general
question-answering task, our approach achieved
an accuracy of 82%, slightly lower than the base-
line. Due to the imbalance of labels in the general
question-answering task, with only 815 out of 5000
data instances being hallucination data, we consider
this result to be a normal phenomenon. Compared
with the white-box method SAPLMA, EGH has a
2-3% improvement on all four tasks.

4.4 Results in SelfCheckGPT

Table 2 presents the results of our experiments on
SelfCheckGPT. The model trained on the HaluEval
achieved performance comparable to the baseline
and method Wang et al. (2023) on PR-AUC. After
training on 10% of the data, our approach outper-
formed the baseline and method Wang et al. (2023)
by 2-3% on PR-AUC. The results indicate that our
method exhibits a certain degree of generalization
and is applicable to various tasks and datasets.

4.5 Results in HADES

Table 3 presents the results of our experiments on
HADES. EGH has shown improvements in accu-
racy compared to the benchmark, using the same
base model. BERT achieved the highest accu-
racy, reaching 73%, and it also had the highest F1

λ 0.0 0.2 0.5 0.8 1.0
Accuracy 74.22 75.47 77.12 77.39 76.54

F1 75.36 76.62 77.74 78.28 76.68

Table 4: Ablation Study on Weights on dialogue task

score, surpassing the benchmark by 5%. RoBERTa
achieved the highest F1 score on non-hallucination
data. The experimental results indicate that EGH is
also applicable to traditional language models such
as BERT and GPT-2.

5 Discussion

5.1 Weights for the embedding and Gradient

Recalling Equation 5, yhal = f(λE + (1− λ)G).
For the two extracted features, the difference em-
bedding E and the gradient G, we respectively use
weight λ to perform weighted summation. To ver-
ify the effectiveness of the two features, we conduct
ablation experiments using different λ, with a set
of values for 0, 0.2, 0.5, 0.8, and 1. Since the accu-
racy on QA and summary tasks is higher, making
the ablation effects less noticeable, we conducted
experiments on the dialogue task instead. The ex-
perimental results are presented in the Table 4:

As shown in Table 4, when using only embed-
ding or gradient (λ = 0 or λ = 1), both accuracy
and F1 score are lower than when using both fea-
tures simultaneously. Therefore, both features con-
tribute to the classification process. When the value
of λ is relatively large, the classification accuracy
is higher. Specifically, when λ = 0.8, the accuracy
is the highest, indicating that embedding plays a
primary role in classification.

5.2 Visualization: Difference(P (A), P (A|Q))

Our method is based on the assumption that dur-
ing the process of generating hallucinations, the
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Figure 3: Probability Distribution for KL Divergence and Cross Entropy. There is a significant difference in the
distribution of non-hallucination and hallucination samples, and the peaks also conform to our hypothesis.

Difference Form Metric Hal Non-Hal

KL Divergence
mean 6.7× 10−5 9.6× 10−5

std 2.6× 10−5 9.6× 10−5

Cross entropy
mean 3.7× 10−3 5.7× 10−3

std 1.0× 10−3 1.8× 10−3

Table 5: Average(mean) and standard deviations(std) of
KL divergence and cross entropy

model tends to rely less on information from the
input and engage in more “free expression”. Due to
these two input forms representing conditional and
unconditional scenarios, respectively, the extent of
the model’s creativity, namely its access to source
conditions, can be indicated by the difference be-
tween these two outputs. Therefore, we introduce
Difference(P (A), P (A|Q)) to represent the differ-
ence between the output probability distributions
under two input scenarios. Mathematical quan-
tities such as KL divergence, cross-entropy, etc.,
can directly express the difference between two
probability distributions, thus serving as a form
of Difference(P (A), P (A|Q)). Consequently, we
compute the values of these two statistical quan-
tities in both hallucination and non-hallucination
samples and plot the probability distribution figure.

As shown in Figure 3, we randomly sam-
pled 1,000 examples for each task in HaluEval
and obtained the probability distributions corre-
sponding to hallucinated and non-hallucinated
data. The distribution of KL divergence and Cross
Entropy have certain differences between non-
hallucination and hallucination samples. Since
hallucinatory responses tend to receive less

Method QA Summary
LR with KL and CE 67.71 63.00

EGH 97.19 95.08

Table 6: The results of directly comparing KL diver-
gence and cross-entropy using logistic regression and
EGH indicate that applying these two features directly
for hallucination detection is not advisable.

information from the questions, the disparity
Difference(P (A), P (A|Q)) between the two out-
put probability distributions will be relatively
smaller. Therefore, the KL divergence and cross-
entropy will be smaller for hallucination samples
compared to non-hallucination samples. The mean
values in the Table 5 above also confirm this ob-
servation.

However, as mentioned earlier, using a threshold
value for the KL divergence or cross-entropy is im-
precise to determine whether hallucinations occur.
Besides, due to the loss of a significant amount of
information during the process of outputting prob-
abilities, directly utilizing features such as proba-
bilities, KL divergence, cross-entropy, etc., cannot
effectively model hallucinations. To demonstrate
this, we designed a simple experiment: we used KL
divergence and cross-entropy as two-dimensional
features, with Logistic Regression as the classifier
for detection. The results of the QA and Summary
tasks in HaluEval are shown in Table 6. The exper-
imental results support our viewpoint. Therefore,
our approach extracts deeper features from these
two input modes for hallucination detection.
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6 Conclusion

This paper proposes a white-box hallucination de-
tection method named EGH that utilizes the inter-
nal embedding and gradient of the model to deter-
mine hallucination. EGH is based on the following
assumptions: during hallucination generation, the
model tends to generate responses without con-
sidering the input question directly. The model’s
understanding of the input question represents the
degree of hallucination. We designed both condi-
tioned and unconditioned inputs and utilized the
Taylor expansion method to demonstrate that em-
beddings and gradient features can represent this
degree. EGH achieves state-of-the-art results on
hallucination detection datasets such as HaluEval,
SelfCheckGPT, and HADES, validating the effec-
tiveness of our method. Our work provides valu-
able insights into detecting hallucinations in LLM.

7 Limitation

The main limitation of this method lies in the fact
that, as our approach requires leveraging gradient
information and necessitates gradient backpropaga-
tion, it undoubtedly increases the time and space
complexity of the method. In terms of time, our
method requires two inputs, although it can be al-
leviated through batch input. In terms of space,
our method requires gradient calculation and addi-
tional space to store information. In the future, we
will explore more lightweight methods to detect
hallucinations.
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A Analysis of Our Experimental Results

Our method achieved state-of-the-art results on var-
ious datasets. Among all tasks, the QA task yielded
the best performance, with an accuracy reaching
97%. In QA tasks, answers are highly dependent
on the questions, and there is a certain degree of
similarity between questions. Models are likely to
make "heuristic errors," answering questions based
on past learned knowledge and experiences with-
out looking at the question stem. Therefore, our
approach focuses on extracting the model’s under-
standing of the question, addressing the common
hallucination type in QA tasks: Input-conflicting
hallucination. We have achieved excellent results in
QA tasks. For dialogue tasks they typically involve
longer contexts, and the questions from different
samples are relatively independent. Instances of
encountering the same question are less frequent,
so the model is less likely to rely on "memoriz-
ing answers". Consequently, occurrences of Input-
conflicting hallucinations are less common, result-
ing in less effective performance compared to QA
tasks. In general QA tasks, our approach falls be-
low the baseline. We believe there are two main
reasons for this: First, there is an imbalance be-
tween hallucination and non-hallucination samples,
with only 815 hallucination samples available. This
leads to a significant bias towards non-hallucination
samples in the classifier, resulting in poor classi-
fication of hallucination samples. Second, in gen-
eral datasets, questions tend to be common and
relatively short. Under this task, models are most
likely to experience Fact-conflicting hallucination,
where the output answers contain factual errors that
contradict objective facts. Since our approach does
not rely on external knowledge bases, its ability to
detect such hallucinations is not very strong. We
consider this to be a normal phenomenon.
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