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Abstract

Certain abilities of Transformer-based lan-
guage models consistently emerge in their
later layers. Previous research has leveraged
this phenomenon to improve factual accuracy
through self-contrast, penalizing early-exit pre-
dictions based on the premise that later-layer
updates are more factually reliable than earlier-
layer associations. We observe a similar pattern
for fine-grained emotion classification in text,
demonstrating that self-contrast can enhance
encoder-based text classifiers. Additionally,
we reinterpret self-contrast as a form of lin-
ear extrapolation, which motivates a refined ap-
proach that dynamically adjusts the contrastive
strength based on the selected intermediate
layer. Experiments across multiple models
and emotion classification datasets show that
our method outperforms standard classification
techniques in fine-grained emotion classifica-
tion tasks.

1 Introduction

Despite the success of large language models on a
variety of natural language processing (NLP) tasks
(Brown et al., 2020; Wei et al., 2022), they still
struggle with commonsense reasoning and factual
recall (Fu et al., 2023; Wang et al., 2023), often
hallucinating incorrect information (Ji et al., 2023).

Recently, contrastive methods, which maximize
differences between a desirable "expert" and un-
desirable "amateur" model, have been proposed
to address these issues (Li et al., 2022; Shi et al.,
2023). In particular, decoding by contrasting layers,
or DoLa, improves factuality by contrasting model
outputs against early-exit predictions from inter-
mediate layers of the same model. (Chuang et al.,
2023) DoLa operates under the premise that later
layers encode factuality, and thus late-emerging
changes to predictions likely update towards more
factual predictions. Recent work has demonstrated
that intermediate layer features can also effectively
quantify emotions in text (Sharma et al., 2023).

Figure 1: Linearly extrapolating class scores from am-
ateur and expert layers to a nonexistent future layer
correctly flips the output from sadness to pessimism.

Identifying emotions in text is crucial in NLP
for applications ranging from detecting harmful be-
havior to enhancing conversational agents (Zhang
et al., 2023; Barbieri et al., 2020). While many
systems often focus on mutually exclusive emo-
tions like joy or sadness, fine-grained emotions like
grief and remorse are more nuanced and distinct.
Many language-model systems still struggle to clas-
sify fine-grained emotions and opinions (Demszky
et al., 2020; Zhang et al., 2023). Given this, we
explore DoLa-style layer contrast to improve fine-
grained emotion classification.

The main contributions of the paper are:

1. Demonstrating the merits of layer contrast on
fine-grained emotion classification.

2. Recasting contrastive inference as linear ex-
trapolation to obtain more stable performance
with a dynamic contrastive penalty.

2 Related Work

Fine-grained Emotion Analysis: Much work has
focused on identifying text sentiment (Rosenthal
et al., 2017; Socher et al., 2013) and understanding
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emotions in social media interactions (Mohammad
et al., 2018; Chatterjee et al., 2019; Meaney et al.,
2021). However, these efforts often focus on a
limited set of emotions. Recent datasets on fine-
grained emotion analysis (Demszky et al., 2020;
Rashkin et al., 2019) indicate significant room for
improvement in this area.

Early Exiting: Early-exiting predictions are ob-
tained by applying the classification head of a
model to the residual stream earlier in the network.
These have been used to accelerate inference and
dynamically allocate compute on a per-input basis
(Teerapittayanon et al., 2016; Elbayad et al., 2020;
Schuster et al., 2022).

Contrastive Steering: Contrastive methods opti-
mize the difference in predictions between a favor-
able “expert" and an unfavorable “amateur," to steer
text decoding in language models. (Liu et al., 2021)
GeDi (Krause et al., 2020) contrasts between class-
specific control codes to improve text-conditioned
factuality and emotion control. Coherence boost-
ing (Malkin et al., 2021) provides the language
model with only the final k tokens of the prompt
to obtain amateur scores, encouraging longer-term
coherence over locality. Contrastive decoding (Li
et al., 2022; O’Brien and Lewis, 2023) improves
long-form generation and reasoning ability by con-
trasting between large and small models of the
same family. Other works use CD-like methods to
reduce model toxicity, surface biases, and increase
faithfulness to a provided context. (Liu et al., 2021;
Yona et al., 2023; Shi et al., 2023)

3 Method

Here we define the main components of con-
trastive decoding (CD) and DoLa, alongside our
proposed method for dynamically selecting con-
trastive strength. Following earlier work, we use
early-exit distributions to choose an amateur layer,
contrasting its predictions against the final layer
(the expert). We apply mask candidate classes
based on a plausibility constraint to filter out low-
probability labels. We experiment with two meth-
ods to determine the contrastive strength: static β
and dynamic β. The details of each component are
discussed next.

3.1 Contrastive Classification

We use the formulation of contrastive decoding
defined by O’Brien and Lewis (2023). Let pa be
the amateur probability scores and pe be the ex-

pert probability scores. We define the contrastive
classification function as:

f
(i)
CC =

{
(1 + β) log pie − β log pia i ∈ Vvalid

−∞ i ̸∈ Vvalid

where β is the strength of the contrastive penalty
and Vvalid is the adaptive plausibility constraint (Li
et al., 2022), which defines the set of candidate
classes on which contrastive action is applied. Let
pce be the expert probability for class c ∈ C. Then
Vvalid is defined as:

Vvalid = { c ∈ C, pce ≥ αmax
c ∈ C

pce }

α here is a threshold hyperparameter that gates la-
bels based on the probabilities assigned to them by
the expert. This protects against instabilities associ-
ated with dividing the scores of two low-probability
candidates, ensuring that all candidates are prob-
able. After computing scores, argmaxi f

(i)
CC is

taken as the predicted label.

3.2 Dynamic premature layer selection
One central challenge with inference-time con-
trastive methods is the selection of a good amateur
model. The amateur must be similar enough to the
expert to model its error distribution, but not so
powerful that it penalizes desirable behavior.

Contrasting against early-exiting predictions
from earlier network layers provides an array of
several potential amateurs to choose from. From a
pre-validated set of earlier layers, DoLa selects the
layer that has a maximally different early-exit dis-
tribution from the final-layer distribution, as mea-
sured by Jensen-Shannon Divergence. In short, the
amateur layer ℓa is chosen as follows:

ℓa = argmax
ℓ∈Lvalid

d(P(ℓ),P(ℓfinal))

where Lvalid is the pre-validated set of layers, P
maps a latent layer to its early-exited softmax dis-
tribution, and d is some divergence metric between
two probability distributions. While the original
paper uses Jensen-Shannon Divergence (JSD) as
d, we find that cosine distance performs slightly
better in practice.

3.3 Linear Layer Extrapolation
Casting DoLa as linear extrapolation allows us to
dynamically vary β based on the chosen amateur
layer.
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Consider the classification of a single sample x
to c ∈ C, where C := {1, 2, · · · , |C|} is the set of
candidate classes. Suppose that the prediction is
made by a network with L layers. For this sample,
let fc(i) be the un-normalized score assigned by
the model to class c by early-exiting at layer i. fc
is defined over the discrete set {1, · · · , L}, where
the final score assigned to class c by the network is
given by fc(L).

Let ℓa be the index of the selected early-exit
amateur layer, L > ℓa be the index of the final
model layer, and ℓt > L be the target post-final
layer index to be linearly approximated. Note that
ℓt need not be discrete.

Now let f̂c represent the linear function passing
through (ℓa, f(ℓa)) and (L, f(L)).

f̂c(ℓ) = f(L) +

(
f(L)− f(ℓa)

L− ℓa

)
(ℓ− L)

We can use this function to linearly approximate
performance at a target post-final layer index ℓt.
This shares structure with the standard form of
contrastive decoding, in which ℓt is implicit:

f̂c(ℓt) = (1 + β)f(L)− βf(ℓa)

We now define the relationship between the con-
trastive strength β and the conjectured target layer
ℓt, obtaining:

ℓt = −βℓa + (β + 1)L (1)

β =
ℓt − L

L− ℓa
(2)

DoLa keeps β fixed, which varies ℓt as a function
of ℓa according to (1). We refer to this as static β
selection.

We instead fix ℓt, implicitly varying β over dif-
ferent choices of ℓa according to (2). Selecting
an amateur layer from earlier in the network will
result in a decreased β, and a later amateur layer
will increase β, in a process we call dynamic β
selection.

After selecting hyperparameters k and ℓt, our
method consists of the following steps:

1. Early-Exit Calculation: Apply projection
head P to the hidden activations at each layer
in {ℓk, ℓk+1, · · · , L}.

2. Amateur Identification: Identify the amateur
layer index ℓa with early-exit class probabili-
ties that diverge the most from the final layer’s
class probabilities.

3. Dynamic β selection: Calculate β according
to Equation 2, incorporating the chosen ℓt.

4. Logit Combination: Calculate a plausibility
mask and linearly combine the amateur and
final layer scores according to subsection 3.1.

4 Experimental Setup

4.1 Datasets

goEmotions (Demszky et al., 2020) introduces a
new emotion taxonomy of emotions named goE-
motions, consisting of 28 emotions including neu-
tral. The 27 emotion classes are fine-grained over 7
emotions defined in the Ekman taxonomy. goEmo-
tions contains roughly 58k samples overcoming the
problems with earlier emotion datasets which were
small in size and covered a very limited taxonomy.
We filter out the few multilabel data-points present
in the dataset for our experiments.

SuperTweetEval (Antypas et al., 2023) aims to
provide a unified benchmark to evaluate the perfor-
mance of models on NLP tasks across social media.
It is a heterogeneous collection of multiple datasets
spanning NER, QA, and classification. For our
experiments, we use tweetEmotion and tweetHate,
which contain 12 and 8 classes respectively.

EmpatheticDialogues (Rashkin et al., 2019)
was introduced as a benchmark for training and
evaluating models and their capability to under-
stand and acknowledge empathetic text. The
dataset contains conversations distributed across
32 emotions. We use the first text of the conver-
sation and the corresponding emotion for defining
our fine-grained classification task.

4.2 Models and Training

We fine-tune FLAN-T5-L, FLAN-T5-XL,
DeBERTa-L and DeBERTa-XL. (Chung et al.,
2022; He et al., 2021). Fine-tuning details can be
found in Appendix D. We release code, training
and inference data. 1

4.3 Decoding Hyperparameters:

Amateur layer: We use the dynamic amateur
layer selection as defined in subsection 3.2, re-

1https://github.com/04mayukh/contrastive-classification
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(a) (b) (c)

Figure 2: (a) Recall vs. ℓt on goEmotions; increasing the extrapolative strength improves recall. (b) F1 vs. ℓt on
tweetEmotions exhibits a similar trend, though results for FLAN-T5-XL are mixed. (c) F1 vs. k for tweetEmotion
using DeBERTa-XL; including layers 40 to 42 in the valid layers is found to be particularly useful.

stricting the amateur layer search space to a sub-
set of the finetuned network layers. Let L =
{ℓk, ℓk+1, ℓk+2, · · · , L} be a subset of the fine-
tuned layers, where k is a hyperparameter defining
the start of the search space and, L is the final layer
of the network. We empirically choose k for each
network based on performance on a held-out val-
idation set. Results of the hyperparameter sweep
can be found in Appendix A.

Contrastive Strength (β): We experiment with
various fixed values of β between 0 to 1, finding
that the best β varies over the selection of model
and dataset. In general, values outside the range of
[0, 1] harmed performance.

Dynamic Contrastive Strength (ℓt): As with β,
we sweep through a range of potential values for the
post-final target layer, sweeping from L to L+ 25.

5 Results

We report performance across models, datasets and
inference algorithms in Table 1.

Traditional vs Contrastive Classification: We
observe that contrastive classification improves per-
formance significantly in both recall and F1. This
trend holds for all models used in our experiments.
β vs Dynamic β: Dynamic β selection tends to

improve the overall performance over static β for
F1 and recall scores. Figure 2a shows the trend of
recall scores across different models for dynamic
β selection on the goEmotions dataset. Figure 2b
shows the trend of F1 score across different models
against dynamic β for the tweetEmotion dataset.
Additionally, we observe that dynamic β is robust
to changes in the hyperparameter k, which defines
the start of the search space across earlier amateur
layers. Figure 3 shows no clear or stable relation-
ship between k and end performance when varying

β values. However, switching to dynamic β selec-
tion creates a constant trend with minor variance
as k is varied, a trend that holds for multiple values
of extrapolative layer t.

goEmotions: We see a general improvement
across all models for the recall and F1 scores.

tweetEmotion: Contrastive classification with dy-
namic β significantly outperforms traditional clas-
sification. We see a general increase in recall and
F1 with a slight harm to precision, and observe that
the emotions corrected by layer contrast are highly
correlated.

tweetHate: Layer contrast yields the largest im-
provement in performance on tweetHate across all
models. This improvement owes in large part to im-
proved performance on underrepresented classes,
like disapproval and curiosity.

EmpatheticDialogue: For this dataset, we only
see a slight increase in performance using the
DeBERTa-xl model. Analyzing the probability dis-
tributions between layers, we did not observe a
significant change in the probability distribution
for different emotions across layers. The probabil-
ity was distributed over a single label, increasing
gradually across layers. This led to minimal contri-
bution, positive or negative, from layer contrast.

Effect of amateur layer selection: We use a
bucket of layers for amateur layer selection de-
fined by hyperparameter k. Figure 2c shows the
trend of k against F1 using the DeBERTa-xl for
tweetEmotions dataset. We observe that the perfor-
mance generally increases up to a layer where the
benefit of contrastive action is maximum, followed
by a drop in performance. Upon evaluating early-
exiting on intermediate layers, we observed that
some layers are more adept at identifying specific
classes than others, providing a variety of skills to
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Model Type EmpatheticDialogue tweetHate tweetEmotion goEmotions Avg. F1
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Flan-T5-L ✗ .551 .556 .543 .565 .577 .570 .298 .296 .286 .521 .469 .478 .469
Flan-T5-L ✓ .551 .557 .543 .579 .606 .590 .300 .299 .291 .513 .485 .487 .478
Flan-T5-L β .551 .557 .543 .590 .636 .610 .349 .311 .309 .493 .502 .489 .488

Flan-T5-XL ✗ .582 .569 .565 .566 .566 .559 .320 .300 .302 .503 .456 .465 .473
Flan-T5-XL ✓ .581 .570 .565 .690 .603 .615 .318 .314 .313 .499 .494 .486 .495
Flan-T5-XL β .582 .570 .565 .695 .605 .619 .316 .314 .313 .513 .494 .490 .497
DeBERTa-L ✗ .614 .601 .592 .647 .601 .622 .322 .299 .301 .570 .521 .534 .512
DeBERTa-L ✓ .616 .606 .597 .676 .643 .658 .313 .311 .308 .562 .536 .540 .526
DeBERTa-L β .618 .609 .601 .708 .675 .690 .312 .331 .319 .558 .543 .541 .538

DeBERTa-XL ✗ .604 .605 .590 .607 .596 .599 .324 .300 .303 .529 .493 .502 .498
DeBERTa-XL ✓ .610 .606 .594 .727 .668 .686 .335 .324 .325 .509 .530 .514 .523
DeBERTa-XL β .614 .609 .597 .725 .668 .685 .333 .340 .334 .505 .555 .522 .535

Table 1: Experimental results. ✗, ✓, and β respectively represent normal classification, static β, and dynamic β.

contrast against for improved performance.

6 Analysis

We find that contrastive inference tends to flip neu-
tral predictions to underrepresented classes. Ta-
ble 2 shows the frequency of correctly flipped sam-
ples (true positives) versus correctly flipped sam-
ples (positives) from the neutral class (wrongly
predicted as neutral). Table 5 contains the count of
emotions that were correctly flipped from neutral.

Model %Neutral
Flan-T5-large 76.2

Flan-T5-xl 79.2
DeBERTa-large 68.9

DeBERTa-xl 79.3

Table 2: Percentage of correctly flipped samples from
the goEmotions dataset that were originally classified
as neutral. This supports the trend of contrastive classi-
fication tending to predict more specific emotions, with
an associated increase in recall.

We also report the most frequent samples cor-
rected for the tweetEmotion dataset in Table 3.
We see that the emotions for the pair of corrected
samples were highly correlated.

7 Conclusion

We propose a linear extrapolation approach for
dynamically determining contrastive strength in
layerwise contrastive decoding. Applied to fine-
grained emotion classification tasks, this method
enhances classifier performance by effectively iden-
tifying under-represented classes.This strengthens
the promise of layer-contrast methods in domains
other than text generation, and provides a tech-
nical contribution that reduces the variance of the

Model Emotion

Flan-T5-large
sadness 7→ pessimism

joy 7→ anticipation

Flan-T5-xl
sadness 7→ pessimism

anger 7→ disgust

deBERTa-large
anger 7→ disgust

joy 7→ anticipation

deBERTa-xl
sadness 7→ pessimism

joy 7→ optimism

Table 3: Top 2 emotion pairs that were contrastively
flipped for each model on the tweetEmotion dataset.
More straightforward emotions tend to be refined to-
wards similar, more specific ones.

method with respect to a core hyperparameter k, en-
couraging further research into how best to exploit
the layerwise emergence of textual understanding
to improve performance on a wide range of tasks.

8 Limitations

Our study is restricted to fine-grained emotion clas-
sification with relatively small models (FLAN-T5
and DeBERTa). It remains to be seen whether our
analysis of extrapolative classification will hold for
prompt-based classification with larger models or
across other datasets. We also found contrastive
performance for smaller models to be sensitive to
finetuning hyperparameters. Additionally, we ob-
serve that contrastive classification can fail when
the model predictions do not change significantly
over the course of a forward pass, as evidenced
by results on EmpatheticDialogue (see Figure 4).
Extending the method to identify and better handle
these cases is left to future work.
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A Hyperparameter Sweep

Table 4 contains the values of hyperparameter k
used for reporting the results. We also show the
effect of k on performance for the goEmotions
dataset using both β and dynamic β in Figure 3.

Model goEmotions tweetEmotion tweetHate Empathetic
Dialogue

Flan-T5-large 19 20 17 15
Flan-T5-xl 15 15 17 15

DeBERTa-large 15 19 17 19
DeBERTa-xl 39 41 38 43

Table 4: Our choice of hyperparameter k for defining the
amateur search space used in the final results. The final
layer is 48 for DeBERTa-xl and 23 for the remaining
models.

(a) Static β

(b) Dynamic β selection

Figure 3: Effect of k, the earliest usable amateur layer
on DeBERTa-XL goEmotions performance, under both
static and dynamic β selection. Dynamic β increases
performance and stabilizes performance with respect to
the choice of k.

B Knowledge pattern across layers

Fine-grained emotion analysis is challenging due
to non-mutually exclusive labels and similar po-
larity among different emotions, making it hard to
accurately classify them. Class imbalance further
biases the model towards more frequent emotions.

To study the change in probability distribution
for emotions across layers, we performed early ex-
iting on different layers of our fine-tuned models
to visualize how the distributions across emotions
evolve. We observed that for some emotions, the
model makes a decision very early, passing it along
the layers without much change. For others, the
distribution tends to change in later layers, suggest-
ing that the model is still adding information. We
observed this pattern mostly around classes that
are rarer in the training data or more closely re-
lated to each other. Figure 4 shows the change in
distribution for two examples.

Drawing from these observations, we combine
the idea of contrastive decoding and DoLa for fine-
grained emotion analysis. We build on DoLa, using
the early exited intermediate layers as amateur mod-
els. We then use contrastive action against the final
layer distribution chosen as our expert model. Addi-
tionally, we deduce a method to dynamically select
the contrastive strength which we show leads to
better performance on fine-grained emotion tasks.

C Additional Analysis

From To Count
neutral disapproval 22
neutral curiosity 19
neutral annoyance 13
neutral admiration 12
neutral approval 11

Table 5: Count of samples moved from neutral to other
classes for goEMotions using DeBERTa-xl.

D Fine-Tuning Details

For DeBERTa-XL, we fine-tune layers 34-48 after
freezing the initial layers (34/48); for DeBERTa-L,
we fine-tuned all layers. For Flan-T5, we fine-tuned
both large and xlarge variants after freezing the first
(14/24) layers. We employed the Adam optimizer
(Kingma and Ba, 2014) with learning rates ranging
from 1e-6 to 5e-6 for DeBERTa and 1e-4 to 5e-4
for Flan-T5.
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(a)

(b)

Figure 4: Probability distribution across the finetuned layers of DeBERTa-xl for a sample from each (a) goEmotions
and (b) tweetEmotion dataset. In the goEmotions sample, the model initially identifies the label as neutral but
increases the probabilities assigned to sadness and disappointment (the true label) over subsequent layers. For
the tweetEmotion sample, the probability distribution changes across layers and the model fails to assign a high
probability to a single emotion.

E Computational Resources Estimate

Early compute was run on freely available Cloud
T4 GPUs. Fine-tuning and later experiments were
run on a cluster of A6000 GPUs, with a maximum
of 8 used at a single time.

Fine-tuning all models across all datasets takes

roughly 2 GPU-hours. Hyperparameter searches
are performed at classification time, which takes
very little compute. A very rough estimate for
GPU-hours in this project is 50.
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