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Abstract

Scientific literature is typically dense, requir-
ing significant background knowledge and deep
comprehension for effective engagement. We
introduce SCIDQA, a new dataset for reading
comprehension that challenges language mod-
els to deeply understand scientific articles, con-
sisting of 2,937 QA pairs. Unlike other scien-
tific QA datasets, SCIDQA sources questions
from peer reviews by domain experts and an-
swers by paper authors, ensuring a thorough
examination of the literature. We enhance the
dataset’s quality through a process that care-
fully decontextualizes the content, tracks the
source document across different versions, and
incorporates a bibliography for multi-document
question-answering. Questions in SCIDQA ne-
cessitate reasoning across figures, tables, equa-
tions, appendices, and supplementary materi-
als, and require multi-document reasoning. We
evaluate several open-source and proprietary
LLMs across various configurations to explore
their capabilities in generating relevant and fac-
tual responses, as opposed to simple review
memorization. Our comprehensive evaluation,
based on metrics for surface-level and semantic
similarity, highlights notable performance dis-
crepancies. SCIDQA represents a rigorously
curated, naturally derived scientific QA dataset,
designed to facilitate research on complex rea-
soning within the domain of question answer-
ing for scientific texts.

1 Introduction

Question-answering (QA) datasets are valuable for
evaluating the reading comprehension, reasoning,
and document understanding capabilities of lan-
guage models (Dua et al., 2019; Dasigi et al., 2021;
Rogers et al., 2023). The scientific QA task in-
volves reading a research paper and answering
questions, drawing on the paper content and some
background knowledge. This task mirrors how hu-
mans engage with academic literature (Lo et al.,
2023; Palani et al., 2023).

Figure 1: An instance in the SciDQA dataset. The ques-
tion and answer corresponding to the paper are extracted
from the reviewer-author discussion on OpenReview.

Scientific literature is inherently dense and typ-
ically requires a deep understanding and signifi-
cant background knowledge to fully comprehend
and engage with. To address this challenge, the
NLP community has developed various datasets
for question-answering (QA) from research papers
to aid in development and evaluation of AI systems
for comprehending the research papers. Methods
range from manual question generation by domain
experts (Möller et al., 2020; Dasigi et al., 2021; Lee
et al., 2023) to automated extraction of questions
using machine learning from selected texts (Saikh
et al., 2022, 2020; Pappas et al., 2020; Jin et al.,
2019; Pappas et al., 2018). However, many of these
datasets focus on surface-level information and are
often limited to questions that are written from ti-
tles and abstracts, which restricts the complexity
and deeper engagement with the full papers.

We introduce SCIDQA, a novel deep reading
comprehension dataset for scientific papers. It is
specifically tailored to the scientific articles in the
machine learning (ML) domain and sourced from
peer reviews on the OpenReview platform (Open-
Review, 2023). Peer reviews frequently include
questions or comments from reviewers who seek
information or clarification on aspects they are con-
fused about or do not fully understand. Answering
many of such questions necessitate a deep and com-
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Figure 2: Dataset curation pipeline for SCIDQA. LLM-
based QA extraction from peer reviews is followed by
a comprehensive human expert annotation and editing.
As discussed, we only include evidence for a subset of
the dataset due to high annotation cost.

prehensive understanding of the research and the
background, such as a critical view of the approach
and results, implications of the findings, and com-
parisons with previous works. Moreover, peer re-
views are acompanied by responses from authors,
who have carefully tried to address and clarify the
reviewers questions. As both authors and reviewers
are domain experts, responding to these inquiries
necessitates a deep understanding of the paper and
its broader research field. Consequently, we be-
lieve these questions are an excellent source for
probing deep comprehension of research papers,
contrasting with prior work that often targets shal-
low information-extraction or surface-level facts.
However, not all such questions expressed in a
review are useful. In addition they also need rewrit-
ing to stand alone as clear, self-contained queries
suitable for a reading comprehension dataset. To
ensure the quality and relevance of our dataset, we
implement a human annotation process by domain
experts, highlighted in Figure 2.

Our dataset features long-form questions and
answer pairs, as shown in Table 1. It is diverse
and also some questions require comprehension
of figures, tables, equations, and references in ad-
dition to the paper text. Approximately 11% of
the questions necessitate reasoning over at least
one explicitly mentioned reference paper in addi-
tion to the candidate paper. We evaluate several
open-source and proprietary large language mod-
els (LLMs) under various configurations (including
retrieval-based setup and long-context reasoning)
to benchmark their capabitlies on this task. Our
findings suggest that our dataset presents a signif-

icant challenge, as several large language models
(LLMs) struggle to generate accurate factual an-
swers across a variety of experimental setups. Our
dataset, code, and model outputs to reproduce our
results are available on the github repository 1.

2 Building the SCIDQA Dataset

We present the pipeline for the collection of the
SCIDQA dataset and the preprocessing, manual
filtering and rewriting steps involved. A schematic
denoting the pipeline is presented in Figure 2. We
present the various stages of data curation next.

2.1 Curation from OpenReview

We selected top-tier ML and DL venues, designated
as A* rankings by ICORE Portal (CORE), with
publicly accessible reviewer-author discussions on
OpenReview (Appendix A). We curate 11400 pa-
pers from ICLR (2018-2022) and NeurIPS (2021-
2022), with a major focus on including newer pa-
pers to decrease the risk of contamination with
LLM pretraining datasets.

2.2 Processing the reviews

PDF to Text Conversion OpenReview portal
hosts multiple submitted PDF versions of a submit-
ted manuscript which are curated. Nougat (Blecher
et al., 2023), a visual transformer model designed
for scientific OCR tasks (details in Appendix A), is
used for PDF to text conversion.

Regex Filtering OpenReview has nested discus-
sions, i.e. authors and reviewers reply to messages,
creating a time-stamp chain of discussion. We ex-
tract 18,658 reviewer-author discussions for 11,400
papers that contain questions and answers, by regex
pattern matching (details in Appendix A).

LLM-based QA Extraction Next, we extract
explicit questions that reviewers asked the authors
from the reviews. For QA extraction, we utilized
the PaLM text-bison-001 API (Google, 2023) to
extract specific question-answer pairs within the
reviewer-author discussions.2 Initial attempts to ex-
tract questions and answers using non-LLM meth-
ods faced challenges, as authors and reviewers
employ various patterns for posing questions and
answers, making it difficult to comprehensively

1https://github.com/yale-nlp/SciDQA
2We chose to use PaLM because it consistently delivered

high-quality extractions and offered an available API, capable
of handling up to 60 requests per minute.

20909

https://github.com/yale-nlp/SciDQA


Dataset Curation Size Source Question
length

Answer
length

Multiple
Docs

% Short
Answers

QASA (2023) Manual 1,554 Full-Text 15.86 44.95 × 1.61%
QASPER (2021) Manual 5,089 Title/Abstract 9.33 18.19 × 39.94%
Covid-QA (2020) Manual 2,019 Full-Text 10.61 15.79 × 32.64%
ScholarlyRead†

(2020)
Synthetic 10,000 Abstract NA NA × NA

BioRead (2018) Synthetic 16.4M Full-Text 42.90 1.92 × 98.70%
BioMRC (2020) Synthetic 700,000 Title/Abstract 16.01 1.73 × 99.38%
PubMedQA (2019)

Annotated Manual 1,000 Title/Abstract 14.42 43.23 × 0%*

Unlabeled Synthetic 61,249 Title/Abstract 14.98 45.88 × 0%*

Artificial Synthetic 211,269 Title/Abstract 16.35 40.97 × 0%*

SCIDQA (Ours) Hybrid 2,937 Full-Text 23.92 104.67 ✓ 1.74%

Table 1: Comparison of the related datasets. †ScholarlyRead dataset is unavailable publicly, hence we skip its
statistics. *PubMedQA features two types of answers: a long answer, which is the last sentence of the abstract, and
a short answer, which is yes/no. Here, we report statistics of long answers as 100% short answers are less than 5
words.

cover all instances. Through this approach, we ex-
tracted 26,085 question-answer pairs. Details of
the prompts used are presented in the Appendix A.

2.3 Human Expert Annotation and Editing

In initial investigations, we found that many of the
extracted questions are not useful and they would
need additional revisions to be appropriate for a
QA dataset. Therefore, to ensure the quality of the
QA pairs in the SCIDQA dataset, we employed
an extensive manual annotation process by domain
experts.3 This included determining and keeping
only the most relevant questions, rewriting both
questions and answers, and editing references in
the QA pairs. We briefly discuss annotation and
editing stages.

Relevance Annotation This task selects
information-seeking questions, whose answers
are identifiable within the research paper text,
from a set of synthetically generated QA pairs.
Questions referencing figures, tables, equations,
specific sections, or lines, and inquiries requiring
data from multiple papers were categorized as
relevant. Conversely, questions asking for edits,
summaries, or subjective judgments about the
paper’s quality, or those based on the authors’
personal experiences, were classified as irrelevant.
To expedite the annotation process, we introduced
an ‘ambiguous’ category for cases where the rele-
vance of a question-answer pair was challenging
to ascertain. Questions necessitating experimental
validation for answers, and where it remained

3students with extensive experience in NLP and ML.

unclear whether the authors had conducted such
experiments based on reviewer suggestion during
reviewer-author discussion, were classified as
ambiguous. We present a few samples for each
category in Table 7 in Appendix A.

Two annotators, also the authors of this paper,
annotated the dataset, starting with a common sub-
set of 200 instances and achieving an 85% agree-
ment rate. The disagreements were discussed and
resolved, and the rest of the questions were anno-
tated by a single annotator. In total, the annotators
reviewed 7,000 instances, identifying 2,937 QA
pairs as relevant, equivalent to a relevancy rate of
approximately 41%. Additional details about the
annotations are in Appendix A.1.

Decontextualizing Questions and Answers
Originally, questions were directed towards the au-
thors of the paper and authors provided answers
from their perspective. We rewrote these QA pairs
in the third-person point of view to make them uni-
versally applicable and to avoid biasing language
models to generate answers in the first person when
trained on SCIDQA. This is also necessary for the
models to understand that the question does not ask
for their personal opinion, but is a factual question
seeking information about the author’s reasoning
in the paper. We also add contextual information to
the questions where the question is incomplete or
incomprehensible without contextual information
present in the review text. We present an example
in Figure 3 showcasing scenarios where decontex-
tualization and editing the narrative is necessary
to comprehend the question. The perplexity of
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questions before and after rewriting, when evalu-
ated with the GPT-2 model, exhibits a difference
of 16.3 points, suggesting that decontextualization
contributes to an enhancement in dataset quality.

Annotating the Source Document Certain con-
ferences like NeurIPS and ICLR allow authors
to submit revised manuscripts during the author-
reviewer discussion period. For simplicity, we fo-
cus only on the initial submitted copy and the final
camera-ready manuscript. For rejected papers, the
last submitted manuscript is considered the final
version, which may sometimes be identical to the
initial submission. Establishing the source doc-
ument between the initial and final manuscripts
presents challenges, as author-reviewer discussions
often result in added details like tables, figures, and
text, making the camera-ready version a suitable
source document. However, reviewers’ questions
may prompt authors to rewrite paper text to explic-
itly mention the answer, simplifying the dataset if
the final version is used. We depict two such scenar-
ios in Figure 5. To manage these variations, each
question-answer pair is annotated with the version
of the document used as the source, typically the
initial or final version. If author responses indicate
additions in a revision, the final version is marked
as the source document. If no specific informa-
tion is given, the initial version is defaulted as the
source. This approach addresses potential ambi-
guities arising from updates in table, figure, and
section numbers in the revised final manuscript.

Reference Editing Finally, to prevent language
models from taking shortcuts by extracting answers
based on reference text markers within the papers,
we edited the references in the QA pairs, as shown
in Figure 4. This process involved replacing spe-
cific reference markers with placeholders and pro-
viding a list of necessary references at the end of
the question and the answer.

3 Dataset Details and Analysis

The SCIDQA dataset comprises 2,937 question-
answer pairs. We present the statistics of
SCIDQA in comparison to other related existing
QA datasets in Table 1. Next, we discuss the di-
versity of answer sources, and fuzzy searching for
answers, and the statistics of changes in initial and
revised manuscripts.

Diversity of Answer Sources Our dataset fea-
tures questions necessitating reasoning across mul-

Information Source % in Dataset

Tables 14.03%
Multiple documents 10.9%
Appendix and Supplementary 10.01%
Equations and Symbols 10.32%
Figures 6.98%

Table 2: Distribution of various modalities (text, figures,
tables, equations, appendix, and supplementary) which
are required to answer the questions in the dataset.

tiple modalities beyond mere text, including figures,
tables, equations, and both appendix and supple-
mentary materials. This design ensures that com-
prehensive reasoning over the full-text of the paper
is essential for answering the questions accurately.
The statistics are presented in Table 2.

Fuzzy Search for Answers We search for an-
swers in the research paper texts and find sections
with at least 80% unigram overlap between answers
and paragraphs. Such a high degree of overlap
suggests that the text from the research papers is
directly utilized as answers to questions, thereby
simplifying the question-answering process to the
identification of pertinent paragraphs. This im-
plies a reduced necessity for reasoning or inferen-
tial thinking compared to scenarios where answers
must be derived from an analysis of the text. Our
findings reveal that only 25% of the answers in our
dataset can be identified with an overlap exceeding
80%. By contrast, the QASA dataset (Lee et al.,
2023), features 52% of answers that demonstrate
more than 80% unigram overlap with the paper text,
indicating a higher reliance on direct text retrieval
for answering questions.

Edits in Initial and Revised Manuscripts We
conducted an analysis of differences between PDF
versions for each QA pair.4 Our dataset of 576
unique papers shows that 66.3% vary in figure men-
tions, and 54.9% vary in table counts between ini-
tial and final manuscripts, highlighting the need to
maintain separate versions.

4 Experimental Setup

We design four task configurations to evaluate
the capabilities of LLMs in answering the ques-
tions in SCIDQA. We experiment with open-
source LLMs (Falcon (Almazrouei et al., 2023),
Galactica (Taylor et al., 2022), Gemma (Team

4This is because authors often update their manuscripts in
response to comments and questions by reviewers.
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et al., 2024), Llama 2 (Touvron et al., 2023),
Mistral (Jiang et al., 2023), Phi-2 (Javaheripi
et al., 2023), Vicuna (Zheng et al., 2024), and
Zephyr (Tunstall et al., 2023)) and two closed
models Gemini (Google et al., 2023) and GPT-
4 (Achiam et al., 2023).

Open-Domain Question Answering - Priming
with Question (ODQA-PQ) Can LLMs gener-
ate the answer from the review text when primed
with the question text without explicitly providing
the paper? As the peer reviews are available pub-
licly, there is a possibility that the LLMs might
have seen the review during pretraining. Although
the questions in our datasets have been significantly
revised, they still originate from reviews. In this
sense, it’s conceivable that LLMs might have seen
the reviews in their pretraining data and might be
able to generate answers based solely on the ques-
tion text, without any context from the associated
research papers. To investigate this possibility, in
the ODQA-PQ configuration, LLMs are presented
with only the questions and instructions, without
any information about the relevant research papers.

Open-Domain Question Answering - Prim-
ing with Question and Title/Abstract (ODQA-
PTABS) In this setting, we provide the LLM with
the question text, along with the Title/Abstract of
the paper. The objective is to ascertain whether
the inclusion of additional information, such as the
paper’s Title/Abstract, enhances the LLM’s ability
to accurately retrieve the correct answer. Unlike
the Open-Domain Question Answering (ODQA)
setting, it is not entirely infeasible to answer some
questions with the information provided in the ab-
stract. However, given that our dataset comprises
questions that require complex reasoning, the an-
swers to the majority of questions will not be found
in the abstract alone.

Retrieval-Augmented Generation with LLMs
(RAG) We follow a retrieval-augmented gener-
ation setup for this configuration. Research paper
texts exceed the typical model context length with
exception of few long-context models (which we
will discuss in the next experimental setup). To
accomodate processing such documents we em-
ploy a RAG setup, where we first retrieve the most
relevant paragraphs to the question using a BM25
ranker, and subsequently input the top ranked para-
graphs to the LLM, tasked with generating the re-
sponse. The operational flow of this pipeline is

depicted in Appendix Figure 8 and the chunking
algorithm is presented in Appendix

Comprehending the Full-text using LLMs
(CFT) In this experiment, LLMs are provided
with the full-text of scientific papers and are tasked
with answering a specific question. Given the ex-
tensive length of scientific texts, which exceeds the
model’s context length capacity, we divide the full-
text into segments. Each segment, along with the
question and instructions, is then presented to an
LLM (referred to as base-LLM), which generates
answers for each segment.

This setup produces multiple answer candidates
for a single question, contingent on the number of
passes required to present all chunks to the LLM.
To distill these into a singular, optimal response,
we introduce an answer selection phase. During
this phase, the Gemini-pro model is prompted
with the question and all answers generated by
the base-LLM, with instructions to identify the
most comprehensive response from the provided
options. Details of this prompt are included in
the Appendix B. We only segment paper’s full-text
when it exceeds the model’s context length. For
models with context length greater than the full-
text, the base-LLM directly generates the answer,
and the answer-selection phase is not required.

5 Results and Discussion

We use text generation metrics for evaluat-
ing the LLM generated answers, such as
ROUGE score (Lin, 2004) (ROUGE-1, ROUGE-
2, ROUGE-L as R-1, R-2, R-L resp.), BLEURT-
20 (Pu et al., 2021) (abbreviated as BLRT), and
BERTScore (Zhang* et al., 2020) (BERTScore F1
score as BS-F).

Instruction-tuned models perform better than
their counterparts generally. The instruction-
tuned counterparts of Gemma, Falcon, Llama 2,
and Mistral perform better at retrieving the answers
in ODQA-PQ and RAG setup.

Addition of Title/Abstract (ODQA-PTABS) de-
grades the performance for most LLMs in com-
parison to ODQA-PQ setup. Gemma IT, Fal-
con IT, Longchat 32k, Mistral, Vicuna (7B and
13B), Vicuna 16k 7B, and Llama 2 13B show a
drop in performance by 7-8 points when Title/Ab-
stract is added to the prompt. This decline could
be attributed to the non-contiguous nature of the
Title/Abstract with the review text, from which
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Prompt <INS, Q>
Model R-1 R-2 R-L BLRT BS-F Avg

2-3 B

Gemma (2024) 14.7 3.4 10.0 46.9 45.5 24.1
Gemma IT (2024) 19.7 4.2 13.1 41.1 50.0 25.6
Phi-2 (2023) 25.3 6.8 17.1 40.8 54.1 28.8

6-7 B

Falcon (2023) 7.9 1.3 6.8 48.0 38.0 20.4
Falcon IT (2023) 24.1 5.1 15.0 40.0 52.7 27.4
Galactica (2022) 6.3 1.0 4.9 45.4 40.0 19.5
Llama 2 (2023) 7.3 1.5 5.6 53.1 41.0 21.7
Llama 2 Chat (2023) 12.1 2.7 7.7 45.4 48.1 23.2
Longchat 32k (2023) 14.9 3.5 9.9 39.9 47.7 23.2
Mistral (2023) 11.1 2.4 8.0 49.2 43.2 22.8
Mistral IT (2023) 21.9 5.2 14.0 42.3 52.6 27.2
Vicuna (2024) 11.2 2.5 7.4 27.4 42.9 18.3
Vicuna 16k (2024) 14.1 3.2 9.1 40.3 47.5 22.8
Zephyr β (2023) 15.5 3.5 9.6 42.7 50.4 24.3

13 B

Llama 2 (2023) 8.1 1.6 6.0 54.3 41.0 22.2
Llama 2 Chat (2023) 12.6 2.8 7.8 45.0 48.9 23.4
Vicuna (2024) 15.1 3.4 9.5 40.6 48.8 23.5
Vicuna 16k (2024) 15.3 3.3 9.6 43.2 49.3 24.1

70 B

Llama2 (2023) 9.4 2.0 6.7 54.4 42.0 22.9
Llama2 Chat (2023) 13.4 2.9 8.4 44.7 49.0 23.7

Table 3: ODQA-PQ evaluates LLM’s ability to recall
the answer from reviews observed during pretraining.

the questions and answers are derived, leading to
model confusion and negatively impacting its abil-
ity to recall answers. This highlights the sensitivity
of these models to extraneous information.

Larger Chat-optimized Llama 2 models per-
form better when provided with more context.
Model size increases in the Llama 2 model - 7B,
13B, and 70B variants — do not improve perfor-
mance in ODQA-PQ setup, as no significant differ-
ences in average performance are observed. How-
ever, the Llama 2 Chat models at 13B and 70B sizes
demonstrate improvements in metrics like ROUGE
and BERTScore when Title/Abstract information is
added (ODQA-PTABS setup). This suggests that
the chat-optimized Llama 2 models are better at
utilizing extended context to enhance information
recall, an ability not seen with the standard Llama
2 model.

Scientific LLM Galactica performs poorly.
Galactica (Taylor et al., 2022), which is the only
LLM trained specifically on scientific texts (re-
search papers, references, LATEX, code, DNA se-
quences, and knowledge bases), performs poorly

Prompt <INS, Q, Title+Abstract>
Model R-1 R-2 R-L BLRT BS-F Avg

2-3 B

Gemma (2024) 8.9 2.2 7.0 51.7 41.0 22.2
Gemma IT (2024) 13.9 2.7 11.1 18.8 39.5 17.2
Phi2 (2023) 15.5 4.0 10.6 44.7 47.9 24.5

6-7 B

Falcon (2023) 6.1 1.2 5.2 52.7 39.9 21.0
Falcon IT (2023) 13.8 3.0 9.3 22.8 42.4 18.3
Galactica (2022) 6.7 1.2 5.0 44.6 42.5 20.0
Llama 2 (2023) 7.6 1.6 5.8 53.8 40.4 21.8
Llama 2 Chat (2023) 18.9 2.5 13.7 35.9 48.8 24.0
Longchat 32k (2023) 2.0 0.4 1.5 9.3 34.1 9.5
Mistral (2023) 9.1 2.3 6.4 37.1 31.8 17.3
Mistral IT (2023) 24.5 6.9 16.0 39.2 53.0 27.9
Vicuna (2024) 2.6 0.5 1.9 13.7 34.3 10.6
Vicuna 16k (2024) 3.3 0.6 2.3 10.6 35.0 10.4
Zephyr β (2023) 19.8 4.7 12.1 40.6 51.9 25.8

13 B

Llama 2 (2023) 7.6 1.6 5.9 12.2 39.4 13.3
Llama 2 Chat (2023) 17.9 2.8 12.9 37.1 49.6 24.1
Vicuna (2024) 4.9 0.9 3.8 12.0 35.9 11.5
Vicuna 16k (2024) 18.9 4.5 11.9 36.5 49.7 24.3

70 B

Llama 2 (2023) 9.6 2.3 6.8 49.4 43.9 22.4
Llama 2 Chat (2023) 22.4 4.8 15.3 41.1 49.7 26.7

Table 4: ODQA-PTABS configuration evaluates if addi-
tional context helps in retrieving memorized answers.

in comparison to most other LLMs. Galactica-
generated answers were often incoherent, with rep-
etitions, hallucinations, and noisy text. The Galac-
tica model, initially exhibiting poor performance in
ODQA-PQ setup, remains largely unchanged with
the inclusion of Title/Abstract information (ODQA-
PTABS) or paper chunks in RAG setup, suggest-
ing the added details have minimal impact on its
answer-recall ability. The improvement of roughly
10 points in average score in CFT setup thus can
be attributed to the Gemini-Pro answer-selector.

Addition of paper chunks to prompt (RAG)
improves performance over both open-domain
question answering setups. An improved score
is observed for all LLMs on the addition of rele-
vant context from papers. Different-sized Llama
2 Chat models (7B, 13B, 70B), however, perform
similarly, indicating that 7B performs similarly to
70B when provided with relevant context.

Gemma models produce noisy text in CFT setup.
The CFT setup segments a full-text paper into
chunks, from which the LLM consecutively gen-
erates answers, followed by an answer-selection
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Prompt <INS, Q>
Model R-1 R-2 R-L BLRT BS-F Avg

2-3 B

Gemma (2024) 13.7 4.1 10.9 44.5 39.4 22.5
Gemma IT (2024) 35.2 10.8 26.8 35.0 53.9 32.3
Phi-2 (2023) 9.1 1.9 5.8 33.5 36.7 17.4

6-7 B

Falcon (2023) 7.3 1.9 5.8 51.0 39.7 21.1
Falcon IT (2023) 27.0 7.5 19.0 42.8 50.9 29.4
Galactica (2022) 8.0 0.9 5.8 40.4 41.1 19.2
Llama2 (2023) 8.9 2.2 6.4 49.6 42.2 21.9
Llama2 Chat (2023) 35.0 9.5 26.0 35.9 53.7 32.0
Mistral (2023) 21.8 6.3 16.2 39.6 46.9 26.2
Mistral IT (2023) 33.7 10.9 23.7 39.2 54.8 32.5
Vicuna (2024) 31.3 9.0 22.5 35.3 52.6 30.1
Vicuna 16k (2024) 31.8 9.1 23.3 35.7 52.3 30.5
Zephyr Beta (2023) 24.8 6.9 15.4 40.7 53.7 28.3

13 B

Llama 2 (2023) 9.4 2.3 6.9 47.5 41.5 21.5
Llama 2 Chat (2023) 31.6 9.3 21.4 39.4 54.8 31.3
Vicuna (2024) 35.0 11.0 25.1 36.6 54.2 32.4

70 B

Llama 2 (2023) 17.2 4.8 12.4 44.7 44.6 24.7
Llama2 Chat (2023) 34.7 8.8 26.0 34.4 52.8 31.3

Table 5: RAG setup prompts the LLM with top-3 chunks
extracted from the paper. RAG shows improvement in
performance over ODQA-PQ and ODQA-PTABS both.

phase by the Gemini-pro model. The Gemma
2B and Gemma-Instruct 2B models perform the
worst, frequently producing syntactically incorrect
answers with repeated phrases, tokens, and sym-
bols. Gemini-pro attempts to select a syntactically
correct response from these candidates, but most
candidates contain noisy text. The performance
scores for the Gemma models in CFT are likely
overestimated, as Gemini-pro often corrects for-
matting errors such as newlines and symbols in the
Gemma-generated responses.

Answer-selection with Gemini-Pro contributes
to similar performances across all LLMs in CFT
setup. In the CFT setup, the average performance
across all models remains relatively consistent,
with significant variances observed primarily in
ROUGE scores. However, comparable BERTScore
suggests that while the wording may differ, the
models generate answers with similar meanings.
This uniformity in scores can largely be ascribed
to the answer selection phase, wherein the Gemini-
pro model is utilized to derive the final answers.

LLM Judge: We employ Prometheus (Kim et al.,
2024) to assess LLM-generated answers on a scale

of 1-5, focusing on the answer’s syntactic correct-
ness, relevance to the question, factuality, and com-
prehensiveness. The scores are presented in Ap-
pendix Table 8. GPT-4 achieves the highest average
score of 4.05, followed by Llama 2 13B Chat with
score 3.88, in CFT setup. All Vicuna models (7B
and 13B both) have an average score in range 3.4-
3.8. Similar to other metrics (ROUGE, BLEURT,
and BERTScore), a degradation in average score is
observed in ODQA-PTABS setup in comparison to
ODQA-PQ setup for most LLMs.

Human Performance Estimation: Evaluating
human performance on the SciDQA dataset is chal-
lenging due to the complex and domain-specific na-
ture of its questions. To assess human proficiency,
the authors compared human responses from 28 an-
notated QA pairs against those generated by GPT-
4. Each QA pair included a question, a ground
truth answer, an author-written answer, and a GPT-
4 generated answer, with evaluations focusing on
comprehensiveness, factuality, and clarity. Results
showed that 32% of comparisons ended in a tie,
indicating GPT-4’s adequacy for simpler questions.
Humans were preferred in 29% of cases, mainly
due to factual inaccuracies in GPT-4 responses.
GPT-4 outperformed humans in 21% of instances,
typically in topics outside the authors’ expertise.
However, 18% of both answers were rejected as
unsatisfactory, particularly for complex questions.
Detailed performance metrics are available in the
Appendix Table 9.

6 Related Work

Manually Curated Scientific QA Datasets: The
QASPER dataset (Dasigi et al., 2021) involves
NLP practitioners creating questions from paper ti-
tles/abstracts, with answers derived from full-texts
by separate annotators. The QASA dataset (Lee
et al., 2023) is generated by AI/ML practition-
ers and paper authors who formulate surface, test-
ing, and deep questions. In contrast, the COVID-
QA dataset (Möller et al., 2020) is crafted by 15
biomedical experts, who develop questions and an-
notate corresponding text as answers, focusing on
COVID-19 research. QASPER has 40% questions
answered in less than five words, while 30% of
QASA QA pairs are sourced from only the intro-
ductions and abstracts, with 52% of answers show-
ing high unigram overlap with the text, indicating
easier retrieval. The ExpertQA dataset (Malaviya
et al., 2024) features 2,177 questions across 32
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Prompt <INS, Q>
Model R-1 R-2 R-L BLRT BS-F Avg

2-3 B

Gemma (2024) 27.4 7.4 21.9 24.0 44.1 25.0
Gemma IT (2024) 34.5 8.2 29.3 25.4 44.6 28.4
Phi2 (2023) 35.1 11.0 26.5 36.4 52.9 32.4

6-7 B

Falcon (2023) 40.3 12.8 32.1 36.3 52.7 34.8
Falcon IT (2023) 30.9 8.4 22.3 38.2 51.8 30.3
Galactica (2022) 40.3 12.7 31.9 34.1 52.4 34.3
Llama 2 (2023) 44.1 14.6 34.0 36.3 55.2 36.8
Longchat 32k (2023) 39.8 11.3 30.3 34.3 53.5 33.8
Mistral (2023) 43.0 13.9 33.3 35.0 54.1 35.9
Mistral IT (2023) 36.6 10.9 27.1 34.5 53.3 32.5
Vicuna (2024) 29.8 8.7 20.0 38.9 54.3 30.3
Vicuna 16k (2024) 34.8 9.7 25.1 36.8 54.0 32.1
Zephyr β (2023) 35.0 9.6 25.4 35.8 54.0 32.0

13 B

Llama 2 (2023) 42.2 13.9 32.0 36.5 55.0 35.9
Llama 2 Chat (2023) 26.8 7.8 17.7 41.8 53.9 29.6
Vicuna (2024) 31.1 9.0 21.2 38.3 54.2 30.8

Proprietary LLMs

GPT-4 (2023) 28.8 8.3 17.6 40.5 55.7 30.2
Gemini Pro (2023) 26.3 8.4 17.9 31.7 53.7 27.6

Table 6: CFT evaluation - answer candidates are gener-
ated using base-LLM followed by Gemini-Pro answer
selection.

fields, created by 524 experts to simulate com-
plex, web-based information-seeking scenarios.
BioASQ-QA dataset (Krithara et al., 2023; Tsatsa-
ronis et al., 2015) involves expert-curated questions
ranging from yes/no, factoid, list, and summary
types, growing from 310 to 4,721 instances over
ten years. Since 2016, BioASQ-QA has focused
solely on titles and abstracts, reflecting the high
effort in manual curation.

Synthetically Generated Scientific QA Datasets:
BioRead (Pappas et al., 2018) and BioMRC (Pap-
pas et al., 2020) are cloze-style biomedical MRC
datasets that utilize text entities as answers, mask-
ing these entities in texts (passages in BioRead,
abstracts in BioMRC) and forming questions from
the last passage line or title. ScholarlyRead (Saikh
et al., 2020) generates QA pairs by extracting
noun phrases from abstracts and using a question-
generation model. As shown in Table 1, these syn-
thetically generated QA datasets generally feature
shorter answers than ours. PubMedQA (Jin et al.,
2019) starts with a labeled dataset where the title
is a question and the last abstract line is the an-
swer, creating 1000 instances with short answers

(yes/no/maybe) annotated based on the abstract. Its
synthetic counterpart uses syntax heuristics and
modification rules to craft similar QA pairs.

Other datasets: The ARIES dataset (D’Arcy
et al., 2023) compiles review comments and as-
sociated paper edits. Its synthetic subset uses a
method similar to ours to extract comment-edit
pairs based on textual overlap. Our dataset diverges
by extracting questions from review comments us-
ing LLMs, not just from quoted responses but also
from author rewrites. We employ human-expert
annotation to refine questions and answers, avoid-
ing reliance solely on textual overlap. This allows
us to include high-quality queries involving tables,
equations, and multi-paragraph reasoning. ARIES’
use of GROBID versus markdown-formatted Open-
Review comments results in mismatches of tables
and equations.

SCIDQA stands out among QA datasets as its
questions are sourced directly from the peer re-
view process, ensuring they are natural, evaluative,
and of high quality due to the scientific discourse
among domain experts. This sourcing guarantees
that the questions require a deep understanding of
the content, emphasizing depth as well as quality.
Additionally, SCIDQA’s use of multi-document
reasoning and well-formatted references provides
an ideal testbed for evaluating LLMs.

7 Conclusion and Future Work

We curate SCIDQA, dataset designed to challenge
language models on the QA task aiming to evaluate
their understanding of scientific papers. The dataset
consists of 2937 QA pairs, and extracts QA asked
by reviewers and answered by paper authors dur-
ing reviewer-author discussion during manuscript
review on OpenReview. Our multi-stage refine-
ment pipeline annotates for quality, decontextual-
izes the QA pairs, edits references, and establishes
the source document from different manuscript ver-
sions. Our dataset features questions necessitating
reasoning across multiple modalities beyond mere
text, including figures, tables, equations, appendix
and supplementary materials. SCIDQA also pro-
vides a testbed for evaluation of multi-document
comprehension properties of LLMs. We evaluate
the performance of several open-source and propri-
etary LLMs in generating the answer to questions
after comprehending the research paper. Signifi-
cant issues are observed with LLM-generated an-
swers such as hallucinations, poorly formatted text,
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repetition of phrases and symbols, and infactual
responses. We posit that SCIDQA will serve as a
useful resource to benchmark the performance of
LLMs in scientific text comprehension.

8 Limitations

Multiple questions in our dataset necessitate com-
prehension and reasoning over multiple documents.
The questions in the dataset often mention the ref-
erence text for previous works that need to be re-
ferred to for answering the question. However, in
our experiments we do not search and include those
documents for answer generation. Additionally, 7%
questions are dependent on figures, but the Nougat
parser does not extract images and only extracts the
figure captions. We do not evaluate any visual or
multimodal LLM. However, we extract figures for
the specific figure-related questions using PDFFig-
ures (Clark and Divvala, 2016), summarize it using
GPT-4o and make that available. We also acknowl-
edge that the evaluation of LLM-generated answers
using automated metrics is not super reliable or
efficient, and we employ it to bypass expensive
manual annotation cost. Generating a meaningful
peer review for different aspects (novelty, meaning-
ful comparison, writing clarity, etc.) is a difficult
task, and the dataset could be used to generate diffi-
cult questions from a manuscript. Our dataset does
not have any judgment statements about paper ac-
ceptance/rejection. However, the questions dataset
could still be used for training a question genera-
tor, and complex questions could be misused by
reviewers as grounds for rejection. Finally, similar
to other existing datasets, our dataset focuses on
curating QA pairs from a specific domain (machine
learning).
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A Curation of SCIDQA- Data
Pre-processing, Annotation and Editing

Curation from OpenReview We selected top-
tier machine learning and deep learning venues,
designated as A* rankings by ICORE Portal
(CORE), with publicly accessible reviewer-author

discussions on OpenReview. During the dataset
compilation phase, NeurIPS, ICLR, ICML, and
TMLR were the A* venues with available discus-
sions. However, only discussions from ICML work-
shop papers and accepted papers from TMLR were
accessible, with rejected papers from TMLR not be-
ing included. To ensure high quality, we excluded
ICML workshop papers. Further, TMLR was also
excluded to maintain diversity and avoid a narrow
focus on only accepted papers. We curate 11400
papers from ICLR (2018-2022) and NeurIPS (2021-
2022), with major focus to include newer papers
to decrease the risk of contamination with LLM
pretraining datasets.

PDF to Text Conversion OpenReview portal
hosts the multiple versions of PDF files for papers
submitted to ICLR and NeurIPS, which also in-
cludes the versions uploaded during the discussion
phase. We downloaded the last manuscript submit-
ted prior to the conference deadline, and refer to it
as the initial version, as well as the final manuscript,
known as the camera-ready version. In case of re-
jected manuscripts, the camera-ready version is not
uploaded, and hence, we either take the latest ver-
sion submitted during discussion with reviewers,
or take the initially submitted manuscript. For con-
verting PDFs to text, we employed Nougat (Blecher
et al., 2023), a visual transformer model designed
for the optical character recognition (OCR) task.
Nougat parses research paper PDFs into markdown
format and has been trained on a dataset compris-
ing papers from arXiv, Pubmed Central, and the
Industry Document Library. We opted for Nougat
as it is the current state-of-the-art, showcasing su-
perior performance in extracting tables, mathemati-
cal text (equations), and general text compared to
GROBID (GRO, 2008–2024), another widely used
OCR tool.

Regex Filtering OpenReview has nested discus-
sions, i.e. authors and reviewers reply to corre-
sponding messages, creating a time-stamp chain
of discussion. Reviewers post the initial review
message, generally consisting of paper summary,
strengths and weakness, questions to authors, and a
recommendation score. Segments of reviewer mes-
sages may be quoted in markdown or paraphrased
by the authors in their replies to address specific
content. Subsequently, reviewers may ask addi-
tional clarifying questions based on the authors’
responses, or express satisfaction or dissatisfaction.
There are instances where, despite the reviewers’

20918

https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


questions, the authors do not provide responses. To
extract nested discussions containing at least one
question and answer, we employed regex pattern
matching, searching for cues such as ‘Question:’,
‘Q’, etc. Using this method, we extracted 18,658
reviewer-author discussions for 11,400 papers that
contained questions and answers. We use the fol-
lowing regex pattern to identify discussions that
contain some questions:

Regex for Extraction

"que[ 0-9]*?[:-] .*[^\n]"
"Q[ 0-9]*?[:-] .*[^\n]"
"question[ 0-9]*?[:-] .*[^\n]"
"^> .*[^\n]"

LLM-based QA Extraction The prompt pro-
vided to PaLM text-bison-001 model to extract QA
pairs is as follows:

Prompt for QA Extraction using PaLM
You are a helpful assistant. Read the follow-
ing paragraph and find all question-answer
pairs in it.

Author Response to Reviewer

Add ‘Q:’ before each question and
‘A:’ before answers. The question-answer
pairs are:

A.1 Annotation details

The annotators achieved an 85% agreement rate
in filtering the type of questions as relevant, irrele-
vant or ambiguous. Half of the disagreements per-
tained to the ambiguous category, with discrepan-
cies arising from one annotator marking instances
as ‘ambiguous’ to speed up annotation versus an-
other favoring detailed assessment. In such cases,
the annotation disagreement does not imply dis-
agreement regarding inclusion of the instance in
the dataset. The annotators resolved the remain-
ing disagreements through discussion and refined
the annotation guidelines to eliminate ambiguities
before proceeding with the rest of the dataset.

The annotation process was facilitated by pro-
viding details such as the paper title, submission
venue, area chair recommendations, and the ex-
tracted questions with their corresponding answers.
To minimize the workload, questions from the same
paper but different reviewers were assigned to the

same annotator. Annotators were encouraged to
consult the original review texts for additional con-
text, enhancing the accuracy of their annotations.

We present scenarios depicting the requirement
of editing QA pairs, and the references text to im-
prove dataset quality in Figure 3 and Figure 4.

Source Document Annotation Scenarios depict-
ing cases where initial vs revised manuscripts are
appropriate for answering the reviewer questions
are presented in Figure 5.

Evidence Extraction We extract evidential para-
graphs, figures, tables, lines in paper text from the
author responses. We also extract evidences for a
smaller subset of the dataset automatically where
there is high overlap between a paper section and
the answer.

B Experiments

B.1 Experimental Setup

We present figures for the experimental setup of
the following:

1. Open-Domain Question Answering - Priming
with Questions (ODQA-PQ)

2. Open-Domain Question Answering - Prim-
ing with Question and Title/Abstract (ODQA-
PTABS)

3. Retrieval Augmented Generation (RAG)
4. Comprehending the full-text (CFT)
We experimented with the parameters (tempera-

ture=0.1, 0.9, top_p=0.1, 0.5, 0.9) on a smaller sub-
set of 20 QA pairs, and selected temperature=0.1
and top_p=0.9 after manually inspecting LLM an-
swers. We carried out three runs initially, but upon
observing no significant difference in performance,
we reported the final numbers in the paper using a
single run.

B.1.1 Chunk Creation Algorithm

Chunking for RAG Setup RAG setup ranks top-
k chunks from the full-text which are then provided
to the LLM to generate the answer. The chunking
strategy is presented in Algorithm 1, and ensures
that the individual chunks fit into the model con-
text length. It also ensures that the collective top-k
chunk lengths also fit the model context length,
and sentences from different paper sections or para-
graphs are not collated together in a single chunk.
We found this setting to work better than naive
chunking and truncating by paragraphs or sections.
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Figure 3: Rewriting QA pairs in a third-person narrative is crucial for models to recognize that questions seek factual
answers based on the author’s reasoning in the paper, rather than personal opinions. Furthermore, incorporating
contextual information enhances the comprehension of questions that necessitate prior contextual knowledge for
accurate interpretation.

Figure 4: References in question and answer texts are uniformly renumbered (e.g., r1, r2, or 1, 2, or A, B) to
preclude the LM from leveraging specific reference markers as shortcuts for answer retrieval. To facilitate accurate
answer formulation by the LM, textual information pertaining to paper references is incorporated into questions,
deterring reliance on mere reference numbers. Similarly, references in answers are renumbered and supplemented
with the relevant reference text as necessary.

Relevant for SCIDQA
Q: How is the expectation of TCE algorithm computed in Equation 18?
A: The expectation is calculated with respect to the ...
Q: In section 3.4.1, is it possible to apply ReMERT to non-episodic or continuing task?
A: ReMERT might not provide proper weights to . . . .

Irrelevant for SCIDQA
Q: Can the inversion method by Chen et al. 2022 be used to improve the latency?
A: We believe that this may be possible, however it will require further analysis.
Q: Can you correct the typos in Section 3.4?
A: Yes, we will correct them in the revised version.

Ambiguous
Q: Can this inversion method be used in tandem with online filtering/smoothing (e.g. 4DVar, EnKF)?
A: We believe that this may be possible, potentially leveraging ideas from Chen et al. [2021].
Q: Why don’t the authors compare to PINNs?
A: PINNs are typically employed to retrieve individual solutions, not learn distributions over data sets. When using
them to solve the individual problems, inference is much slower since the network needs to be trained for each
inferred solution. Iterative solvers seem like a better alternative in our setting.

Table 7: Categorization of questions for inclusion in the SCIDQA dataset. Information-seeking questions, whose
answers are ascertainable within the research paper text, from a collection of synthetically extracted question-answer
pairs using PaLM text-bison-001 model are categorized as relevant, and added to the SCIDQA dataset.
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(a) Initial version is preferred as the revised copy explicitly
mentions the answer.

(b) Revised version is preferred as the answer is originally
absent.

Figure 5: We present scenarios where the initial and
the revised manuscript versions are most appropriate for
answering the reviewer’s question. For each question
in the dataset, we annotate the preferred manuscript
version.

Chunking for FT Setup In the CFT setting, the
chunk length is determined by the LLM’s context
length. If the model context length is N, we re-
served 500 tokens for the instruction and the ques-
tion, and utilized the rest N - 500 tokens for context.
The chunking strategy is presented in Algorithm 2.

B.2 Answer Selection Prompt for Gemini
The prompt provided to Gemini-pro model to gen-
erate a single answer during the answer selection
phase in CFT setup is as follows:

Prompt for Answer Selection using Gemini
You are provided with a question and some
potential answers about a research paper
submitted to a top-tier computer science
conference in the domain of ML and DL.
Your task is to select the best answer from
the provided answer options, which com-
prehensively answers the question. Do not
include any additional text other than the
answer and select only one answer from the
provided options.

Algorithm 1 Chunk Creation Algorithm for RAG

1: Input: Full-text document
2: Output: List of chunks
3: Split the full-text into paragraphs (demarcated

by \n).
4: for each paragraph P do
5: Split P into individual sentences (using the

NLTK library).
6: Initialize an empty list chunks
7: for every 10 consecutive sentences in P do
8: Join the sentences to build a chunk.
9: Add the chunk to chunks

10: Slide the window by nine sentences
(i.e., keep a single overlapping sentence be-
tween consecutive chunks).

11: end for
12: end for

Algorithm 2 Chunk Creation Algorithm for CFT
1: Split the full-text into paragraphs (demarcated

by \n).
2: for each paragraph do
3: if the length of paragraph is less than N −

500 then
4: The entire paragraph is treated as a

chunk
5: else
6: Split the paragraph into a list of sen-

tences, say S = [s1, s2, . . . , sn]
7: Initialize an empty chunks_list = [ ]
8: Initialize an empty string chunk c = “”
9: for sentence s in S do

10: if token_count(c) +
token_count(s) < N − 500 then

11: Add sentence s to the chunk c
12: continue
13: else
14: Add chunk c to the

chunks_list
15: Reinitialize the empty chunk c
16: Add sentence s to the chunk c
17: continue
18: end if
19: end for
20: end if
21: end for
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ODQA-PQ ODQA-PTABS RAG CFT

2-3 B

Gemma (2024) 2.32 1.7 1.64 1.98
Gemma IT (2024) 3.35 1.34 2.2 1.88
Phi-2 (2023) 3.7 2.75 1.92 3.02

6-7 B

Falcon (2023) 1.23 1.3 1.37 2.62
Falcon IT (2023) 3.78 1.92 2.76 2.77
Galactica (2022) 1.43 1.52 1.37 2.8
Llama 2 (2023) 1.41 1.67 1.74 2.73
Llama 2 Chat (2023) 3.65 2.14 3.25 2.77
Mistral (2023) 2.37 2.23 2.16 2.6
Mistral IT (2023) 3.75 3.5 3.3 2.98
Vicuna (2024) 2.27 1.1 3.03 3.81
Vicuna 16k (2024) 3.18 1.19 2.83 3.36
Zephyr β (2023) 3.98 3.46 3.71 3.34

13 B

Llama 2 (2023) 1.4 1.5 1.74 2.82
Llama 2 Chat (2023) 3.91 2.23 3.55 3.88
Vicuna (2024) 3.44 1.19 3.17 3.78

Proprietary LLMs

GPT-4 (2023) - - - 4.05
Gemini-Pro (2023) - - - 2.89

Table 8: Average Prometheus Scores, where each answer is rated on a scale of 1-5 focusing on syntactic correctness,
relevance to the question, factuality, and comprehensiveness. GPT-4 has the highest average score of 4.05.

Figure 6: Priming LLMs with Questions (ODQA-PQ).
This task evaluates the ability of LLM to recall the
answer without any relevant context.

Figure 7: Open-Domain Question Answering - Priming
with Question and Title/Abstract (ODQA-PTABS). This
task evaluates the impact of additional context on LLM
ability to recall the answer without reasoning about the
question.

Preferred Answer Tie Human GPT-4 None

GPT-4 32.5 30.4 37.0 34.6
Human 34.8 34.4 38.5 34.0

Table 9: Average scores of Human and GPT-4 gen-
erated answers on a subset of SciDQA dataset across
instance categories. The average score (R-1, R-2, R-L,
BLRT, BS-F) of human and GPT-4 generated answers
are grouped by preference.
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Figure 8: RAG setup ranks paper subsections based on their relevance to the question, and top-3 subsections are
provided to the base-LLM, which generates the answer.

Figure 9: Comprehending the full-text (CFT) of the research paper by passing model context-length segments to
the base-LLM and generating answers from each segment. Gemini-Pro selects the best answer among generated
candidate answers.
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