
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 20996–21020
November 12-16, 2024 ©2024 Association for Computational Linguistics

ApiQ: Finetuning of 2-Bit Quantized Large Language Model

Baohao Liao1,2* Christian Herold2 Shahram Khadivi2 Christof Monz1
1Language Technology Lab, University of Amsterdam

2eBay Inc., Aachen, Germany
Code: https://github.com/BaohaoLiao/ApiQ

Abstract

Memory-efficient finetuning of large language
models (LLMs) has recently attracted huge at-
tention with the increasing size of LLMs, pri-
marily due to the constraints posed by GPU
memory limitations and the effectiveness of
these methods compared to full finetuning. De-
spite the advancements, current strategies for
memory-efficient finetuning, such as QLoRA,
exhibit inconsistent performance across diverse
bit-width quantizations and multifaceted tasks.
This inconsistency largely stems from the detri-
mental impact of the quantization process on
preserved knowledge, leading to catastrophic
forgetting and undermining the utilization of
pretrained models for finetuning purposes. In
this work, we introduce a novel quantization
framework named ApiQ, designed to restore the
lost information from quantization by concur-
rently initializing the LoRA components and
quantizing the weights of LLMs. This approach
ensures the maintenance of the original LLM’s
activation precision while mitigating the error
propagation from shallower into deeper layers.
Through comprehensive evaluations conducted
on a spectrum of language tasks with various
LLMs, ApiQ demonstrably minimizes activa-
tion error during quantization. Consequently,
it consistently achieves superior finetuning re-
sults across various bit-widths. Notably, one
can even finetune a 2-bit Llama-2-70b with
ApiQ on a single NVIDIA A100-80GB GPU
without any memory-saving techniques, and
achieve promising results.1

1 Introduction

Large language models (LLMs) have garnered sig-
nificant acclaim and success across a wide range of
domains and applications (Touvron et al., 2023b;
Jiang et al., 2023; OpenAI, 2023). With ongoing ad-
vancements, the scope and complexity of released

*Correspondence to: b.liao@uva.nl
1Please read the newest version at

https://arxiv.org/abs/2402.05147.

LLMs have witnessed exponential growth, with
some LLMs encompassing more than 50B param-
eters (Touvron et al., 2023b,a; Zhang et al., 2022;
Scao et al., 2022). This remarkable upscaling intro-
duces considerable challenges, particularly when
effectively adapting these models for downstream
tasks. Historically, a prevalent method for adapt-
ing pretrained models to specific downstream tasks
is full finetuning, a process that updates all pre-
trained parameters. Although this approach has led
to many state-of-the-art achievements, its practical-
ity is somewhat hindered in scenarios where GPU
memory is limited. This limitation stems from the
necessity to store the model’s weights and opti-
mizer’s states in the GPU’s memory and intensifies
with the escalating sizes of LLMs.

To mitigate the extensive memory requirement
for finetuning LLMs, an alternative method is
parameter-efficient finetuning (PEFT) (Liao et al.,
2023a; Hu et al., 2022; Houlsby et al., 2019). This
technique involves selectively introducing and up-
dating a limited set of parameters while leaving the
majority of the LLM’s parameters unchanged. A
key advantage of this approach is the substantial
reduction in GPU memory required for the opti-
mizer’s states since the size of the optimizer states
is proportional to the amount of trainable parame-
ters. To further reduce the GPU memory required
by loading the LLM’s weights, multiple model
compression methods have been proposed (Shao
et al., 2023a; Xiao et al., 2023; Dettmers et al.,
2023b; Lin et al., 2023; Frantar et al., 2022), con-
verting high-precision weight values into a discrete
set of values. Initially, quantization techniques
were primarily developed for deploying LLMs in
memory-limited environments for inference pur-
poses. QLoRA (Dettmers et al., 2023a) innova-
tively combines PEFT, specifically LoRA (Hu et al.,
2022), with quantization methods to remarkably re-
duce the GPU memory requirement for finetuning.

However, QLoRA (Dettmers et al., 2023a) in-

20996

https://github.com/BaohaoLiao/ApiQ
mailto:b.liao@uva.nl
https://arxiv.org/abs/2402.05147

herits the same challenge as LLM’s quantization,
namely the distortion of the learned knowledge
from the full-precision LLM due to the quantization
error, which exacerbates at lower-bit quantizations,
leading to catastrophic forgetting. Recently, Li
et al. (2023) and Guo et al. (2023) proposed a new
method to reduce the quantization error through
a strategic initialization of the LoRA components
to maintain the original weight states. This tech-
nique has demonstrated considerable success in the
finetuning of lower-bit quantized LLMs (QLLMs).
Nonetheless, they focus on preserving the weight
states on a per-linear-layer basis, resulting in accu-
mulative error propagation through layers.

In this paper, we introduce a novel and efficient
quantization framework, termed ApiQ, which con-
sists of two steps to adapt an LLM, similar to
QLoRA. During the quantization step, ApiQ pre-
serves the activation instead of the weight of full-
precision LLM by jointly optimizing the LoRA’s
components and quantizing the LLM’s weights.
This approach ensures that the output of the QLLM
remains consistent with that of the full-precision
LLM, effectively mitigating quantization error by
aligning the activations across corresponding lay-
ers. As a result, the quantization errors introduced
in earlier layers are ameliorated. Subsequently, we
finetune the LoRA modules with the fixed QLLM
on downstream tasks, thereby significantly reduc-
ing the demands on GPU memory.

Our primary contributions are as follows:

• We conduct an in-depth analysis of the chal-
lenges associated with finetuning QLLM (§3).

• We propose ApiQ to initialize the PEFT pa-
rameters in conjunction with the quantization
of an LLM, aiming to retain the activation of
the full-precision LLM. ApiQ demonstrates
superior performance post-quantization, even
surpassing the latest post-training quantiza-
tion (PTQ) techniques (§4).

• We carry out extensive finetuning experiments
on 5 LLMs across 5 different tasks to evaluate
the effectiveness of ApiQ. ApiQ consistently
outperforms all baselines at various bit levels
(§5 and Figure 4).

2 Preliminaries

GPU memory allocation and utilization are typ-
ified by three principal mechanisms for training a

12.6

26.4
25.1

15.9

Full Finetuning

Model
Optimizer

Gradient+Activations+Other
Unused

4.65.3

23.9 46.2

QLoRA

Figure 1: Memory allocation (GB) of a A100-80GB
GPU for finetuning Llama-2-7b. The optimizer is Adam.
The batch size is 1. The sequence length is 2048. For
QLoRA, the bit-width is 4 and the LoRA rank is 64.

model, as exemplified in Figure 1 during the train-
ing of Llama-2-7b (Touvron et al., 2023b). Initially,
a substantial portion of GPU memory is allocated
to store the model’s weights. For instance, approxi-
mately 12.6GB is required for a model comprising
roughly 7B parameters in BFloat16 format. Sec-
ondly, the optimizer states associated with trainable
parameters occupy a considerable amount of GPU
memory. Employing Adam (Kingma and Ba, 2015)
as the optimizer necessitates storing the first and
second moments in the GPU memory, effectively
doubling the memory requirement compared to that
needed for the trainable parameters alone. Notably,
the memory allocations for the model’s weights
and optimizer states are static, remaining constant
throughout the training process. The third aspect
involves the temporary storage of activations — the
outputs produced by each layer as data traverses
through the model. These activations are crucial
for gradient computation during the backward pass
and are retained in memory for this purpose. After
the gradient computation, these activations are dis-
carded. Modern training frameworks, like PyTorch
(Paszke et al., 2019), employ a sequential process
for gradient computation and activation deletion,
enhancing memory efficiency. Subsequently, gradi-
ents are utilized to update the model’s weights and
optimizer states, and then they too are eliminated.
Peak memory usage typically occurs at the onset
of gradient computation or during the update of
optimizer states.

Memory-efficient finetuning. In response to
the GPU memory constraints and the increasing
size of LLMs, various strategies have been devel-
oped to optimize memory efficiency during finetun-
ing. To mitigate activation memory demands, tech-
niques such as selective activation storage and on-
demand recomputation are employed (Liao et al.,
2023b; Gomez et al., 2017; Chen et al., 2016). Ad-

20997

ditionally, to curtail the memory required for op-
timizer state storage, the pretrained LLM is kept
fixed while a limited amount of trainable parame-
ters are introduced (Hu et al., 2022; Houlsby et al.,
2019). A prime example is LoRA (Hu et al., 2022),
which adapts the pretrained weight, W ∈ Rd1×d2 ,
of a linear layer as W ′ = W + α

rAB⊤, where
A ∈ Rd1×r, B ∈ Rd2×r, r ≪ d1, r ≪ d2 and α
is a scalar. Introducing a smaller bottleneck dimen-
sion r substantially reduces the memory demand
for the optimizer, illustrated by a reduction from
26.4GB to 5.3GB as shown in Figure 1. To further
diminish LoRA’s memory usage, Dettmers et al.
(2023a) introduced a quantized version of W , such
as a 4-bit representation in contrast to 16 bits. This
technique significantly decreases the memory re-
quirement for storing the model’s weights, from
12.6GB to 4.6GB.

Quantization involves converting high-
precision values into discrete levels. In this
research, we focus on uniform affine quantization
(Jacob et al., 2018), known for its enhanced
hardware support and efficiency. This process
quantizes the pretrained weight as follows:

Wq = clamp(⌊W
s
⌉+ z, 0, 2b − 1) (1)

where the scale factor s = max(W)−min(W)
2b−1

, the

zero-point z = −⌊min(W)
s ⌉, b is the bit-width, and

⌊⌉ is the round-to-nearest operation. One only
needs to load Wq and z in a reduced bit format,
and s in Float16 to GPU. During the forward pass,
they are de-quantized for activation computation as
Q = s(Wq − z).

3 Challenges of Finetuning QLLM

QLoRA (Dettmers et al., 2023a) employs a strat-
egy wherein the fixed pretrained weights are loaded
onto the GPU in a lower-bit format, while finetun-
ing is confined to a minimal number of parameters
from the adapters. This approach significantly re-
duces the memory allocation required from both
the model’s weights and optimizer states, decreas-
ing it from 39GB to 10GB, as depicted in Figure
1. This reduction in memory demand facilitates the
finetuning of LLMs on more modest computational
resources. Nevertheless, this method introduces
certain challenges associated with quantization.

3.1 QLLM breaks down the starting point
LLMs are recognized for their ability to learn
broadly applicable and distributed representations

Method LoRA MNLI (acc↑) WikiText (ppl↓)
position 2 Bits 4 Bits 2 Bits

QLoRA
All 79.7 5.24 N.A.
FFN 78.2 5.29 N.A.
Attn 75.7 5.28 N.A.

LoftQ
All 88.5 5.24 7.85
FFN 87.1 5.30 8.64
Attn 87.5 5.28 8.86

ApiQ-lw
All 88.6 5.28 7.46
FFN 88.2 5.29 7.50
Attn 88.6 5.25 7.55

Table 1: The effect of trainable LoRA position. All
linear layers are incorporated with a LoRA module ini-
tialized with different methods. Only the LoRA mod-
ules in the denoted position are finetuned. ApiQ has the
smallest gap between different positions.

that effectively support the downstream learning
of compressed task-specific representations (Agha-
janyan et al., 2021), i.e. offering a robust starting
point for the training of downstream tasks. Liao
et al. (2023b) postulate that maintaining this start-
ing point — ensuring that the difference between
the modified weight W ′ and the original weight
W is minimal (i.e., ∥W ′−W ∥ → 0) — is crucial
at the finetuning’s outset to achieve performance
comparable to full finetuning.

LoRA (Hu et al., 2022) adheres to this principle
by initializing B = 0, which results in W ′ = W
at the start of the training. QLoRA (Dettmers et al.,
2023a), on the other hand, follows LoRA’s default
initialization for A and B. Consequently, at the
onset of training, W ′ = Q + AB⊤ = Q. Due
to the round-to-nearest and clipping operations in-
volved in quantization, Q differs from the original
W , thereby distorting the starting point. This de-
viation, represented by ∥δW ∥ = ∥W −W ′∥, is
expected to increase with lower-bit quantization.

Recent developments by Li et al. (2023) and Guo
et al. (2023) introduced an approach to initialize
the Q, A and B matrices in QLoRA by solving
the following optimization problem:

argmin
Q,A,B

∥W − (Q+AB⊤)∥ (2)

The key objective of this technique is to obtain Q,
A, and B in such a way that the initial state of the
model (the starting point) is preserved as closely as
possible. As shown in Figure 2 (Left), LoftQ (Li
et al., 2023) significantly reduces the weight error.

20998

0 10 20 30

10

0

10
R

el
at

iv
e

w
ei

gh
t e

rr
or

between LoftQ and QLoRA

q_proj k_proj v_proj o_proj gate_proj up_proj down_proj
0 10 20 30

between ApiQ-lw and QLoRA

0 10 20 30

between ApiQ-lw and LoftQ

Layer index

Figure 2: Relative weight quantization error of 2-bit quantized Llama-2-7b, i.e. e = ∥δW baseline∥F − ∥δWmethod∥F .
The larger e is, the more effective the method is in reducing weight error compared to the baseline. Left: The
method is LoftQ and the baseline is QLoRA. Middle: The method is ApiQ and the baseline is QLoRA. Right: The
method is ApiQ and the baseline is LoftQ. Refer to Figure C.1 for the 2-bit and 4-bit non-relative weight error.

3.2 Accumulative quantization error

The findings of Hu et al. (2022) highlight that in-
tegrating LoRA modules solely into the query and
value projection layers is adequate to match the
performance of full finetuning. This stands in con-
trast to the stance of Dettmers et al. (2023a), who
advocate for integrating the LoRA modules into all
linear layers of QLLM to achieve similar results.

We extend upon the conclusion of QLoRA by
conducting finetuning experiments with DeBERTa-
v3-base (He et al., 2023) and Llama-2-7b (Touvron
et al., 2023b) on the MNLI (Williams et al., 2018)
and WikiText-2 (Merity et al., 2017) datasets, re-
spectively. As presented in Table 1, the most ef-
fective results from QLoRA are achieved when
the LoRA modules in all linear layers are trained,
rather than a subset of them. This observation leads
us to propose that each linear layer undergoes a loss
of learned information as a consequence of quanti-
zation. To mitigate this loss and restore the original
learned information, it is essential to adapt each
linear layer individually with a LoRA module.

Furthermore, we notice that the quantization er-
rors accumulate through layers. Consider two con-
secutive linear layers, W0 and W1, with inputs
and outputs X0, X1 and X2, respectively. Under
QLoRA’s quantization, the activation error for the
first layer is ∥X1 −Xq

1∥ = ∥X0W0 −X0Q0∥ =
∥X0W0−X0(W0−δW0)∥ = ∥X0δW0∥, where
δW0 is the quantization error. For the second
layer, the error is ∥X2 −Xq

2∥ = ∥X0W0δW1 +
X0δW0W1 −X0δW0δW1∥. This phenomenon
indicates that the quantization errors from shal-
lower layers are propagated to deeper layers, with
potentially greater impact in deeper LLMs. This
effect underscores another justification for the im-
plementation of LoRA modules in every quantized

linear layer to timely counteract the errors.
Despite the advances made by LoftQ (Li et al.,

2023) in reducing the quantization error δW =
W − (Q+AB⊤), the issue of error propagation
persists. This is evidenced in Table 1, where the
performance between training all LoRA modules
and only training a subset of them is still large, es-
pecially for lower-bit quantization. Such findings
emphasize the importance of not only minimizing
the quantization errors at their source but also man-
aging their propagation across layers.

3.3 SVD is not a universal solution

Li et al. (2023) and Guo et al. (2023) apply an
iterative algorithm to solve Equation (2) as:

A(t),B(t) ← SVD(W −Q(t−1))

Q(t) ← f(W −A(t)B(t)⊤)

where f is a function for a sequential quantization
and de-quantization as:2

Q = f(W)

= s · (clamp(⌊W
s
⌉+ z, 0, 2b − 1)− z) (3)

Although this algorithm is effective without the
usage of calibration data, we couldn’t easily ap-
ply it to other PEFT methods, even a variant of
LoRA, i.e. DoRA (Liu et al., 2024). This algo-
rithm requires a relationship of addition between
the PEFT parameters and W , which is not possi-
ble for some PEFT methods, like (IA)3 (Liu et al.,
2022a), Adapter (Houlsby et al., 2019), HiWi (Liao
et al., 2023a) and so on.

2We use uniform affine quantization to represent the quanti-
zation of LoftQ and LQ-LoRA for easy understanding. LoftQ
and LQ-LoRA actually apply NF-quantization as QLoRA.

20999

Overall, to effectively finetune a QLLM, we need
to preserve the starting point, mitigate the propaga-
tion of quantization error, and design a universal
algorithm for various PEFT methods.

4 Method: ApiQ

In this section, we introduce a novel quantization
framework, Activation-preserved initialization of
QLLM termed as ApiQ, that addresses all above-
mentioned challenges when finetuning a QLLM.
The core objective of ApiQ is to maintain the in-
tegrity of the starting point, while effectively mini-
mizing the cumulative impact of the quantization
errors as they traverse through the network.

4.1 Activation-preserved initialization

The ApiQ framework introduces a distinct ap-
proach to quantization by focusing on minimizing
the activation error, rather than the weight error as
in previous methods (Li et al., 2023; Guo et al.,
2023). The core optimization problem of ApiQ is
formulated as follows:

argmin
Q,A,B

||XW −Xq(Q+ABT)|| (4)

The pretrained weight W ∈ Rd1×d2 remains fixed
during optimization. The quantized weight Q ∈
Rd1×d2
b is represented in b-bit format, while A ∈

Rd1×r and B ∈ Rd2×r are low-rank matrices that
are trainable. The input to the linear layer W is
denoted as X ∈ Rn×t×d1 , where n is the batch size
and t is the sequence length. Consequently, XW
represents the output or activation of the linear
layer. The input to the quantized linear layer with
LoRA is Xq ∈ Rn×t×d1 . It’s important to note
that for the first linear layer of an LLM, X equals
Xq. For subsequent layers, Xq is the output from
the nearest shallower quantized layer of W .

A key difference from LoftQ (Li et al., 2023)
and LQ-LoRA (Guo et al., 2023) is that ApiQ re-
quires sequential optimization for each linear layer
following the input order of different layers, as
Xq is derived from the preceding layer. E.g., in
each transformer block of Llama-2 (Touvron et al.,
2023b), the optimization should start with the key,
query, and value projection layers, followed by the
output projection layer, then the gate and up pro-
jection layer, and finally the down projection layer.

ApiQ has two primary advantages. Firstly, it en-
sures that the output from the quantized linear layer
closely aligns with the original output, thereby

preserving the starting point of the model. Sec-
ondly, it potentially mitigates the quantization error
from shallower layers into deeper layers. This is
achieved by consistently enforcing that the output
of each quantized layer closely matches the original
output, thereby gradually easing the quantization
error as it propagates through the network. This
mechanism isn’t present in LoftQ and LQ-LoRA,
giving ApiQ a unique advantage in managing and
reducing the quantization errors in QLLMs.

4.2 Block-wise ApiQ
We define Equation (4) as layer-wise ApiQ (ApiQ-
lw), because the LLM is quantized in a layer-by-
layer manner. Additionally, we can optimize the
entire transformer block simultaneously as follows:

argmin
Qs,As,Bs

||F(W s,X)−F(Qs,As,Bs,Xq)||

where F denotes the mapping function of a trans-
former block, W s represent all the weights of the
linear layers within this block, X is the input to this
block, Qs are the quantized versions of W s, As
and Bs are all low-rank matrices within this block,
and Xq is the input to the quantized block and the
output from the preceding quantized block. Block-
wise ApiQ (ApiQ-bw) necessitates sequential opti-
mization but on a block-by-block basis, meaning
we first optimize the first transformer block, fol-
lowed by the second block, and so on.

ApiQ-bw retains the benefits of ApiQ-lw while
offering two additional advantages. Firstly, ApiQ-
bw is more time-efficient than ApiQ-lw because it
quantizes the entire block in one step. Secondly,
ApiQ-bw is compatible with a broader range of
PEFT methods without necessitating adaptations
for every linear layer. The matrices As and Bs do
not have to be the low-rank matrices from LoRA;
they can be trainable parameters from any PEFT
method, such as DoRA, (IA)3, HiWi and Adapter.

4.3 Gradient-based optimization
To effectively solve Equation (4), ApiQ utilizes
a gradient-based algorithm akin to conventional
neural network training. The process involves op-
timizing the quantized weight Q along with the
low-rank matrices A and B jointly.

Originally, f from Equation (3) is a static func-
tion without any trainable parameters. Drawing
inspiration from existing learnable quantization
methods (Shao et al., 2023a; Liu et al., 2022b; Esser
et al., 2020; Choi et al., 2018), ApiQ introduces two

21000

0

10

20

30
Block-wise

QLoRA LoftQ ApiQ-lw

0

5

10

15

QLoRA

q_proj k_proj v_proj o_proj gate_proj up_proj down_proj

0

5

10

15

LoftQ

0

5

10

15

ApiQ-lw

0 5 10 15 20 25 30
0

100

200
QLoRA / 1500

0 5 10 15 20 25 30
0

500

1000

1500

2000 o_proj / 3
down_proj / 12

0 5 10 15 20 25 30
0

50

100

150

0 5 10 15 20 25 30
0

50

100

150

A
ct

iv
at

io
n

er
ro

r 4
B

its
2

B
its

Layer index

Figure 3: The average activation error ∥XW −Xq(Q+AB⊤)∥F per token for different linear layers of Llama-
2-7b. 1st column: The activation error for every transformer block. We randomly sample 128 sentences from C4 to
obtain the activations. For better visualization, some lines are divided by a factor, denoted as “/ factor”. Please pay
attention to the scale of the y-axis to compare different methods. ApiQ has the smallest activation error.

Algorithm 1 ApiQ-lw for one linear layer
1: Input: calibration samples X and Xq , W , A, B, Θ
2: Output: Y , Y q , A, B, Θ
3: Y = XW ▷ Unquantized output, save for next layer
4: for e = 0 to (Epochs− 1) do
5: for (y,xq) in (Y , Xq) do ▷ Batch-wise
6: Q = W /s
7: Q = ⌊Q⌉+Q−Q.detach() ▷ STE
8: Q = s · (clamp(Q+ z, 0, 2b − 1)− z)
9: yq = xq(Q+AB⊤) ▷ Quantized output

10: loss = MSE(y − yq)
11: loss.backward()
12: end for
13: end for
14: Y q = Xq(Q+AB⊤) ▷ Save for next layer

trainable parameters, γ and β, for each weight ma-
trix. These parameters control the clipping range
of the quantization process:

s =
σ(γ)max(W)− σ(β)min(W)

2b − 1

z = −⌊σ(β)min(W)

s
⌉

Here, σ denotes a sigmoid function, constraining
the clipping range to prevent excessive value ex-
pansion. We initialize γ = β = 4 (σ(4) ≈ 0.98)
to maintain the original clipping range at the begin-
ning of quantization.

The optimization for one linear layer is outlined
in Algorithm 1. During this process, only A, B
and Θ = {γ, β} are trained. Given that the quanti-
zation function f incorporates a round-to-nearest
operation, a straight-through estimator (STE) (Ben-
gio et al., 2013) is applied to ensure the update of Θ.
The ApiQ-lw algorithm is designed to be memory-
efficient, optimizing each layer sequentially. This

implies that any GPU capable of running the model
inference can be used to quantize the model using
ApiQ-lw. The outputs Y and Y q from each layer
serve as inputs to optimize the subsequent adjacent
layer, ensuring efficient quantization.

ApiQ-bw employs a nearly identical optimiza-
tion algorithm to ApiQ-lw, with the primary distinc-
tion being that the outputs, y and yq, are generated
from a transformer block rather than a linear layer.
It is worth noting that while ApiQ-bw offers im-
proved time efficiency compared to ApiQ-lw, it
necessitates marginally higher GPU memory usage
due to the need to cache more activations from the
layers within a transformer block.

Preliminary experiments. In Figure 3, ApiQ
reduces the activation error by a large margin com-
pared to QLoRA and LoftQ, more obvious for
lower-bit quantization. Interestingly, while our
objective is to minimize the activation error, the
weight error of ApiQ is the smallest for most lay-
ers, as shown in Figure 2. This dual effectiveness
in minimizing both activation and weight errors
underscores the comprehensive nature of ApiQ to
quantization. Further evidence of ApiQ’s effective-
ness is presented in Table 1 where ApiQ has the
smallest performance gap for different trainable
LoRA positions. In some cases, only training the
LoRA modules in the attention position can offer
the best results, similar to the original findings of
LoRA (Hu et al., 2022). It suggests that ApiQ is
particularly adept at addressing and mitigating the
cumulative effects of quantization error.

Due to space constraints, we highly recommend
that readers refer to Appendix §B.1 and §B.2 for

21001

a comprehensive analysis of ApiQ’s quantization
quality and efficiency.

5 Experiments

In this section, we evaluate ApiQ on the language
understanding, language modeling, arithmetic rea-
soning and commonsense reasoning tasks by quan-
tizing DeBERTa-v3 (He et al., 2023), RoBERTa
(Liu et al., 2019), Llama-2 (Touvron et al., 2023b)
and Mistral (Jiang et al., 2023). Like QLoRA,
LoftQ and LQ-LoRA, ApiQ consists of two steps:
the quantization step and the finetuning step. Dur-
ing the quantization step, we initialize Q, A and B
in a way to preserve the starting point and mitigate
the propagation of quantization error. For the fine-
tuning step, we freeze Q in a lower bit and train A
and B in half-precision (BFloat16).

Implementation details. In Algorithm 1, the
quantization process of ApiQ requires a calibration
dataset. We randomly sample 128 sentences from
the training set of WikiText-2 (Merity et al., 2017).
Following our baselines (Dettmers et al., 2023a;
Li et al., 2023), LoRA modules are integrated into
all linear layers. By default, the group/block size
for quantization is 64 for all methods. We employ
AdamW (Loshchilov and Hutter, 2019) as an opti-
mizer to update A, B and Θ. More implementation
details for the quantization and finetuning steps are
detailed in Appendix §C for reproduction.

Baselines include full finetuning (Full FT),
LoRA (Hu et al., 2022), QLoRA (Dettmers et al.,
2023a), GPTQ-LoRA (Frantar et al., 2022), LoftQ
(Li et al., 2023), and LQ-LoRA (Guo et al., 2023).
Full FT and LoRA are considered the upper bound
for finetuning. QLoRA and GPTQ-LoRA employ
NF-quantization and uniform quantization, respec-
tively, on the pretrained weights with the default
LoRA initialization. These methods are memory-
efficient but distort the starting point. In contrast,
LoftQ and LQ-LoRA initialize the matrices Q, A,
and B to preserve the initial weight state, thus serv-
ing as a strong baseline to ApiQ.

5.1 Finetuning results and discussion

Natural language understanding. We finetune
DeBERTa-v3-base and RoBERTa-large on the
GLUE tasks (Wang et al., 2019) and show the re-
sults in Figure 4. ApiQ outperforms all baselines
under the same level of quantization on average.
With 3-bit quantization, ApiQ is even better or com-
parable to Full FT.

Language modeling. We finetune Llama-2-7b,
Llama-2-13b and Mistral-7b-v0.1 on the WikiText-
2 training set (Merity et al., 2017) and report their
perplexity on the validation set, as shown in Fig-
ure 4 (Table C.7 for Mistral). Among the tested
methods, ApiQ-bw consistently achieved the best
performance, followed closely by ApiQ-lw across
all bit levels. The performance difference becomes
more pronounced at lower bit levels. The ApiQ’s
results on Llama-2-13b are even better than LoRA
(Float16) for the 3-bit and 4-bit levels.

Arithmetic reasoning (single-task). We fine-
tune Llama-2 and Mistral on the training set of
GSM8K (Cobbe et al., 2021) and report the accu-
racy on the test set in Figure 4 (Table C.7 for Mis-
tral). Similar to the results of WikiText-2, ApiQ-
bw and ApiQ-lw achieve the highest and second-
highest accuracy for all bit levels, respectively, with
both ApiQs being comparable to or even better than
LoRA for the 3 and 4-bit quantization.

ApiQ-lw or ApiQ-bw? ApiQ-lw is more
memory-efficient for quantization than ApiQ-bw,
as shown in Table B.3. However, ApiQ-lw requires
more time for quantization due to the layer-by-layer
manner. Based on the quantization quality (Ap-
pendix §B.1), quantization efficiency (Appendix
§B.2) and the previously discussed finetuning re-
sults, we recommend using ApiQ-bw. Therefore,
ApiQ-lw is ignored for the following experiments.

Arithmetic reasoning. The setting here con-
trasts with the previous experiments where each
task involves finetuning a separate QLLM. Instead,
we adopt a unified strategy by finetuning a single
QLLM across all tasks as delineated in Hu et al.
(2023). We finetune Llama-2 on Math10K (Hu
et al., 2023), and evaluate the finetuned QLLM on
the test sets of AQuA (Ling et al., 2017), GSM8K,
MAWPS (Koncel-Kedziorski et al., 2016) and
SVAMP (Patel et al., 2021). Such a setting is more
practical as LLM is frequently used as a general
model for various tasks.

As shown in Figure 4, ApiQ-bw consistently
outperforms all quantization baselines for various
bit levels, except for the 4-bit level where ApiQ
is slightly worse than QLoRA, 53.5 vs. 53.7 for
Llama-2-7b and 59.0 vs. 59.5 for Llama-2-13b.
However, QLoRA’s 3- and 2-bit results are ex-
tremely worse, < 3% accuracy (Table C.8).

Commonsense reasoning. In assessing the
capacity of QLLM for commonsense reasoning,
we focus on eight representative tasks: BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020),

21002

70

75

80

85

90 Full FT ApiQ-lw

QLoRA

LoftQ
ApiQ-lw

GLUE

5

6

7

8 WikiText-2

20

30

40

50

GSM8K

40

45

50

55

60 Arithmetic reasoning
LoRA QLoRA GPTQ-LoRA LoftQ ApiQ-lw ApiQ-bw

2 3 4
70

75

80

85

90 Full FT QLoRA

QLoRA
LQ-LoRA

ApiQ-lw

2 3 4

5

6

7

8

2 3 4
20

30

40

50

2 3 4
40

45

50

55

60

Bit

Av
er

ag
e

sc
or

e

Pe
rp

le
xi

ty

Ac
cu

ra
cy

Av
er

ag
e

ac
cu

ra
cy

Figure 4: Finetuning performance over various tasks. 1st row: LLM is DeBERTa-v3-base for GLUE and Llama-2-
7b for the rest. 2nd row: LLM is RoBERTa-large for GLUE and Llama-2-13b for the rest. For better visualization,
some unexpectedly worse results are ignored. Please refer to Table C.4, C.7 and C.8 for the detailed numbers.

Model Method Bit BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg. ↑

LoRA 16 73.60.3 86.50.1 81.80.1 95.20.1 86.90.2 89.40.4 76.70.8 86.70.8 84.60.2

QLoRA 4 73.90.4 84.40.8 79.70.2 93.30.2 84.60.6 86.10.4 73.00.4 85.10.5 82.50.2
GPTQ-LoRA 4 73.40.4 83.60.5 79.30.3 93.30.1 84.50.8 86.50.3 72.81.3 83.30.2 82.10.2
LoftQ 4 73.70.4 86.00.6 81.10.2 94.60.3 86.30.1 88.10.5 75.51.0 86.20.6 83.90.2
ApiQ-bw 4 73.50.2 87.00.4 82.00.1 95.20.1 86.90.2 89.50.4 77.00.8 86.20.4 84.70.2

Llama-2-7b GPTQ-LoRA 3 71.80.2 82.70.3 79.30.6 92.10.1 82.80.3 84.20.6 70.60.8 83.41.1 80.80.1
LoftQ 3 74.00.0 85.60.4 81.00.7 94.30.1 85.60.1 88.10.6 75.40.8 85.50.7 83.70.3
ApiQ-bw 3 73.30.3 85.60.1 81.80.5 94.60.0 86.90.5 87.90.3 73.70.3 86.41.3 83.80.1

GPTQ-LoRA 2 62.20.0 49.50.2 33.30.6 25.10.1 49.40.4 25.00.2 22.60.0 27.60.0 36.80.0
LoftQ 2 62.40.0 70.52.9 73.40.5 78.83.6 71.03.7 66.54.5 50.84.3 62.37.5 67.03.3
ApiQ-bw 2 68.40.7 80.70.3 79.60.5 91.40.1 82.40.5 82.70.8 68.30.6 80.50.6 79.30.2

LoRA 16 76.30.2 88.50.0 83.40.3 96.50.2 89.60.4 92.80.4 81.70.4 89.60.4 87.30.1

QLoRA 4 74.90.5 86.60.5 81.50.5 94.90.1 86.90.2 89.10.7 77.10.4 87.20.7 84.80.3
GPTQ-LoRA 4 74.50.6 86.11.0 81.80.2 94.70.3 86.80.1 89.00.1 77.10.9 84.51.2 84.30.0
LoftQ 4 76.00.3 87.90.2 82.80.6 95.80.1 88.90.6 91.20.3 80.80.7 88.81.3 86.50.2
ApiQ-bw 4 76.20.3 88.50.3 83.50.1 96.61.4 90.00.4 92.10.1 81.20.3 89.90.5 87.30.1

Llama-2-13b GPTQ-LoRA 3 73.50.5 85.20.3 81.10.5 94.10.1 85.70.3 87.90.4 75.50.7 85.30.9 83.50.0
LoftQ 3 75.20.3 87.80.6 82.80.2 96.30.1 89.50.4 91.10.1 81.40.5 88.00.5 86.50.2
ApiQ-bw 3 76.00.4 88.00.5 82.30.1 95.80.0 89.10.1 91.10.2 81.10.5 89.50.4 86.60.0

GPTQ-LoRA 2 62.20.0 50.10.9 34.00.6 25.10.1 49.60.4 25.00.0 22.70.0 27.60.0 37.10.3
LoftQ 2 65.90.1 76.40.3 78.00.5 84.40.7 76.10.4 75.10.1 60.10.4 72.71.4 73.60.2
ApiQ-bw 2 73.10.4 85.20.5 82.30.5 94.40.1 86.20.3 88.20.3 74.90.4 85.91.4 83.80.3

Table 2: Accuracy and standard deviation from three random runs on commonsense reasoning tasks.

SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2020), ARC-
e, ARC-c (Clark et al., 2018), and OBQA (Mi-
haylov et al., 2018). Similar to the multiple arith-
metic reasoning tasks, we follow the setting of Hu
et al. (2023), finetune a single QLLM on the com-
bined training sets from these tasks, and report the
accuracy of the test sets.

As shown in Table 2, ApiQ-bw consistently
achieves the best average accuracy. For the 4-bit
quantization, ApiQ-bw is the only method compa-
rable to LoRA in Float16. For the 2-bit quantiza-
tion, ApiQ-bw outperforms both GPTQ-LoRA and
LoftQ by a large margin with an average accuracy
improvement > 10%.

Finetune Llama-2-70b. Advised by a ARR
reviewers, we conduct the finetuning experiments
on Llama-2-70b to show the scalability of ApiQ,
and show the results in Table 3. On average, ApiQ-
bw still achieves the best performance.

Notably, the quantization procedure of Llama-2-
70b with ApiQ-bw only uses 35GB memory and
takes 11 hours, while LoftQ needs over 160GB
memory and 7 hours. In addition, ApiQ utilizes the
AutoGPTQ kernel3, ensuring a true quantization
setting. The peak GPU memory for finetuning is
78GB with a batch size of 2, without the need for
gradient checkpointing or parameter/optimizer of-

3https://github.com/AutoGPTQ/AutoGPTQ

21003

https://github.com/AutoGPTQ/AutoGPTQ

Method Bit GSM8K SVAMP MAWPS AQuA Avg. ↑
LoRA 16 73.6 80.7 89.1 31.9 68.8

QLoRA 2 0 0 0 0 0
GPTQ-LoRA 2 56.0 65.1 85.7 27.7 58.6
LoftQ 2 53.1 66.3 89.5 27.2 59.0
ApiQ-bw 2 61.0 73.7 88.7 28.7 63.0

Table 3: Accuracy on arithmetic reasoning tasks with Llama-2-70b.

Method Bit WikiText-2 ↓ C4 ↓ GSM8K SVAMP MAWPS AQuA Avg. ↑
Unquantized 16 6.14 8.88 - - - - -
LoRA 16 - - 69.0 76.1 92.0 31.5 67.2

QLoRA 2 1e6 9e5 0.3 0.7 0.0 0.0 0.3
GPTQ-LoRA 2 NAN NAN 31.6 50.4 82.8 25.6 47.6
LoftQ 2 7e4 4e4 34.0 53.4 89.1 21.7 49.5
ApiQ-bw 2 13.07 21.37 48.7 66.6 86.6 25.2 56.8

Table 4: Quantization quality and finetuning accuracy on Llama-3-8b.

floading. In contrast, LoftQ and QLoRA require
at least two A100-80GB GPUs with parameter of-
floading (zero stage 3) and a batch size of 1, as they
use the bitsandbytes kernel, which only supports
4-bit quantization.

Finetune Llama-3-8b. Also advised by a ARR
reviewer that Llama-3 is more challenging to quan-
tize (Huang et al., 2024), we further conduct the
experiments on Llama-3-8b at the 2-bit level, and
show the results in Table 4.

We do observe the difficulty of quantizing
Llama-3-8b when comparing to the quantization re-
sults on Llama-2-7b in Table B.2. None of our base-
lines generate a reasonable perplexity on WikiText-
2 and C4 with Llama-3-8b. However, ApiQ-bw can
still have a much smaller perplexity. In addition, its
finetuning performance is also much closer to the
LoRA-finetuning performance on the FP16 model.

More results. We have discussed the most per-
tinent works in Section §3, and provide additional
related works in Appendix §A due to space lim-
itations. For further discussions, we recommend
readers refer to (1) Appendix §B.3 for applying
ApiQ to other PEFTs; (2) Appendix §B.4 for a
discussion why ApiQ is effective for finetuning;
and (3) Appendix §B.5 for ApiQ’s sensitivity to the
LoRA rank.

6 Conclusion

In this work, we propose ApiQ, a novel frame-
work that aims to reduce the activation error dur-
ing quantization by jointly quantizing the LLM’s
weights and initializing the LoRA’s components.

Extensive experiments, on five tasks across vari-
ous encoder-only and decoder-only models, demon-
strate ApiQ’s effectiveness in adapting QLLM. It
works extremely well with lower-bit quantization
and larger models than the strong baselines. Further
experiments also demonstrate ApiQ’s capability as
a pure PTQ method (Appendix §B.1).

Ethical Considerations

Finetuned QLLMs can improve accessibility tools,
such as text-to-speech and translation services, ben-
efiting individuals with disabilities and non-native
language speakers. These models can also assist
in educational settings by providing personalized
tutoring and facilitating research through advanced
data analysis capabilities. In healthcare, QLLMs
can support professionals by synthesizing medical
literature and aiding in patient communication, ulti-
mately contributing to better healthcare outcomes.

However, the ability of QLLMs to generate
human-like text raises concerns about the spread
of misinformation. We advocate for the responsi-
ble deployment of these models, including mech-
anisms to detect and prevent the dissemination of
false information. The powerful capabilities of
QLLMs could be misused for malicious purposes,
such as generating deceptive content or facilitating
cyber-attacks. It is essential to develop robust se-
curity measures and ethical guidelines to prevent
such misuse.

21004

Limitations

Although ApiQ demonstrates impressive finetuning
results, some limitations are inherited from its im-
plementation. Compared to LoftQ (Li et al., 2023),
ApiQ requires a calibration dataset to determine
the clipping range of W and to initialize A and B.
This implementation has one obvious drawback:
It requires more time for quantization, as shown
in Table B.3. Since we only need to quantize the
LLM once for finetuning various tasks, and the du-
ration and GPU memory used for quantization are
reasonable, we deem this limitation acceptable.

Secondly, we only evaluate ApiQ on a limited
number of tasks with a total number of 5 models
due to time and resource limitations. We couldn’t
guarantee its effectiveness on the other tasks and
LLMs, and are still working on including more
tasks and models, trying to show its generaliza-
tion. For the post-training quantization results (Ap-
pendix §B.1), we didn’t make sure ApiQ shares
the same bit per parameter as our baselines, which
makes the direct comparison unfair. Since the main
focus of this research is about finetuning, we add
these results mainly to raise attention to this new
method for PTQ. In the future, we aim to apply
ApiQ to quantize both weight and activation for
faster inference.

Acknowledgements

We thank all reviewers of ICML2024 for their
helpful feedback about block-wise ApiQ and more
benchmarks, and the ARR reviews for their sug-
gestions of more experiments on Llama-2-70b and
Llama-3-8b. We also thank eBay Inc. for the com-
putation support. This research was funded in part
by the Netherlands Organization for Scientific Re-
search (NWO) under project number VI.C.192.080.

References
Armen Aghajanyan, Sonal Gupta, and Luke Zettle-

moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 7319–
7328. Association for Computational Linguistics.

Yoshua Bengio, Nicholas Léonard, and Aaron C.
Courville. 2013. Estimating or propagating gradients
through stochastic neurons for conditional computa-
tion. CoRR, abs/1308.3432.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. CoRR, abs/1604.06174.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and
Kailash Gopalakrishnan. 2018. PACT: parameterized
clipping activation for quantized neural networks.
CoRR, abs/1805.06085.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 2924–2936. Associa-
tion for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. 2022. Llm.int8(): 8-bit ma-
trix multiplication for transformers at scale. CoRR,
abs/2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023a. Qlora: Efficient finetuning
of quantized llms. CoRR, abs/2305.14314.

21005

https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1805.06085
https://doi.org/10.18653/V1/N19-1300
https://doi.org/10.18653/V1/N19-1300
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2305.14314
https://doi.org/10.48550/ARXIV.2305.14314

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Alis-
tarh. 2023b. Spqr: A sparse-quantized representation
for near-lossless LLM weight compression. CoRR,
abs/2306.03078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S.
Modha. 2020. Learned step size quantization. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. GPTQ: accurate post-training
quantization for generative pre-trained transformers.
CoRR, abs/2210.17323.

Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and
Roger B. Grosse. 2017. The reversible residual net-
work: Backpropagation without storing activations.
In Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 2214–2224.

Han Guo, Philip Greengard, Eric P. Xing, and Yoon Kim.
2023. Lq-lora: Low-rank plus quantized matrix de-
composition for efficient language model finetuning.
CoRR, abs/2311.12023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13,
2015, pages 1026–1034. IEEE Computer Society.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding
sharing. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters: An
adapter family for parameter-efficient fine-tuning of
large language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 5254–5276. Association for
Computational Linguistics.

Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin,
Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xi-
anglong Liu, and Michele Magno. 2024. An empiri-
cal study of llama3 quantization: From llms to mllms.
Preprint, arXiv:2404.14047.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew G. Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 2704–2713. Computer Vision Founda-
tion / IEEE Computer Society.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de Las Casas,
Emma Bou Hanna, Florian Bressand, Gianna
Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. CoRR, abs/2401.04088.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In NAACL HLT
2016, The 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, San Diego

21006

https://doi.org/10.48550/ARXIV.2306.03078
https://doi.org/10.48550/ARXIV.2306.03078
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://openreview.net/forum?id=rkgO66VKDS
https://doi.org/10.48550/ARXIV.2210.17323
https://doi.org/10.48550/ARXIV.2210.17323
https://proceedings.neurips.cc/paper/2017/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://doi.org/10.48550/ARXIV.2311.12023
https://doi.org/10.48550/ARXIV.2311.12023
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://openreview.net/pdf?id=sE7-XhLxHA
https://openreview.net/pdf?id=sE7-XhLxHA
https://openreview.net/pdf?id=sE7-XhLxHA
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://arxiv.org/abs/2404.14047
https://arxiv.org/abs/2404.14047
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/V1/N16-1136
https://doi.org/10.18653/V1/N16-1136

California, USA, June 12-17, 2016, pages 1152–1157.
The Association for Computational Linguistics.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos
Karampatziakis, Weizhu Chen, and Tuo Zhao. 2023.
Loftq: Lora-fine-tuning-aware quantization for large
language models. CoRR, abs/2310.08659.

Baohao Liao, Yan Meng, and Christof Monz. 2023a.
Parameter-efficient fine-tuning without introducing
new latency. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 4242–4260. Associa-
tion for Computational Linguistics.

Baohao Liao, Shaomu Tan, and Christof Monz. 2023b.
Make your pre-trained model reversible: From pa-
rameter to memory efficient fine-tuning. CoRR,
abs/2306.00477.

Baohao Liao, David Thulke, Sanjika Hewavitharana,
Hermann Ney, and Christof Monz. 2022. Mask more
and mask later: Efficient pre-training of masked lan-
guage models by disentangling the [MASK] token.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 1478–1492.
Association for Computational Linguistics.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. AWQ: activation-
aware weight quantization for LLM compression and
acceleration. CoRR, abs/2306.00978.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers, pages 158–167. Association
for Computational Linguistics.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022a. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora:
Weight-decomposed low-rank adaptation. CoRR,
abs/2402.09353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric P.
Xing, and Zhiqiang Shen. 2022b. Nonuniform-to-
uniform quantization: Towards accurate quantiza-
tion via generalized straight-through estimation. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2022, New Orleans, LA,
USA, June 18-24, 2022, pages 4932–4942. IEEE.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? A new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 2381–2391. Association for Computational
Linguistics.

Markus Nagel, Marios Fournarakis, Yelysei Bon-
darenko, and Tijmen Blankevoort. 2022. Overcom-
ing oscillations in quantization-aware training. In In-
ternational Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning
Research, pages 16318–16330. PMLR.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 2080–2094. Association for
Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language

21007

https://doi.org/10.48550/ARXIV.2310.08659
https://doi.org/10.48550/ARXIV.2310.08659
https://doi.org/10.18653/V1/2023.ACL-LONG.233
https://doi.org/10.18653/V1/2023.ACL-LONG.233
https://doi.org/10.48550/ARXIV.2306.00477
https://doi.org/10.48550/ARXIV.2306.00477
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.106
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.106
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.106
https://doi.org/10.48550/ARXIV.2306.00978
https://doi.org/10.48550/ARXIV.2306.00978
https://doi.org/10.48550/ARXIV.2306.00978
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.09353
https://doi.org/10.48550/ARXIV.2402.09353
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.1109/CVPR52688.2022.00489
https://doi.org/10.1109/CVPR52688.2022.00489
https://doi.org/10.1109/CVPR52688.2022.00489
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://proceedings.mlr.press/v162/nagel22a.html
https://proceedings.mlr.press/v162/nagel22a.html
https://doi.org/10.48550/ARXIV.2303.08774
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/V1/2021.NAACL-MAIN.168
https://doi.org/10.18653/V1/2021.NAACL-MAIN.168

models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732–
8740. AAAI Press.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le
Bras, and Yejin Choi. 2019. Socialiqa: Common-
sense reasoning about social interactions. CoRR,
abs/1904.09728.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoît Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien
Launay, Margaret Mitchell, Colin Raffel, Aaron
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, and et al. 2022. BLOOM:
A 176b-parameter open-access multilingual language
model. CoRR, abs/2211.05100.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2023a. Omniquant:
Omnidirectionally calibrated quantization for large
language models. CoRR, abs/2308.13137.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2023b. Omniquant:
Omnidirectionally calibrated quantization for large
language models. CoRR, abs/2308.13137.

Shyam Anil Tailor, Javier Fernández-Marqués, and
Nicholas Donald Lane. 2021. Degree-quant:
Quantization-aware training for graph neural net-
works. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,

Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Pe-
ter Couperus, Cédric Bastoul, Eric Mahurin, Tij-
men Blankevoort, and Paul N. Whatmough. 2024.
GPTVQ: the blessing of dimensionality for LLM
quantization. CoRR, abs/2402.15319.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System

21008

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.1609/AAAI.V34I05.6399
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1904.09728
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://openreview.net/forum?id=NSBrFgJAHg
https://openreview.net/forum?id=NSBrFgJAHg
https://openreview.net/forum?id=NSBrFgJAHg
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2402.15319
https://doi.org/10.48550/ARXIV.2402.15319
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 38087–38099.
PMLR.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

21009

https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068

A Related Work

Large language models, trained on web-scale
data for general tasks like masked word predic-
tion (Liao et al., 2022; Devlin et al., 2019) or next-
word prediction (Brown et al., 2020) in sentences,
are crucial for transferring knowledge to various
downstream tasks. These models have consistently
achieved state-of-the-art results in a wide range of
applications. Notably, scaling up LLMs has been
observed to reliably improve performance in these
downstream tasks. As a result, the size of LLMs
has been steadily increasing, now reaching the re-
markable scale of > 50 billion parameters (Jiang
et al., 2024; Touvron et al., 2023b; Jiang et al.,
2023; Zhang et al., 2022). In addition, instruction-
finetuned LLMs (Jiang et al., 2023; Touvron et al.,
2023b) reveal exceptional capabilities, such as en-
abling zero-shot or in-context learning (Radford
et al., 2019; Brown et al., 2020).

Despite these advancements, transfer learning
remains the predominant strategy for effectively
applying these models to new task environments
(Liu et al., 2022a; Brown et al., 2020). This ap-
proach, however, imposes unprecedented demands
on computational resources, highlighting the need
for efficient adaptation strategies. ApiQ reduces
the GPU memory requirement for finetuning by
loading the LLM’s weights in a reduced bit format
and reducing the number of trainable parameters.
In addition, compared to QLoRA (Dettmers et al.,
2023a) and its variants (Li et al., 2023; Guo et al.,
2023), ApiQ demonstrates a very good manner for
challenging lower-bit quantization, like 2 or 3 bits,
which further reduces the GPU memory.

Post-training quantization (PTQ) converts
high-precision LLM’s weight values into discrete
values for less memory usage. With the increasing
size of LLMs, various PTQ methods (Xiao et al.,
2023; Lin et al., 2023; Shao et al., 2023b; Dettmers
et al., 2023b; Frantar et al., 2022) have been pro-
posed to retain the full-precision LLM’s perfor-
mance while using less memory during inference.
Notably, PTQ aims to maintain the performance
of LLMs instead of adapting LLMs to new tasks.
In addition, the performance of PTQ for lower bit-
width degrades significantly. Even though ApiQ is
a well-behaved PTQ method, its main purpose is
to adapt LLMs to new tasks or retain full-precision
LLM’s performance for lower-bit quantization.

Quantization-aware training (QAT) is a tech-
nique where the model is trained to take into ac-

Llama-2-7b Llama-2-13b
Method Bit WikiText ↓ C4 ↓ WikiText ↓ C4 ↓

- 16 5.47 6.97 4.88 6.46

QLoRA 4 5.65 7.16 4.98 6.57
LoftQ 4 5.62 7.16 4.96 6.55
ApiQ-lw 4 5.55 7.08 4.95 6.55
ApiQ-bw 4 5.53 7.06 4.93 6.53

QLoRA 3 1.8e5 2.4e5 9.6e4 1.2e5
LoftQ 3 10.72 12.79 6.89 8.72
ApiQ-lw 3 5.87 7.58 5.18 6.88
ApiQ-bw 3 5.77 7.48 5.12 6.83

QLoRA 2 1.8e5 2.4e5 9.7e4 1.3e5
LoftQ 2 1.0e3 6.7e2 59.94 72.64
ApiQ-lw 2 16.25 23.93 10.89 15.83
ApiQ-bw 2 7.59 10.56 6.44 8.93

Table B.1: The perplexity of ApiQ as a post-training
quantization method without the finetuning step. The
best and second-best results are in bold and underlined,
respectively.

count the effects of quantization, typically reducing
the precision of the model’s parameters, to ensure
minimal loss in performance when the model is de-
ployed in a resource-constrained environment (Tai-
lor et al., 2021; Nagel et al., 2022). Although QAT
can be employed to adapt LLM to downstream
tasks, it is memory-intensive because it involves
quantization and full finetuning at the same time. In
addition, some techniques, like straight-through es-
timator (Liu et al., 2022b), are required during full
finetuning to calculate the gradients, being unstable
for the training of LLM. In contrast, ApiQ sepa-
rates the quantization and finetuning steps, making
the finetuning stable, efficient and effective.

B More Results and Discussions

B.1 Quantization quality

In Section §4, we have demonstrated the superior
quantization quality of ApiQ by comparing the
weight and activation error after quantization. Here,
we further evaluate ApiQ as a post-training quanti-
zation (PTQ) method, comparing it with other PTQ
methods in a language modeling task.

We begin by comparing QLoRA (Dettmers et al.,
2023a), LoftQ (Li et al., 2023) and ApiQ on the
WikiText-2 test set (Merity et al., 2017) and the
C4 validation set (Raffel et al., 2020), following
the implementation details outlined in Appendix
§C.2. For all methods, the quantization group size
is set to 64, and the LoRA rank r is 64. As shown
in Table B.1, ApiQ-bw and ApiQ-lw consistently
achieve the best and second-best perplexity across
various bit levels. Notably, the performance gap
between ApiQ and the baselines widens at lower

21010

Llama-2-7b Llama-2-13b
Method Bit Group size WikiText ↓ C4 ↓ WikiText ↓ C4 ↓
- 16 - 5.47 6.97 4.88 6.46

RTN 4 128 5.72 7.24 4.98 6.58
GPTQ 4 128 5.61 7.12 4.98 6.56
AWQ 4 128 5.62 7.13 4.97 6.56
OmniQuant 4 128 5.58 7.12 4.95 6.56
ApiQ-bw 4 128 5.54 7.09 4.94 6.55

RTN 3 128 6.66 8.40 5.51 7.18
GPTQ 3 128 6.29 7.89 5.42 7.00
AWQ 3 128 6.24 7.84 5.32 6.94
OmniQuant 3 128 6.03 7.75 5.28 6.98
ApiQ-bw 3 128 5.86 7.63 5.20 6.92

RTN 2 64 431.97 475.35 26.22 28.69
GPTQ 2 64 20.85 19.40 22.44 12.48
AWQ 2 64 2.1e5 1.6e5 1.2e5 9.5e4
OmniQuant 2 64 9.62 12.72 7.56 10.05
ApiQ-bw 2 64 7.59 10.56 6.44 8.93

RTN 2 128 4.2e3 4.9e3 122.08 139.65
GPTQ 2 128 36.77 33.70 28.14 20.97
AWQ 2 128 2.2e5 1.7e5 1.2e5 9.4e4
OmniQuant 2 128 11.06 15.02 8.26 11.05
ApiQ-bw 2 128 8.25 12.04 6.71 9.13

Table B.2: The comparison between ApiQ and other standard post-training quantization methods.

bit levels.
Next, we compare ApiQ to other standard PTQ

methods such as round-to-nearest quantization
(RTN), GPTQ (Frantar et al., 2022), AWQ (Lin
et al., 2023), and OmniQuant (Shao et al., 2023a).
We exclude ApiQ-lw in this comparison as ApiQ-
bw demonstrates superior performance (refer to
Table B.1). It is crucial to note that our objective
is not to merely outperform existing PTQ meth-
ods. This is because the LoRA components in
ApiQ are stored in FP16 format, inherently increas-
ing the average bit-width per parameter, which
makes direct comparisons with other PTQ methods
less fair. Instead, our goal is to introduce a novel
PTQ approach that mitigates quantization difficulty
through the integration of LoRA components.

As illustrated in Table B.2, ApiQ-bw consis-
tently delivers the smallest perplexity, with a more
significant advantage at lower bit levels. ApiQ-bw
can be viewed as a combination of OmniQuant
and a new initialization of LoRA, as OmniQuant
employs a similar quantization algorithm as Algo-
rithm 1 without LoRA parameters. Nonetheless,
ApiQ-bw outperforms OmniQuant, highlighting
the effectiveness of jointly initializing the LoRA
modules and quantizing the LLM weights.

A critical question arises: how does ApiQ com-
pensate for the information loss inherent in quanti-
zation? The histograms of Q, A, and B in Figure

Size Method Duration Peak GPU memory

GPTQ 0.2h 6GB
OmniQuant 1.1h 12GB

7b LoftQ 0.6h 14GB
ApiQ-lw 4.1h 6GB
ApiQ-bw 1.3h 12GB

GPTQ 0.4h 9GB
OmniQuant 2.2h 16GB

13b LoftQ 1.3h 27GB
ApiQ-lw 6.5h 9GB
ApiQ-bw 2.4h 17GB

Table B.3: The duration and peak GPU memory used
for quantizing Llama-2.

B.1 provide insights into this process. Uniform
quantization causes many values in W near the
center to be mapped to the same value, leading
to quantization error. ApiQ addresses this by cen-
tering AB⊤ in this critical region. Additionally,
the distribution span of ApiQ’s A and B is signif-
icantly narrower compared to W and LoftQ, sug-
gesting the potential for further quantizing A and
B to reduce the overall bit-width per parameter.

B.2 Quantization efficiency
In this section, we compare the duration and GPU
memory usage of quantization between ApiQ and
other baseline methods. Detailed implementation
procedures for quantization are provided in Ap-
pendix §C.1. It is worth noting that an LLM needs

21011

Figure B.1: Histogram of Q, A and B for the 2-bit
quantized output projection layer in the 30th block of
Llama-2-7b. Upper: LoftQ. Lower: ApiQ-lw. Refer to
Figure C.2, C.3, C.4 and C.5 for all layers.

to be quantized only once and can then be saved
for finetuning across various downstream tasks.

As shown in Table B.3, GPTQ stands out as the
most efficient PTQ method, requiring the least time
and GPU memory. ApiQ-lw uses a similar amount
of GPU memory as GPTQ but requires more time
due to its layer-by-layer sequential optimization.
Similar to OmniQuant, ApiQ-bw consumes more
memory than ApiQ-lw because it needs to cache
more activations within a transformer block. How-
ever, ApiQ-bw is significantly more time-efficient
than ApiQ-lw due to its block-by-block quanti-
zation approach. LoftQ requires the most GPU
memory because of SVD. Overall, the resources
required for ApiQ’s quantization are reasonable
and considerably lower than those needed for the
finetuning step.

Based on the quantization quality, efficiency, and
finetuning results (§5), we recommend using ApiQ-
bw over ApiQ-lw.

B.3 ApiQ-bw for other PEFT

As discussed in Section §4.2, ApiQ-bw can eas-
ily be applied to other PEFT methods, because
its block-by-block quantization manner is very
friendly to them. Here we apply ApiQ-bw to a re-
cent variant of LoRA, i.e. DoRA (Liu et al., 2024),

8 16 32 64
LoRA rank

7.5

8.0

8.5

9.0

Pe
rp

le
xi

ty

ApiQ-lw
LoftQ

Figure B.2: Perplexity on WikiText-2 with 2-bit quan-
tized Llama-2-7b for different LoRA ranks.

and show the finetuning results in Table B.4 and
B.5. ApiQ-bw with DoRA outperforms QDoRA by
a large margin, on average 76.2 vs. 36.6 for com-
monsense reasoning and 46.4 v.s. 1.4 for arithmetic
reasoning.

B.4 Why ApiQ works so well

In this section, we discuss the reasons for the effec-
tiveness of ApiQ.

The first reason is the smaller activation error
of ApiQ. Compared to LoftQ and QLoRA, ApiQ’s
activation error is way more smaller. As shown
in Table B.1, ApiQ has a much smaller perplexity.
Maintaining a small activation error means that the
learned knowledge from the full-precision LLM is
preserved, thus facilitating the transfer learning for
downstream tasks.

However, maintaining a smaller activation er-
ror is not the only reason for better finetuning re-
sults. Compared to LoftQ in Table B.1, GPTQ
has a smaller perplexity in Table B.2. For example,
GPTQ’s perplexity is 20.85 for WikiText-2 on the 2-
bit quantized Llama-2-7b, while LoftQ’s perplexity
is larger than 1000. Nevertheless, GPTQ-LoRA’s 4

finetuning results are worse than LoftQ’s, e.g. 39.9
vs. 45.6 for arithmetic reasoning and 36.8 vs. 67.0
for commonsense reasoning.

We hypothesize that the second reason is the
better initialization of A and B. The default ini-
tialization of B = 0 is not friendly to training
because of the constant value. A and B in ApiQ
and LoftQ are initialized similarly to a Gaussian
distribution (Figure B.1), which has been shown
better for training (He et al., 2015).

4GPTQ-LoRA is LLM quantized by GPTQ and the LoRA’s
B = 0.

21012

Method BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg. ↑
QDoRA 62.2 49.7 33.2 24.4 48.8 24.4 22.8 27.2 36.6
ApiQ-bw with DoRA 68.7 78.8 76.9 85.5 79.8 78.5 62.8 78.4 76.2

Table B.4: ApiQ-bw with DoRA on the commonsense reasoning tasks with 2-bit quantized Llama-2-7b. QDoRA
here means that we use QLoRA to quantize the LLM, initialize the LoRA module with default B = 0, and train
QLLM in the DoRA way, i.e. training the direction and magnitude separately. LoftQ can’t be directly applied to
DoRA, because DoRA has both addition and multiplication relation between the PEFT parameters and W , and
SVD can’t be applied.

Method GSM8K SVAMP MAWPS AQuA Avg. ↑
QDoRA 0.68 0.5 1.7 2.8 1.4
ApiQ-bw for DoRA 32.0 49.9 80.1 23.4 46.4

Table B.5: ApiQ-bw with DoRA on the arithmetic reasoning tasks with 2-bit quantized Llama-2-7b.

B.5 Performance vs. LoRA rank
In Figure B.2, we show the influence of LoRA rank
for different methods. ApiQ is not sensitive to the
LoRA rank, implying that ApiQ can be a more
parameter-efficient finetuning method.

C Experimental Details

Like QLoRA (Dettmers et al., 2023a), LoftQ (Li
et al., 2023) and LQ-LoRA (Guo et al., 2023),
ApiQ consists of two steps: the quantization step
and the finetuning step. During the quantization
step, we initialize Q, A and B in a way to pre-
serve the starting point and mitigate the propaga-
tion of quantization error. For the finetuning step,
we freeze Q in a lower bit and train A and B in
half-precision (BFloat16). In this section, we de-
scribe the implementation details of these two steps
for different tasks and LLMs. We run all experi-
ments on NVIDIA A100-80GB or A6000-48GB
with the training framework, Transformers (Wolf
et al., 2020).

C.1 Quantization details for different LLMs
For all LLMs, 128 calibration sentences for the
quantization step are randomly selected from the
WikiText-2 training set (Merity et al., 2017). The
hyper-parameters for the quantization step are de-
tailed in Table C.1. By default, we incorporate the
LoRA module into every linear layer.

DeBERTa and RoBERTa with ApiQ-lw. We
apply ApiQ-lw to DeBERTa-v3-base (He et al.,
2023) and RoBERTa-large (Liu et al., 2019), as
these models are relatively small and efficiency con-
cerns in quantization are minimal. Specifically, the
duration for ApiQ-lw is 12 minutes for DeBERTa-
v3-base and 1 hour for RoBERTa-large. The LoRA

rank r is set to 32 for DeBERTa-v3-base, following
Li et al. (2023), and 64 for RoBERTa-large, as per
Guo et al. (2023). Given the relative simplicity of
the GLUE tasks (Wang et al., 2019), we only em-
ploy 2-bit and 3-bit quantization. Unlike Li et al.
(2023), we do not quantize the embedding layer
and instead reproduce their experiments.

Llama-2 and Mistral with ApiQ-lw. We ap-
ply ApiQ-lw to Llama-2-7b, Llama-2-13b (Tou-
vron et al., 2023b) and Mistral-7b-v0.1 (Jiang et al.,
2023), with settings detailed in Table C.1.

Llama-2 and Mistral with ApiQ-bw. We also
apply ApiQ-bw to Llama-2-7b, Llama-2-13b and
Mistral-7b-v0.1, with the settings outlined in Ta-
ble C.1. Compared to ApiQ-lw, we conduct an
extensive search for the optimal learning rate and
weight decay due to the time efficiency of ApiQ-bw.
For instance, Llama-2-7b with ApiQ-lw requires 4
hours, whereas Llama-2-7b with ApiQ-bw requires
only 1 hour.

To determine the best hyper-parameters, we eval-
uate the QLLM on the WikiText-2 test set (Merity
et al., 2017) and the C4 validation set (Raffel et al.,
2020), similar to the evaluation of post-training
QLLM (see §C.2). The optimal hyper-parameter
settings, determined by the lowest average perplex-
ity across these two datasets, are listed for different
LLMs in Table C.2.

C.2 Evaluation of QLLM

To assess the effectiveness of quantization, we
adhere to the evaluation approach used in post-
training quantization methods (van Baalen et al.,
2024; Shao et al., 2023a; Xiao et al., 2023; Fran-
tar et al., 2022; Dettmers et al., 2022). For the
WikiText-2 test set (Merity et al., 2017), we apply

21013

Hyper-parameter DeBERTa & RoBERTa Llama-2 & Mistral Llama-2 & Mistral

ApiQ choice ApiQ-lw ApiQ-lw ApiQ-bw

Optimizer AdamW AdamW AdamW
Weight decay for Θ 0.1 0.1 {0, 0.001, 0.1}
Static LR for Θ 0.005 0.005 {0.001, 0.005, 0.01, 0.05}
Weight decay for A and B 0.1 0.1 {0, 0.001, 0.1}
Static LR for A and B 0.001 0.001 {0.0001, 0.0005, 0.001, 0.005}
Sequence length for calibration 128 1024 2048
Number of calibration samples 128 128 128
Epochs 20 20 20
Batch size 32 8 1

Group/block size for quantization 64 64 64
LoRA rank r 32 & 64 64 64

Table C.1: Hyper-parameter search space of the quantization step on different LLMs. Since ApiQ-bw is more
time-efficient than ApiQ-lw, we conducted a more thorough search for ApiQ-bw. The best setting for ApiQ-bw is
listed in Table C.2.

Llama-2-7b Llama-2-13b Mistral-7b-v0.1
Hyper-parameter 4 Bits 3 Bits 2 Bits 4 Bits 3 Bits 2 Bits 4 Bits 3 Bits 2 Bits

Weight decay for Θ 0.001 0.1 0.1 0.001 0.1 0.1 0.001 0.1 0.1
Static LR for Θ 0.05 0.001 0.005 0.01 0.001 0.005 0.01 0.001 0.005
Weight decay for A and B 0.1 0 0.1 0 0 0.1 0 0 0.1
Static LR for A and B 0.0001 0.0005 0.0005 0.0001 0.0005 0.0005 0.0001 0.0001 0.0005

Table C.2: Best hyper-parameter setting for different LLMs with ApiQ-bw. If one wants to apply ApiQ-bw to other
LLMs, the settings from Llama-2-7b are universally well-performed and should be the first choice.

the QLLM to all sentences and calculate the aver-
age perplexity. For the validation set of C4 (Raffel
et al., 2020), we use the “en/c4-validation.00000-
of-00008.json.gz” split, concatenate all sentences,
randomly cut off 256 sentences with a sequence
length of 2048, and compute the average perplexity
using the QLLM on these samples.

C.3 Natural language understanding

To study the language understanding ability of
LLMs, we finetune quantized DeBERTa-v3-base
(He et al., 2023) and RoBERTa-large (Liu et al.,
2019) on the GLUE benchmark (Wang et al., 2019).

Finetuning details. The hyper-parameters for
finetuning are outlined in Table C.3. We save the
checkpoint every epoch, evaluate it on the develop-
ment set, and report the best result. After deciding
the best learning rate, three random runs are con-
ducted and the median is reported in Table C.4.

C.4 Language modeling

To study whether the QLLM can preserve the
language modeling ability after finetuning, we
finetune quantized Llama-2-7b, Llama-2-13b and
Mistral-7b-v0.1 on the WikiText-2 (Merity et al.,
2017) training set and report the perplexity on the
validation set.

Finetuning details. The hyper-parameters for
finetuning are listed in Table C.5. We evaluate the
finetuned QLLM on the validation set every epoch
and report the best perplexity. After determining
the best learning rate, we conduct three random
runs and report the mean and standard deviation in
Table C.7.

C.5 Arithmetic reasoning (single-task)

To study the arithmetic reasoning ability of
QLLMs, we finetune quantized Llama-2-7b,
Llama-2-13b and Mistral-7b-v0.1 on the GSM8K
(Cobbe et al., 2021) training set and report the ac-
curacy on the test set.

Finetuning details. The hyper-parameters for
finetuning are listed in Table C.5. We evaluate the
finetuned QLLM on the test set every epoch and
report the best accuracy. After determining the best
learning rate, we conduct three random runs and
report the mean and standard deviation in Table
C.7.

C.6 Arithmetic reasoning

The setting here contrasts with the previous ex-
periments where each task involves finetuning a
separate QLLM. Instead, we adopt a unified strat-
egy by finetuning a single QLLM across all tasks

21014

Hyper-parameter RTE, MRPC, STS-B, CoLA SST-2, QNLI, QQP, MNLI

Optimizer AdamW AdamW
Weight decay 0.1 0.1
LR {0.1, 0.5, 1, 5}×10−4 {0.1, 0.5, 1, 5}×10−4

LR scheduler Linear Linear
Warmup ratio 10% 10%
Epochs 20 10
Batch size 32 32

Table C.3: Hyper-parameter search space for the finetuning on GLUE. For tasks with a number of training samples
> 10K, we set the number of epochs as 10.

Model Method Bit MNLI QNLI QQP SST-2 CoLA RTE MRPC STS-B Avg. ↑
m/mm Acc Acc/F1 Acc Matt Acc Acc/F1 Pea/Spe

Full FT∗ 16 90.5/90.6 94.0 92.4/89.8 95.3 69.2 82.0 89.5/93.3 91.6/91.1 88.1

ApiQ-lw 3 90.3/90.2 93.9 92.6/90.1 95.8 71.9 85.9 91.7/94.0 91.5/91.3 89.2
DeBERTa-base QLoRA∗ 2 79.9/79.5 83.7 88.6/84.7 86.9 N.A. 57.8 76.5/84.5 84.1/84.0 69.9

LoftQ 2 88.5/88.5 92.7 91.6/88.7 94.7 63.6 64.6 88.5/91.8 89.2/89.0 84.2
ApiQ-lw 2 88.4/88.7 92.3 91.7/89.0 94.6 64.2 67.1 89.5/92.4 90.2/89.9 84.8

Full FT† 16 89.7 94.1 89.8 95.8 70.2 84.1 92.0 92.2 88.5

QLoRA⋄ 4 - - - - - - - - 88.6
RoBERTa-large QLoRA† 3 89.8 94.3 89.9 96.4 64.3 70.8 92.0 91.6 86.1

LQ-LoRA† 3 90.3 94.6 89.7 96.2 63.5 80.5 92.2 91.8 87.3
ApiQ-lw 3 90.1/90.0 94.4 91.8/89.1 96.2 64.6 84.8 91.4/93.7 92.3/92.0 88.2

Table C.4: Results of encoder-only models on the GLUE development set. The LoRA rank r is 32 for DeBERTa-
v3-base and 64 for RoBERTa-large. The median of three random runs is reported. We reproduce LoftQ because
the published results are about quantizing both linear layers and the token embeddings. Here we only quantize the
linear layers, keeping the same setting for all models in this paper. Results denoted by ∗, † and ⋄ are from Li et al.
(2023), Guo et al. (2023) and Dettmers et al. (2023a), respectively. When there is only one number for two metrics,
it is an average over these two metric.

as delineated in Hu et al. (2023). We finetune
Llama-2-7b and Llama-2-13b on Math10K (Hu
et al., 2023) which is constructed from the train-
ing sets of GSM8K (Cobbe et al., 2021), MAWPS,
MAWPS-single (Koncel-Kedziorski et al., 2016)
and AQuA (Ling et al., 2017). Then we evalu-
ate the finetuned QLLM on the test sets of AQuA,
GSM8K, MAWPS and SVAMP (Patel et al., 2021).
Such a setting is more practical as LLM is fre-
quently used as a general model for various tasks.

Finetuning details. We follow Hu et al. (2023)
to choose the hyper-parameters as in Table C.5.
Instead of evaluating the finetuned QLLM every
epoch, we only evaluate the trained model from
the last epoch, simulating the practical finetuning
scenario. We conduct three random runs and report
the mean and standard deviation in Table C.8.

C.7 Commonsense reasoning

In assessing the capacity of QLLM for common-
sense reasoning, we focus on eight representative
tasks: BoolQ (Clark et al., 2019), PIQA (Bisk et al.,
2020), SIQA (Sap et al., 2019), HellaSwag (Zellers
et al., 2019), WinoGrande (Sakaguchi et al., 2020),

ARC-e, ARC-c (Clark et al., 2018), and OBQA
(Mihaylov et al., 2018). Similar to the multiple
arithmetic reasoning tasks, we follow the setting
of Hu et al. (2023) and finetune a single QLLM
across all tasks. Specifically, the training and test
sets from these eight tasks are reformulated accord-
ing to a predefined template, so all tasks can be
trained or evaluated in a generative way. Then we
finetune Llama-2-7b and Llama-2-13b on the com-
bined training set and report the accuracy on the
test sets.

Finetuning details. We also borrow the fine-
tuning recipe of Hu et al. (2023) as in Table C.5.
We only evaluate the trained model from the last
epoch (simulate a practical finetuning scenario),
conduct three random runs, and report the mean
and standard deviation in Table 2.

21015

Hyper-parameter WikiText-2 GSM8K Arithmetic reasoning Commonsense reasoning

Optimizer AdamW AdamW
Weight decay 0.1 1.0
LR {0.1, 0.5, 0.7, 1, 3, 4}×10−4 3× 10−4

LR scheduler cosine linear
Warmup ratio 3% 10%
Epochs 3 6 3
Batch size 64 16 16
Max sequence length 1024 512 512

Table C.5: Hyper-parameter search space for the finetuning of Llama-2 and Mistral. Please refer to Table C.6 for the
best learning rate for different LLMs on WikiText-2 and GSM8K.

Llama-2-7b Llama-2-13b Mistral-7b-v0.1
Task Method 4 Bits 3 Bits 2 Bits 4 Bits 3 Bits 2 Bits 4 Bits 3 Bits 2 Bits

WikiText-2 ApiQ-lw 4e-4 3e-4 4e-4 3e-4 3e-4 3e-4 1e-4 7e-5 7e-5
ApiQ-bw 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 1e-4 1e-4 1e-4

GSM8K ApiQ-lw 3e-4 3e-4 3e-4 4e-4 4e-4 3e-4 7e-5 7e-5 7e-5
ApiQ-bw 4e-4 4e-4 4e-4 3e-4 3e-4 4e-4 7e-5 7e-5 7e-5

Table C.6: Best learning rate for different LLMs on the WikiText-2 and GSM8K tasks.

Llama-2-7b Llama-2-13b Mistral-7b-v0.1
Method Bit WikiText (ppl↓) GSM8K (acc↑) WikiText (ppl↓) GSM8K (acc↑) WikiText (ppl↓) GSM8K (acc↑)

LoRA 16 5.08 36.9 5.12 45.3 5.170.00 52.21.3

QLoRA 4 5.70 35.1 5.22 39.9 5.250.00 56.51.1
LoftQ 4 5.24 35.0 5.16 45.0 5.250.00 56.71.4
ApiQ-lw 4 5.280.00 36.40.5 4.780.00 50.41.3 5.320.00 57.20.3
ApiQ-bw 4 5.270.00 39.80.1 4.780.00 51.20.8 5.260.00 59.20.1

QLoRA 3 5.73 32.1 5.22 40.7 1540.2636.6 50.50.7
LoftQ 3 5.63 32.9 5.13 44.4 6.820.01 51.60.6
ApiQ-lw 3 5.530.01 36.00.3 4.980.00 45.41.1 5.550.00 54.81.7
ApiQ-bw 3 5.490.00 39.30.3 4.960.00 47.60.8 5.480.00 56.00.4

QLoRA 2 N.A. N.A. N.A. N.A. 1483.5612.2 2.00.3
LoftQ 2 7.85 20.9 7.69 25.4 1849.323.78 1.70.0
ApiQ-lw 2 7.460.00 26.00.4 6.290.00 36.30.5 7.180.00 41.30.8
ApiQ-bw 2 6.610.00 33.50.5 5.790.00 41.20.9 6.690.00 45.00.1

Table C.7: Finetuning results of WikiText and GSM8K on Llama-2-7b, Llama-2-13b and Mistral-7b-v0.1. Results
without standard deviation are from Li et al. (2023).

Llama-2-7b Llama-2-13b
Method Bit GSM8K SVAMP MAWPS AQuA Avg. ↑ GSM8K SVAMP MAWPS AQuA Avg. ↑

LoRA 16 43.60.7 59.41.7 85.01.7 27.02.0 53.70.6 55.30.5 67.70.9 87.40.7 24.40.9 58.70.2

QLoRA 4 42.70.4 58.70.7 87.31.9 26.41.6 53.70.6 54.80.5 69.40.3 87.00.7 26.81.0 59.50.3
GPTQ-LoRA 4 43.00.9 58.40.6 86.10.7 24.30.8 52.90.3 53.20.9 67.51.2 85.30.7 25.62.6 57.91.0
LoftQ 4 41.70.6 56.00.8 86.30.5 25.31.0 52.30.5 54.91.4 66.50.7 87.70.5 23.91.6 58.30.6
ApiQ-bw 4 43.20.9 59.00.9 85.70.7 26.01.8 53.50.8 55.30.6 67.40.5 87.80.9 25.60.2 59.00.4

QLoRA 3 1.40.2 1.40.3 0.70.5 3.41.5 1.70.5 0.80.6 2.52.2 0.30.2 6.26.8 2.42.0
GPTQ-LoRA 3 38.90.4 55.71.2 84.90.3 23.21.6 50.70.9 50.60.0 65.21.5 88.01.0 22.61.3 56.60.8
LoftQ 3 39.90.4 56.32.2 86.30.8 26.41.4 52.20.7 53.91.2 66.10.2 87.00.9 23.60.7 57.70.3
ApiQ-bw 3 41.41.5 55.90.3 87.01.4 25.20.9 52.40.6 51.50.8 67.40.3 88.51.2 25.61.3 58.30.3

QLoRA 2 0.90.4 1.51.1 0.80.7 5.14.9 2.11.7 0.50.4 0.70.9 0.10.2 0.91.3 0.60.4
GPTQ-LoRA 2 21.70.6 39.01.3 76.60.8 22.11.8 39.90.5 31.90.0 49.61.0 82.50.4 23.60.9 46.90.5
LoftQ 2 29.50.8 45.80.7 83.60.6 23.22.0 45.60.7 37.00.6 55.90.8 87.71.3 21.71.1 50.60.2
ApiQ-bw 2 31.20.5 51.01.1 82.91.6 23.91.0 47.30.5 43.10.8 59.21.2 85.11.1 23.41.4 52.70.5

Table C.8: Accuracy on four arithmetic reasoning tasks. All methods use the same hyper-parameters as listed in
Table C.5. The LoRA rank r is 64 for all methods.

21016

5

10

15
QLoRA

q_proj k_proj v_proj o_proj gate_proj up_proj down_proj

LoftQ ApiQ-lw

0 5 10 15 20 25 30

20

40

60

80

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Layer index

W
ei

gh
t e

rr
or

4
B

its
2

B
its

Figure C.1: The weight quantization error ||W − (Q+ABT)||F for different linear layers of Llama-2-7B. For
4-bit quantization, all methods are comparable, because 4-bit quantization doesn’t significantly break down the
starting point. For 2-bit quantization, ApiQ has the smallest quantization error for most layers, although its goal is
to minimize the activation error.

Figure C.2: Histogram of Q, A and B for the 4-bit quantized layer of Llama-2-7b with ApiQ-lw. Blue: W . Green:
Q. Red: AB⊤. Orange: A(Left) or B(Right). Compared to LoftQ, the distribution of B of ApiQ is symmetric
and doesn’t have outliers, which might be one reason why ApiQ outperforms LoftQ.

21017

Figure C.3: Histogram of Q, A and B for the 3-bit quantized layer of Llama-2-7b with ApiQ-lw. Blue: W . Green:
Q. Red: AB⊤. Orange: A(Left) or B(Right). Compared to LoftQ, the distribution of B of ApiQ is symmetric
and doesn’t have outliers, which might be one reason why ApiQ outperforms LoftQ.

21018

Figure C.4: Histogram of Q, A and B for the 2-bit quantized layer of Llama-2-7b with ApiQ-lw. Blue: W . Green:
Q. Red: AB⊤. Orange: A(Left) or B(Right). Compared to LoftQ, the distribution of B of ApiQ is symmetric
and doesn’t have outliers, which might be one reason why ApiQ outperforms LoftQ.

21019

Figure C.5: Histogram of Q, A and B for the 2-bit quantized layer of Llama-2-7b with LoftQ. Blue: W . Green:
Q. Red: AB⊤. Orange: A(Left) or B(Right). Compared to ApiQ, the distribution of B of LoftQ is asymmetric
for most linear layers and has many outliers, which might be one reason why LoftQ performs worse for 2-bit
quantization.

21020

