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Abstract

Contemporary deep learning models effectively
handle languages with diverse morphology de-
spite not being directly integrated into them.
Morphology and word order are closely linked,
with the latter incorporated into transformer-
based models through positional encodings.
This prompts a fundamental inquiry: Is there a
correlation between the morphological com-
plexity of a language and the utilization of
positional encoding in pre-trained language
models? In pursuit of an answer, we present
the first study addressing this question, encom-
passing 22 languages and 5 downstream tasks.
Our findings reveal that the importance of po-
sitional encoding diminishes with increasing
morphological complexity in languages. Our
study motivates the need for a deeper under-
standing of positional encoding, augmenting
them to better reflect the different languages
under consideration.

1 Introduction

Pre-trained language models (PLMs) (Devlin et al.,
2018; Liu et al., 2019a; Radford et al., 2019; Raf-
fel et al., 2020a; Brown et al., 2020) built upon
transformers (Vaswani et al., 2017) have achieved
ground-breaking results across a wide spectrum of
language processing tasks such as natural language
inference (Liu et al., 2019b), text classification
(Raffel et al., 2020b), named entity recognition (Liu
et al., 2019b), and part-of-speech tagging (Martin
et al., 2020). However, only a few models take
into account various linguistic aspects and theories
in their design (Nzeyimana and Rubungo, 2022;
Park et al., 2021). Morphology and word order of a
language are closely related (Sapir, 1921; Comrie,
1989; Blake, 2001); the latter is incorporated into
transformer-based models through positional en-
coding (PE) (Dufter et al., 2022). As language mod-
els are being developed for more languages which
significantly differ in morphological typology, it

could be beneficial to construct language models
that are sensitive to these linguistic nuances. More-
over, the enormous computational cost incurred
during their training is a major challenge in the
development of PLMs. Acquiring a deeper under-
standing of how various components of a PLM
function in different languages can provide valu-
able insights regarding their necessity across lan-
guages. This motivates us to investigate the rela-
tion between positional encoding and morphology,
which is essential for wider usage of PLMs across
different languages. Our contributions are:
1. Performing the first study about the varying im-
portance of positional encoding across languages
with different morphological complexity.
2. Showing that the impact of PE diminishes as the
morphological complexity of a language increases.
3. Conducting exhaustive experiments covering 22
different languages across 9 language families and
5 diverse natural language processing tasks.

2 Related work

Positional Encoding (PE): Various methods have
been proposed to incorporate position information
in transformer models. Absolute positions in a se-
quence, represented by fixed (Vaswani et al., 2017)
or trainable encodings (Gehring et al., 2017; Devlin
et al., 2018; Radford et al., 2019; Lan et al., 2019),
are typically added to input embeddings. Relative
positions are encoded by directly adding position
biases into the attention matrix (Shaw et al., 2018;
Yang et al., 2019b; Raffel et al., 2020a; Huang
et al., 2020; He et al., 2020; Press et al., 2021).
Su et al. (2021) introduce rotary positional embed-
dings, employing a rotation matrix to encode both
absolute and relative position information. Our
study focuses on BERT models, which use learn-
able absolute PEs (Wang et al., 2020; Huang et al.,
2020). We draw insights from linguistics theories
and question the design choices for BERT-style
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Figure 1: The figure illustrates the effect of word order on semantics for two languages: English (left) and Sanskrit
(right). English is a morphologically poor language with SVO word order whereas Sanskrit is a morphologically
rich language with no dominant word order (NODOM). Distorting the word order completely alters the meaning for
English. However, for Sanskrit the meaning remains intact.

models that were designed with English in mind.
Absence of Positional Information: Eliminat-
ing positional encoding results in a bag-of-words
representation. Sinha et al. (2021) pre-train a
RoBERTa model without positional embeddings
and observe degraded performance on GLUE and
PAWS tasks. Haviv et al. (2022); Le Scao et al.
(2022) demonstrate that causal language models
lacking explicit PE remain competitive with stan-
dard position-aware models. Additionally, Haviv
et al. (2022) find that a pre-trained RoBERTa large
model without PE exhibits higher perplexities than
position-informed models. However, all these ob-
servations are limited to the English language.
Linguistic Information in BERT: Several works
studied the linguistic knowledge encoded in PLMs
such as BERT, focusing on different aspects of lin-
guistics such as syntax (Goldberg, 2019; Jawahar
et al., 2019), semantics (Ethayarajh, 2019) and mor-
phology (Edmiston, 2020). Tenney et al. (2019);
Puccetti et al. (2021) investigate the extent and or-
ganization of the linguistic information encoded in
BERT. Gerz et al. (2018) investigate the connection
between language modeling and linguistic typol-
ogy across 50 different languages. However, they
do not consider PLMs. Otmakhova et al. (2022)
examine how various layers within a BERT model
encode morphology and syntax.

3 The Relationship between Morphology
and Word Order

In this section, we investigate the relationship be-
tween morphology and word order as outlined in
different linguistic theories.
Linguistic theories : Morphological case mark-

ings serve a similar function as word order (Sapir,
1921; Blake, 2001). Several theories suggest that
the presence of morphological case is necessary
for free word order in a language (Comrie, 1989;
Haspelmath, 1999). Either morphological case or
structural position facilitates the unambiguous de-
termination of grammatical role of the constituents
of a sentence. The existence of morphological case
reduces the need for fixed structural position in
determination of the grammatical function of a
word or phrase, allowing for variable word order.
However, if morphological case is absent, fixed
placement of words (and phrases) is necessary, ex-
hibiting a fixed or rigid word order. In this work,
we align our empirical study in accordance with
the above theories that hints at the existence of a
correlation between morphology and word order.
Specifically, morphologically rich languages which
tend to exhibit higher word-order flexibility as com-
pared to morphologically poor languages1.

3.1 Spectrum of Morphological Complexity
Through the lens of morphological typology
(Haspelmath and Sims, 2013), we can categorize
and cluster languages by studying their inherent
morphological structures. At one extreme, we find
languages such as Chinese and Vietnamese, which
fall into the category of analytic languages and are
morphologically poor. In these languages, it is

1The theory regarding morphology and word order is a lin-
guistically complex topic. Concurrent theories in the literature
propose that there is no correlation between morphological
complexity and word order. Müller (2002) demonstrates phe-
nomena like scrambling and topic shift, where the change in
word order does not necessarily require a high level of mor-
phological complexity. However, this is beyond the scope of
our study.
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essential for words to maintain fixed positions in
order to accurately convey grammatical relation-
ships, resulting in a strict and invariant word order.
On the other extreme, we find synthetic languages
such as Sanskrit and Finnish, known for their rich
morphology, where it’s possible to rearrange the
word order within a sentence without changing its
meaning, as illustrated in Figure 1. However, most
languages fall between these two extremes. Syn-
thetic languages can be categorized into two main
types. Agglutinative languages like Hungarian and
Turkish tend to stick together multiple morphemes
while fusional languages fuse several morphemes
to express various grammatical features.

4 Methodology

In our work, we first quantify morphological com-
plexity, and then systematically study the effect of
removal of positional encodings during fine-tuning.
Please refer to Section 3 for details on linguistic
theories governing our study.

4.1 Quantifying Morphological Complexity
Following Kettunen (2014); Jayanthi and Pratapa
(2021); Çöltekin and Rama (2023), we employ
type-token ratio (TTR) as an empirical proxy of
morphological complexity of a language. We use
the many-to-many multilingual Flores-200 bench-
mark (Costa-jussà et al., 2022) to ensure informa-
tion consistency across languages. As Chinese is
an unsegmented language, we use character level
ELMo model from the pywordseg library (Chuang,
2019) to split Chinese text into words. The remain-
ing languages are space-delimited. Please refer to
Appendix B for more details.

4.2 Morphology-based Investigation
To evaluate the impact of positional embeddings,
we set them to 0, effectively nullifying its effect dur-
ing fine-tuning. Our objective was to include multi-
ple languages to ensure the generalizability of our
findings. However, training language models from
scratch (without positional encoding) for a large
number of languages requires significant compu-
tational power and financial resources. Therefore,
our primary focus was investigating the impact of
nullifying positional encoding during fine-tuning.

We posit that for morphologically rich languages
like Sanskrit, this would have minimal impact on
downstream performance. For example, as de-
picted in Figure 1, the semantic meaning of a sen-
tence in Sanskrit remains consistent even when the

order of tokens is shuffled. However, this does not
hold for morphologically poor languages.

5 Experimental Setup

To ensure the generalizability of our findings, we
choose to perform a comprehensive study spanning
different languages and tasks.

5.1 Tasks and Languages

As our work deals with the interplay of morphol-
ogy and syntax in PLMs, we consider two sets of
tasks:
a. Syntactic tasks: Part-of-speech (POS) tagging,
Named Entity Recognition (NER), Dependency
Parsing
b. Semantic tasks: Natural Language Inference
(NLI), Paraphrasing
Factors considered in task and language selection
include (1) availability of monolingual BERT-base
model on HuggingFace Hub (Wolf et al., 2019), (2)
availability of sufficient monolingual training data
across different tasks, and (3) typological diversity.
We aim to cover as many languages and language
families as possible. Overall, we cover 22 lan-
guages distributed across 9 language families and
one language isolate. We present an outline of the
languages in Appendix A due to space constraints.

5.2 Datasets

Our study includes tasks from the XTREME bench-
mark (Hu et al., 2020), covering natural language
inference (XNLI) (Conneau et al., 2018), paraphras-
ing (PAWS-X) (Yang et al., 2019a), and structure
prediction tasks such as POS tagging and NER.
We use the data from the Universal Dependencies
v2.12 (Zeman et al., 2023) for the task of depen-
dency parsing. The treebanks used for different
languages are listed in Table 4 in Appendix.

5.3 Model Selection

In our research, we use monolingual pre-trained
language models to prevent cross-lingual transfer
from influencing our results. Given the availability
of monolingual BERT models in various languages,
we select BERT as the example PLM for our study.
We consider BERT-base model for all languages to
ensure that variations in model size and architecture
do not influence the results. We consider fine-tuned
BERT-base models with PE and without PE as the
baseline and perturbed models, respectively.
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Figure 2: Effect of Positional Encoding on NER task.
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Figure 3: Effect of Positional Encoding on POS task.

5.4 Evalution Metrics

The metric used for different tasks is outlined in
Table 1. For a given task, let m and n denote the
metric scores for the baseline and perturbed models,
respectively. We use the relative decrease in per-
formance, calculated as (m-n)/m, as a quantitative
measure of the importance of PE on the language.
A higher value indicates a greater utilization of PE
in effectively modeling the language.

5.5 Training and evaluation setup

For text classification tasks, we follow the generic
pipeline. For dependency parsing, we implemented
a biaffine parser by applying a biaffine attention
layer directly on the output of BERT as described
in Glavaš and Vulić (2021). As suggested in the
XTREME benchmark, we have performed hyper-
parameter tuning on English validation data. How-
ever, since our goal is not to achieve the best abso-
lute performance, we avoided conducting extensive
hyperparameter tuning. More details are present
in the Appendix E. Results are reported across 3
random trials of each experiment.

6 Results

In this section, we present the findings of our ex-
periments on syntactic and semantic tasks. We also
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Figure 4: Effect of Positional Encoding on Dependency
Parsing.
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Figure 5: Effect of Positional Encoding on XNLI.

conducted preliminary experiments on the GLUE
benchmark, as discussed in Appendix D.

6.1 Results on Syntactic Tasks

Figures 2, 3 demonstrate the effect of removing
positional encoding in NER, POS tagging tasks.
For dependency parsing, figures 4 and 7 depict the
effects on UAS and LAS scores, respectively.
a. Analytic languages like Chinese and Vietnamese,
characterized by minimal or no morphology, ex-
hibit the most significant decrease in performance
when PE is removed. Moderately analytic lan-
guages like English and French follow.
b. In synthetic languages such as Hungarian,
Finnish, and Turkish, known for their rich mor-
phological systems, the function of morphology in
encoding grammatical roles surpasses that of word
order, resulting in a considerably smaller decrease
in performance when PE is eliminated.
In the XTREME benchmark, different methods
were employed for data annotation for POS tagging
and NER datasets. While the former was human
annotated, the latter was created through automatic
annotation using weak supervision. Despite these
disparities, the findings of the POS tagging and
NER experiments are similar.
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Figure 6: Effect of Positional Encoding on PAWS-X.

6.2 Results on Semantic Tasks
Natural language inference and paraphrasing tasks
primarily involve understanding the semantic re-
lationships and meaning between sentences or
phrases. Syntax, including word order and gram-
matical rules, can influence the overall coherence
and clarity of the expressions, but it is not the pri-
mary focus of these tasks.
The results depicted in Figures 5 and 6 illustrate the
impact of nullifying PE in tasks related to natural
language inference and paraphrasing. We notice a
consistent pattern emerge in the graphs where mor-
phologically poor languages are notably affected
by the absence of positional encoding, while the im-
pact is comparatively less for morphologically rich
languages. However, in contrast to syntactic tasks,
the variability in impact across different languages
is less pronounced for semantic tasks.

Task (Metric) Correlation

NER (F1) -0.742
POS (F1) -0.693

Dependency Parsing (UAS) -0.882
Dependency Parsing (LAS) -0.873

XNLI (Accuracy) -0.773
PAWS-X (Accuracy) -0.486

Table 1: Spearman correlation coefficient between mor-
phological complexity of a language and relative de-
crease in performance across different tasks

In Table 1, we report the statistical correlation be-
tween the morphological complexity of a language
and the relative decrease in performance across
tasks, as determined by the Spearman Correlation
Coefficient. A strong negative correlation is ob-
served, indicating that higher morphological com-
plexity is associated with a lower relative decrease
in performance.

6.3 Analysis

We investigate the impact of removing positional
encoding across languages in POS tagging and de-
pendency parsing tasks. Both tasks depend on the
interaction between morphology and word order to
accurately interpret sentence structure.

For morphologically poor languages with rela-
tively fixed word order, such as English and French,
we observe increased ambiguity in distinguishing
part-of-speech tags, particularly between nouns and
pronouns, nouns and verbs, and adjectives and ad-
verbs. In morphologically rich languages like Turk-
ish, Finnish, and Arabic, the absence of positional
encoding has minimal impact, as inflectional af-
fixes marking features like number, tense, and per-
son aid in correctly identifying the part of speech
of a word.

Removing positional encoding has a more signif-
icant impact on dependency parsing than on POS
tagging. In morphologically poor, fixed-word-order
languages such as Chinese, English, and French,
we observe a sharper decline in performance, with
an increased tendency to misidentify subjects and
objects. Parsers in these languages rely on word
order to correctly assign modifiers to their heads,
and without positional encoding, capturing head-
dependent relationships (e.g., between adjectives
or adverbs and their heads) becomes more challeng-
ing. In contrast, morphologically rich languages
experience a much smaller drop in UAS and LAS
scores, as morphological case markers (e.g., nom-
inative, accusative) help identify syntactic roles
more effectively.

7 Conclusion

In this work, we demonstrate the interplay
between positional encoding and morphology for
morphologically diverse languages. We present
the first study regarding the varying impact
of positional encoding across languages with
varying morphological complexity. We cover 22
different languages across 9 language families
and 5 diverse natural language processing tasks
for our investigation. Our results reveal that the
importance of positional encoding diminishes
as the morphological complexity of a language
increases. Our study also emphasizes the need for
a deeper understanding of positional encoding,
augmenting them to better reflect the different
languages under consideration.
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A Details of Languages

We provide an overview of the languages included
in our study in Table 2. Additionally, Table 4
presents the details of the treebanks used in the
dependency parsing experiments.

B TTR-based Morphological Complexity

The TTR-based morphological complexity of dif-
ferent languages are listed in Table 3. For space-
delimited languages, we use the tokenizer from
NLTK library for word segmentation.

C Additional Results

The effect of removing positional encoding in de-
pendency parsing is examined by analyzing the rel-
ative decrease in UAS (Figure 4) and LAS scores
(Figure 7).
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Figure 7: Effect of Positional Encoding on Dependency
Parsing (LAS).

D Results on GLUE tasks

In this section, we discuss the preliminary experi-
ments conducted on the GLUE benchmark.

D.1 Impact of positional encoding

Removing positional encoding leads to a varied
decrease in performance across different tasks, as
evident in Table 5.
Sentence/Grammatical acceptability tasks: Po-
sitional encoding helps the model understand the
hierarchical structure and dependencies between
words, which is essential for determining the gram-
maticality of a sentence. As a result, in case of
CoLA task, when positional encoding is removed,
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Language (ISO code) Language family Hugging Face Model id

Arabic (ar) Afro-Asiatic aubmindlab/bert-base-arabertv02
Basque (eu) Basque orai-nlp/ElhBERTeu
Bengali (bn) Indo-European: Indo-Aryan sagorsarker/bangla-bert-base

Bulgarian (bg) Indo-European: Slavic usmiva/bert-web-bg
Chinese (zh) Sino-Tibetan bert-base-chinese
Dutch (nl) Indo-European: Germanic GroNLP/bert-base-dutch-cased

English (en) Indo-European: Germanic bert-base-cased
Finnish (fi) Uralic TurkuNLP/bert-base-finnish-cased-v1
French (fr) Indo-European: Romance dbmdz/bert-base-french-europeana-cased

German (de) Indo-European: Germanic dbmdz/bert-base-german-cased
Greek (el) Indo-European: Greek nlpaueb/bert-base-greek-uncased-v1

Hebrew (he) Afro-Asiatic onlplab/alephbert-base
Hungarian (hu) Uralic SZTAKI-HLT/hubert-base-cc
Indonesian (id) Austronesian indolem/indobert-base-uncased

Italian (it) Indo-European: Romance dbmdz/bert-base-italian-cased
Korean (ko) Koreanic kykim/bert-kor-base

Portuguese (pt) Indo-European: Romance neuralmind/bert-base-portuguese-cased
Russian (ru) Indo-European: Slavic DeepPavlov/rubert-base-cased
Spanish (es) Indo-European: Romance dccuchile/bert-base-spanish-wwm-cased
Swahili (sw) Niger-Congo flax-community/bert-base-uncased-swahili
Turkish (tr) Turkic dbmdz/bert-base-turkish-cased

Vietnamese (vi) Austro-Asiatic trituenhantaoio/bert-base-vietnamese-uncased

Table 2: Overview of different languages

Language (ISO code) FLORES-200 code TTR

Arabic (ar) arb_Arab 0.359
Basque (eu) eus_Latn 0.324
Bengali (bn) ben_Beng 0.292

Bulgarian (bg) bul_Cyrl 0.268
Chinese (zh) zho_Hans 0.17
Dutch (nl) nld_Latn 0.207

English (en) eng_Latn 0.194
Finnish (fi) fin_Latn 0.428
French (fr) fra_Latn 0.191

German (de) deu_Latn 0.244
Greek (el) ell_Grek 0.253

Hebrew (he) heb_Hebr 0.364
Hungarian (hu) hun_Latn 0.345
Indonesian (id) ind_Latn 0.195

Italian (it) ita_Latn 0.217
Korean (ko) kor_Hang 0.465

Portuguese (pt) por_Latn 0.205
Russian (ru) rus_Cyrl 0.334
Spanish (es) spa_Latn 0.192
Swahili (sw) swh_Latn 0.212
Turkish (tr) tur_Latn 0.376

Vietnamese (vi) vie_Latn 0.077

Table 3: TTR-based morphological complexity of different languages
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Language Treebank

Chinese (zh) UD_Chinese-GSD
Portuguese (pt) UD_Portuguese-Bosque
Spanish (es) UD_Spanish-GSD
English (en) UD_English-GUM
French (fr) UD_French-GSD
Italian (it) UD_Italian-ISDT
Russian (ru) UD_Russian-Taiga
German (de) UD_German-GSD
Basque (eu) UD_Basque-BDT
Finnish (fi) UD_Finnish-FTB
Turkish (tr) UD_Turkish-Penn

Table 4: Details of treebanks of different languages

Task Dataset
With Positional Encoding Without

Positional
Encoding

Relative
decreaseUnigram Bigram Trigram Without

Permutation Permutation Permutation Permutation

Sentence
Acceptability CoLA 4.4 12.3 16.8 59.1 23.8 59.7

Sentiment
Analysis SST-2 81.6 86.0 85.1 91.8 86.5 5.8

Paraphrasing /
Sentence

Similarity

MPRC 83.5 84.2 85.4 89.8 84.6 5.8
QQP 75.6 79.1 80.8 87.1 85.8 1.5

STS-B 85.2 87.1 86.6 89.0 86.6 2.7

Natural
Language
Inference

MNLI 68.3 74.8 76.5 83.6 79.7 4.7
MNLI-MM 68.7 74.4 76.6 84.0 79.8 5.0

QNLI 81.3 85.0 86.5 91.0 87.2 4.2
RTE 58.1 61.5 61.8 64.5 62.8 2.6

Table 5: GLUE Results for English language: The evaluation metrics used for reporting the performance of QQP
and MRPC tasks are F1 scores, while for the STS-B task, Spearman correlations are used, and accuracy scores are
employed for the remaining tasks. The average and standard deviation are reported across 3 trails of the evaluation
on the validation set. The relative decrease quantifies the decline in performance when positional encoding is
excluded compared to when positional encoding was present. Additionally, we conducted experiments in which we
removed positional encoding and perturbed the input to the model. Since the removal of positional encoding results
in a bag of words model, we observed no noticeable change upon further distortion.

Task learning rate batch size number of epochs

NER 2.00E-05 16 3
POS 3.00E-05 8 3

XNLI 3.00E-05 32 3
PAWS-X 3.00E-05 32 3

Table 6: Hyper-parameter details
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the model struggles to identify grammatically ac-
ceptable sentences, leading to a notable decline of
59.7% in performance.
Paraphrasing and sentence similarity tasks:
Models can effectively capture the similarity or
relatedness between sentences by focusing on com-
mon signals present across sentences. These tasks
primarily require understanding the underlying
semantic meaning and contextual similarities be-
tween sentences rather than the syntactic structure.
As a result, when positional encoding is removed,
the relative decrease in performance is considerably
smaller (5.8% for MRPC, 2.7% for STS-B, and
1.5% for QQP). This indicates that while positional
encoding does provide some benefit in capturing
the positional information within sentences, it is
not very crucial for these tasks.
Natural language inference tasks: The removal
of positional encoding leads to a relative decrease
of 4.7% for MNLI, 5% for the mismatched ver-
sion of MNLI, 4.2% for QNLI, and 2.6% for RTE.
The decrease in performance is still relatively mod-
est for these tasks. This highlights that positional
encoding does not play a significant role in un-
derstanding the logical inference and entailment
relationships between sentence pairs (Wang et al.,
2020).
Even in the absence of positional encoding, the
bag of words model gives considerably good per-
formance for paraphrasing and natural language
inference tasks. The results on GLUE benchmark
serve as a driving force behind our investigation,
where we aim to further test our hypothesis across
morphologically diverse languages.

D.2 Impact of permutation:

In addition to studying the effect of positional en-
coding, we also conducted experiments to examine
the impact of permutation on various GLUE tasks.

• Unigram permutation causes the most significant
performance drop. However, as we increase the
ngram order, which involves shuffling chunk of
words instead of individual words, the decrease in
performance is significantly less. This indicates
that shuffling at higher ngram levels add less
distortion and preserve the integrity of word order
to a greater extent.

• The results also imply that lower order ngrams
capture vocabulary match and is completely
ignorant of word order whereas higher order
ngrams capture word order and other dependen-

cies present in a sentence.

E Hyper-parameter details:

The hyper-parameter details used at the time of
fine-tuning are outlined in Table 6. For dependency
parsing, we have followed the hyper-parameter set-
tings mentioned in Glavaš and Vulić (2021).
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