@inproceedings{zheng-etal-2024-thoughts,
title = "Thoughts to Target: Enhance Planning for Target-driven Conversation",
author = "Zheng, Zhonghua and
Liao, Lizi and
Deng, Yang and
Lim, Ee-Peng and
Huang, Minlie and
Nie, Liqiang",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1175",
doi = "10.18653/v1/2024.emnlp-main.1175",
pages = "21108--21124",
abstract = "In conversational AI, large-scale models excel in various tasks but struggle with target-driven conversation planning. Current methods, such as chain-of-thought reasoning and tree-search policy learning techniques, either neglect plan rationality or require extensive human simulation procedures. Addressing this, we propose a novel two-stage framework, named EnPL, to improve the LLMs{'} capability in planning conversations towards designated targets, including (1) distilling natural language plans from target-driven conversation corpus and (2) generating new plans with demonstration-guided in-context learning. Specifically, we first propose a filter approach to distill a high-quality plan dataset, ConvPlan (Resources of this paper can be found at https://github.com/pandazzh2020/ConvPlan). With the aid of corresponding conversational data and support from relevant knowledge bases, we validate the quality and rationality of these plans. Then, these plans are leveraged to help guide LLMs to further plan for new targets. Empirical results demonstrate that our method significantly improves the planning ability of LLMs, especially in target-driven conversations. Furthermore, EnPL is demonstrated to be quite effective in collecting target-driven conversation datasets and enhancing response generation, paving the way for constructing extensive target-driven conversational models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-etal-2024-thoughts">
<titleInfo>
<title>Thoughts to Target: Enhance Planning for Target-driven Conversation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhonghua</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lizi</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Deng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ee-Peng</namePart>
<namePart type="family">Lim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minlie</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liqiang</namePart>
<namePart type="family">Nie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In conversational AI, large-scale models excel in various tasks but struggle with target-driven conversation planning. Current methods, such as chain-of-thought reasoning and tree-search policy learning techniques, either neglect plan rationality or require extensive human simulation procedures. Addressing this, we propose a novel two-stage framework, named EnPL, to improve the LLMs’ capability in planning conversations towards designated targets, including (1) distilling natural language plans from target-driven conversation corpus and (2) generating new plans with demonstration-guided in-context learning. Specifically, we first propose a filter approach to distill a high-quality plan dataset, ConvPlan (Resources of this paper can be found at https://github.com/pandazzh2020/ConvPlan). With the aid of corresponding conversational data and support from relevant knowledge bases, we validate the quality and rationality of these plans. Then, these plans are leveraged to help guide LLMs to further plan for new targets. Empirical results demonstrate that our method significantly improves the planning ability of LLMs, especially in target-driven conversations. Furthermore, EnPL is demonstrated to be quite effective in collecting target-driven conversation datasets and enhancing response generation, paving the way for constructing extensive target-driven conversational models.</abstract>
<identifier type="citekey">zheng-etal-2024-thoughts</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.1175</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1175</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>21108</start>
<end>21124</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Thoughts to Target: Enhance Planning for Target-driven Conversation
%A Zheng, Zhonghua
%A Liao, Lizi
%A Deng, Yang
%A Lim, Ee-Peng
%A Huang, Minlie
%A Nie, Liqiang
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F zheng-etal-2024-thoughts
%X In conversational AI, large-scale models excel in various tasks but struggle with target-driven conversation planning. Current methods, such as chain-of-thought reasoning and tree-search policy learning techniques, either neglect plan rationality or require extensive human simulation procedures. Addressing this, we propose a novel two-stage framework, named EnPL, to improve the LLMs’ capability in planning conversations towards designated targets, including (1) distilling natural language plans from target-driven conversation corpus and (2) generating new plans with demonstration-guided in-context learning. Specifically, we first propose a filter approach to distill a high-quality plan dataset, ConvPlan (Resources of this paper can be found at https://github.com/pandazzh2020/ConvPlan). With the aid of corresponding conversational data and support from relevant knowledge bases, we validate the quality and rationality of these plans. Then, these plans are leveraged to help guide LLMs to further plan for new targets. Empirical results demonstrate that our method significantly improves the planning ability of LLMs, especially in target-driven conversations. Furthermore, EnPL is demonstrated to be quite effective in collecting target-driven conversation datasets and enhancing response generation, paving the way for constructing extensive target-driven conversational models.
%R 10.18653/v1/2024.emnlp-main.1175
%U https://aclanthology.org/2024.emnlp-main.1175
%U https://doi.org/10.18653/v1/2024.emnlp-main.1175
%P 21108-21124
Markdown (Informal)
[Thoughts to Target: Enhance Planning for Target-driven Conversation](https://aclanthology.org/2024.emnlp-main.1175) (Zheng et al., EMNLP 2024)
ACL