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Abstract

Multilingual neural machine translation models
support fine-tuning hundreds of languages si-
multaneously. However, fine-tuning on full pa-
rameters solely is inefficient potentially leading
to negative interactions among languages. In
this work, we demonstrate that the fine-tuning
for a language occurs in its intrinsic language-
specific subspace with a tiny fraction of en-
tire parameters. Thus, we propose language-
specific LoRA to isolate intrinsic language-
specific subspaces. Furthermore, we propose
architecture learning techniques and introduce
a gradual pruning schedule during fine-tuning
to exhaustively explore the optimal setting and
the minimal intrinsic subspaces for each lan-
guage, resulting in a lightweight yet effec-
tive fine-tuning procedure. The experimen-
tal results on a 12-language subset and a 30-
language subset of FLORES-101 show that our
methods not only outperform full-parameter
fine-tuning up to 2.25 spBLEU scores but also
reduce trainable parameters to 0.4% for high
and medium-resource languages and 1.6% for
low-resource ones. Codes are available at
https://github.com/Spike0924/LSLo.

1 Introduction

Multilingual Neural Machine Translation (MNMT)
aims to use a single model to translate among dif-
ferent languages (Ha et al., 2016; Johnson et al.,
2017). Recent studies of MNMT (Fan et al., 2020;
Team et al., 2022) achieved significant progress
in training large-scale pre-trained models support-
ing hundreds of languages. Benefiting from cross-
language learning, these pre-trained models offer
the possibility of fine-tuning with limited data and
show better performance in low-resource languages
and non-English directions. However, multilingual
fine-tuning still suffers from two limitations: (1)
full-parameter fine-tuning becomes inefficient as
the model size increases; (2) negative interactions
among languages (Duh et al., 2012; Mohammad-

shahi et al., 2022; He et al., 2023; Chen et al., 2023;
Huang et al., 2023) lower the performance of high-
resource languages.

Recent studies have shown that the fine-tuning
of pre-trained models can be re-parameterized in
an intrinsic subspace, i.e., a low-rank subspace
with tiny parameters (Li et al., 2018; Qin et al.,
2022; Zhang et al., 2023b). This insight implies
that language-specific fine-tuning in pre-trained
MNMT models happens within intrinsic language-
specific subspaces, thus overcoming the aforemen-
tioned limitations: (1) intrinsic subspaces signifi-
cantly reduce the required trainable parameters; (2)
isolating the intrinsic subspaces among languages
alleviates the negative interference in the multilin-
gual representations. Therefore, in this work, we
propose Language-Specific LoRA (LSLo), consist-
ing of multiple LoRA (Hu et al., 2021) modules
with sparse language-specific activation, to model
such intrinsic subspaces.

Moreover, prior works (Qu and Watanabe, 2022;
Pfeiffer et al., 2022; Pires et al., 2023) allocate
the same number of parameters to different lan-
guages, which can yield sub-optimal setup because
pre-trained models have already learned a substan-
tial amount of knowledge from high-resource lan-
guages given the imbalance distribution of train-
ing data. We hypothesize that fine-tuning of high-
resource languages can be done in a smaller sub-
space compared to low-resource languages. To ex-
haustively explore the minimal intrinsic subspaces
for each language, we first reduce the rank for high-
resource languages and then introduce unstructured
pruning with a Gradual Pruning Schedule (He et al.,
2023) during fine-tuning.

However, determining the optimal structure of
LSLo remains challenging. First, there are 2 cases
when selecting the language-specific sub-module
of each LSLo: selected by source language (source-
indexed) and selected by target language (target-
indexed). Furthermore, although we intuitively ex-
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pect that high-resource languages require smaller
subspaces, it’s still insufficient for the complex
multilingual setting. These lead to the exponential
increase in the possible architectures with the in-
crease of the number of model layers and supported
languages. Therefore, in this work, we use two ar-
chitecture Learning techniques to avoid the tedious
manual trial-and-error. We applied Weight Learn-
ing (Elsken et al., 2019; Pires et al., 2023) to deter-
mine whether each LSLo module should be source-
indexed or target-indexed, given its interpretability
and ease of visualization. We also propose a Layer-
wise Cross-Language Pruning method, which com-
bines the LoRA modules of all languages at every
layer for pruning to estimate the required subspace
size for each language.

We conduct our experiments on a 12-language
subset of FLORES-101 (Goyal et al., 2021; Team
et al., 2022). Results show that in a pre-trained
MNMT model, the size of intrinsic language-
specific subspace is highly correlated with the lan-
guage’s resource type. Specifically, High-resource
languages can be fine-tuned within a very small
parameter subspace. Our fine-tuning method out-
performs full parameter fine-tuning by 1.3 spBLEU
while only using 0.4% trainable parameters for
high and medium languages, and 1.6% for low-
resource ones. We further evaluate our method on
a 30-language subset, achieving a 2.25 spBLEU
improvement over full parameter fine-tuning with
only 7% trainable parameters, which demonstrates
the efficiency and effectiveness of our method.

2 Background

Given a set of n languages L = {l1, l2, · · · , ln},
the multilingual translation task is defined as trans-
lating an input in source language src ∈ L into
an output in target language tgt ∈ L. To train
an MNMT model, we need a parallel corpus in-
cluding translations aligned at the sentence level
for creating MNMT datasets. For instance, con-
sider a collection with m sets of sentences S =
{S1,S2, · · · ,Sm}, each sentence set includes sen-
tences in different languages sharing the same se-
mantics, Sk = {skl1 , skl2 , · · · , skln}. With a paral-
lel corpus, we can conveniently construct MNMT
datasets including different translation directions
src → tgt by choosing source and target sentences
pairs from S, e.g., sksrc as the input x and sktgt
as the output y of a single translation pair (x,y).
Given a MNMT dataset with N translation pairs

D = {(xi,yi), i ∈ 1 · · ·N}, the training loss is
defined as:

LMNMT = −
∑

x,y∈D

J∑

j=1

log pθ(yj |y<j ,x) (1)

where x = x1, x2, · · · , xI is a source sentence
with length I and y = y1, y2, · · · , yJ is the corre-
sponding target sentence with length J . We say
an MNMT model is English-centric if all language
pairs in its training data include English. Models
without this limitation are classified as many-to-
many models. In this work, we conduct experi-
ments in a many-to-many setting.

3 Methodology

3.1 Language-specific LoRA
LoRA (Hu et al., 2021) is widely used in Parameter-
efficient Fine-tuning (PEFT) for Large Language
Models where fine-tuning is re-parameterized in a
low-rank intrinsic subspace. For a weight matrix
in a pre-trained model W ∈ Rd×k, LoRA forward
pass can be calculated as:

h = Wx+BAx (2)

where B ∈ Rd×r and A ∈ Rr×d. During training,
W will be frozen and the trainable parameters, i.e.,
A and B, will be reduced from d×k to d×r+r×k,
where r ≪ min(d, k).

In this work, we propose Language Specific
LoRA (LSLo), an instance of Mixture-of-LoRAs
(Feng et al., 2024) but with a hard language-specific
routing. Specifically, Each LSLo module contains
multiple sparsely activated LoRA modules with dif-
ferent rank rli for each language, instead of sharing
a unified parameter space across all languages. The
forward pass of LSLo is calculated as:

h = Wx+ LSLo(x, li)

= Wx+BliAlix
(3)

where li ∈ L is the selected language for this LSLo.
Only the LoRA module of the selected language
will be activated each time. Similar to LoRA, LSLo
can be added to any weight matrices, e.g., pro-
jections for attention and fully connected layers.
The number of trainable parameters for each LSLo
module is

∑n
i=1(d × rli + rli × k), where rli is

the reduced dimension for each language li. We
are allowed to flexibly adjust the size of intrin-
sic language-specific subspaces through rli , thus
achieving higher parameter efficiency.
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3.2 Unstructured Pruning

The assumption that higher-resource languages
have smaller intrinsic subspaces naturally leads
to the following question: How small can these
subspaces be? Therefore, we adopt unstructured
pruning1 to explore the minimal intrinsic language-
specific subspaces exhaustively. Compared with
structured pruning which directly removes entire
rows or columns from a weight matrix, we choose
unstructured pruning without the above limitation
to achieve a higher pruning ratio. To ensure the sta-
bility of the model during training under a high
pruning ratio, we introduce a Gradual Pruning
Schedule (Zhu and Gupta, 2017; He et al., 2023)
during training. Specifically, the pruning ratio for
each epoch Pe is gradually increased from 0 to the
predefined target pruning ratio P . The entire train-
ing process is divided into three stages as denoted
in Equation 4. Given a predefined pruning ratio
P and the total training process has T epochs. E
is the starting epoch for pruning, and the pruning
process will last for k epochs.

Pe =





0 e ≤ E

P − P (1− e−E
k )

3
E < e ≤ (E + k)

P (E + k) < e ≤ T
(4)

During the first E epochs (e ≤ E), no pruning is
applied denoted by P = 0; for stage 2, the prun-
ing ratio of the current e epoch is gradually in-
creased until reaching the target ratio P for the
next k epochs; for stage 3, the pruning ratio P is
kept to the end. For the following experiments, we
empirically choose the start epoch E = 2 and the
duration k = 8. We provide a detailed description
of the target pruning ratio P used in each experi-
ment, as well as the impact of different choices of
E and k on performance in Appendix B.

4 Architecture Learning

LSLo introduces additional hyperparameters: (1)
each LSLo module can be selected by either the
source or the target language; (2) each language can
have a different rank rli , leading to an exponential
increase in possible architectures with the number
of layers and languages. Therefore, we propose
two architecture learning techniques in this section
to avoid manual selection.

1We directly use the implementation from PyTorch.
https://pytorch.org/docs/stable/generated/torch.
nn.utils.prune.l1_unstructured.html

4.1 Weight Learning

Consider a translation from a source language
li ∈ L to a target language lj ∈ L. We say an
LSLo module is source-indexed if activated by the
source language li and is target-indexed if activated
by the target language lj . Intuitively, we expect that
the language information is transformed from the
source side to the target side near the top layers of
the encoder and the bottom layers of the decoder
(Kudugunta et al., 2019), which motivates the as-
sumption that a layer in an encoder or decoder
might prefer either source or target language, e.g.,
top layers of the encoder require target-indexed
LSLo for more target side information while bot-
tom layers of the encoder require source-indexed
LSLo for more source side information. However,
finding an optimal setting remains tedious work.
Inspired by Neural Architecture Search (Elsken
et al., 2019; Pires et al., 2023), we introduce a
weight learning method here to determine the acti-
vation strategy for each layer’s LSLo modules. We
use mo to denote any module where LSLo might
be added, including the query, key, and value ma-
trices of attention and cross-attention, as well as
the up and down matrices of fully-connected lay-
ers. Given an LSLo module added to a pre-trained
weight matrix W , let the layer index W located is i,
and the module W belongs to is mo, we calculate
weighted sum during forward pass as follows:

hi
mo =Wi

mox +

wi
src · LSLoimo(x, lsrc) +

wi
tgt · LSLoimo(x, ltgt) .

(5)

where wi
src , wi

tgt are shared among all LSLo mod-
ules in the same layer, and we use softmax to make
sure the weights are non-negative and sum up to 1.
We will simply choose the index strategy with the
one having a larger weight.

4.2 Intrinsic Subspace Estimation

Intuitively, high-resource languages can be fine-
tuned in smaller subspaces owing to the extensive
knowledge learned during pre-training, while low-
resource ones should preserve larger subspaces due
to the limited resources. However, in practice,
some medium-resource languages, such as Dutch,
have data scales similar to high-resource languages,
thus it is possible to reduce the size of subspaces.
Additionally, some low-resource languages would
benefit more from cross-lingual transfer thanks to
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their similarity to high-resource languages, e.g.,
the same language family, effectively allowing the
reduction in the fine-tuning subspaces. Therefore,
we propose an intrinsic subspace estimation tech-
nique using layer-wise cross-language pruning2 to
comprehensively analyze the fine-tuning space de-
mands for each language.

We apply LSLo to all possible weight matrices
and group B matrices from LSLo modules of all
languages in the same layer for pruning. We use
the same unstructured pruning in Section 3.2. Let
#B be the number of parameters in matrix B, PISE

is the predefined pruning ratio, and #prunedB rep-
resents the actual number of parameters pruned
from matrix B. We measure the intrinsic subspace
demands using the following importance score:

Score(B) = #prunedB − PISE ·#B (6)

If Score(B) is positive, it means that matrix B
was pruned more than the target rate, thus the fine-
tuning can be done in a smaller subspace. Con-
versely, a negative one indicates the need for a
larger parameter space. By grouping all languages
for pruning in each layer, we can estimate the size
of each language’s intrinsic subspace in different
layers respectively.

We only focus on our comparison among B ma-
trices because, while the A matrices are randomly
Gaussian initialized, B matrices are initialized by
zero in LoRA, allowing us to compare more fairly.
Additionally, if we put both A and B matrices from
all LoRA modules into the same pruning pool, be-
cause B is initialized by zero, L1 pruning will al-
ways prune all the parameters in B first (lead to
B = 0), which will cause training stability issues.

5 Experimental Setup

Dataset FLORES-101 (Goyal et al., 2021) is a
high-quality parallel dataset, including 3,001 sen-
tences from English Wikipedia which are trans-
lated into 101 languages by human translators. Sen-
tences are divided into three splits: dev (997 sen-
tences), devtest (1,012 sentences), and test (992
sentences). Since the test set is not publicly avail-
able, we use the dev set for training and devtest
set for evaluation. Languages are divided into four
resource types: High (H), Medium (M), Low (L),
and Very-Low (V), based on the available bitext
data with English.

2We also use the implementation from PyTorch.
https://pytorch.org/docs/stable/generated/torch.
nn.utils.prune.global_unstructured.html

We first randomly selected four languages from
each of the three resource types (high, medium,
very-low) to form a small subset lang12 of 12 lan-
guages. We conducted comprehensive analyses
and tests on lang12 to verify our proposed method.
Then, we extend our method to a larger subset
lang30 to measure the impact when introducing
more languages. Details for lang12 and lang30
are provided in Appendix A.

Model Setting We choose M2M-124 615M
(Goyal et al., 2021) as our base model. This is
a special version of M2M-100 (Fan et al., 2020)
extended by supplementing OPUS data to support
all languages in the FLORES-101 dataset.

Training We implemented LSLo using fairseq
(Ott et al., 2019) based on Transformer architecture.
All experiments were trained in a many-to-many
setting in a single run. For full parameter fine-
tuning, we trained the model for 15 epochs with
a learning rate of 0.0001. For LSLo, we froze the
parameters of the original model and trained for
15 epochs with a learning rate of 0.003. All mod-
els were trained on 4 RTX A6000 with automatic
mixed precision.

Evaluation We choose the results of full parame-
ter fine-tuning as the baseline to compare with the
beam size of 5. We use the dev and devtest set men-
tioned above as our training and test sets respec-
tively and report spBLEU score (SentencePiece
BLEU) (Goyal et al., 2021) with the FLORES-101
tokenizer3.

6 Results

6.1 Weight Learning

As described in Section 4.1, we apply weight learn-
ing to the training data of lang12 before conduct-
ing subsequent experiments to determine whether
each LSLo module should be source-indexed or
target-indexed. We build both source-indexed and
target-indexed LSLo modules with the same rank
rli = 8 for all languages to all weight matrices in
both encoder and decoder, including q, k, v, c-q,
c-k, c-v, i.e., query, key and value matrices of atten-
tion and cross-attention respectively, and fc1, fc2,
i.e., down and up matrices of MLP, respectively. In
forward pass, we calculated the weighted sum of
these two different indexed modules.

3https://github.com/facebookresearch/flores/
tree/main/previous_releases/flores101
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Figure 1: Source (src) and target (tgt) weights learned
across layers in encoder (enc) and decoder (dec). The
model’s focus shifted from the source side to the target
side near the top of the encoder.

Figure 1 shows a clear tendency that the model’s
focus moves from the source side to the target
side near the top of encoder, and in decoder, the
model only focuses on target information. This
is also mentioned by Tenney et al. (2019); Pires
et al. (2023), where the bottom layers of encoder
only learn some lower-level representation, and the
top layers capture more output-related higher-level
representation.

For the following experiments, we choose the
indexed modules with the larger weights, which
means the LSLo modules in the first 9 layers of
encoder will be source-indexed and in other layers
of encoder and decoder will be target-indexed.

6.2 Intrinsic Subspace Estimation

We performed layer-wise cross-language pruning
as described in Section 4.2 on the training data of
lang12 to estimate the space demand for each lan-
guage. We added LSLo with rli for all languages
to all weight matrices, allowing us to assess the
parameter demands of different languages in each
layer of encoder and decoder. See Appendix B for
more details of layer-wise cross-language pruning.
Figure 2 shows the demands calculated by Equa-
tion 6 of each language, averaged across all layers.
12 languages are organized by three resource types:
high-resource (green), medium-resource (blue) and
very-low-resource (red).

The results indicate that the intrinsic subspace
for each language is highly correlated with the re-
source type. Very-low-resource languages need
more parameters to learn the language-specific
knowledge compared to high and medium-resource
ones. This suggests there is no need to use the same
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Figure 2: Illustration of the parameter space demands
for each language, averaged across all layers. Color
indicates the demands from low (blue) to high (red).
Rows are organized by language resource type: high-
resource (green), medium-resource (blue), and very-
low-resource (red). Columns are organized by weight
matrices in the encoder and decoder: query, key, and
value matrices of attention (q, k, v) and cross-attention
(c-q, c-k, c-v); down and up matrices of MLP (fc1, fc2).

architecture for all languages during fine-tuning.
We observed similar tendencies in all layers, and
the details are provided in Appendix C. Addition-
ally, we also notice that compared to other lan-
guages in the same group, Dutch (nl) and Occitan
(oc) require smaller parameter spaces. For Dutch
(nl), it has much more bitext resources (82.4M)
compared with the other three languages in the
same group: Chinese (zh) (37.9M), Japanese (ja)
(23.2M), Korean (ko) (7.46M). We think the re-
source type, which is close to high-resource lan-
guages, allows Dutch (nl) to have a smaller intrin-
sic subspace. For Occitan (oc), although it has
only 5.11K bitext resources, it is the only language
in the group that belongs to the same Language
Family (Romance) as two high-resource languages,
French (fr) and Italian (it). This suggests that simi-
lar languages can benefit more from cross-language
learning, in line with Ma et al. (2023)’s approach of
integrating similar languages into a single module.

For the following experiments, we further reduce
the subspace size for high and medium-resource
languages by lowering their rank and applying un-
structured pruning with Gradual Pruning Schedule
to further explore the minimal possible intrinsic
subspace.

6.3 Main Results

In Table 1, we report the spBLEU scores of lang12 ,
organized by languages’ resource types: High (H),
Medium (M), and Very-low (V). The first column
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Language Direction
Methods #Params H2H H2M H2V M2H M2M M2V V2H V2M V2V AVG

Baselines
Pretrain - 31.76 20.06 5.56 20.71 17.12 3.47 9.24 5.03 0.52 12.26
Ft-all 615M 29.29 20.46 12.53 19.28 17.14 8.95 15.23 11.02 6.66 15.43

LSLo
+WL

4;4;4+WL 15.35M 30.15 20.35 11.76 19.49 17.04 8.13 14.58 10.02 5.66 15.03
8;8;8+WL 30.7M 28.49 19.26 13.01 18.39 16.05 9.21 14.28 9.86 6.94 14.86
16;16;16+WL 61.4M 25.90 17.82 14.32 16.86 14.93 10.57 13.80 9.71 8.46 14.55
64;64;64+WL 245.6M 21.91 14.94 14.91 14.44 12.43 11.47 12.55 8.98 9.96 13.40

LSLo
+WL
+GPS

2;2;8+WL 15.3M 31.33 21.07 13.07 20.16 17.58 9.3 15.95 10.89 7.01 16.05
2;2;8+WL+GPS(0.1) 15.3M 31.37 21.21 12.90 20.22 17.63 9.18 15.93 10.90 6.96 16.04
2;2;8+WL+GPS(0.3) 15.3M 31.53 21.33 12.88 20.32 17.67 9.18 15.93 10.84 6.99 16.08
2;2;8+WL+GPS(0.5) 15.3M 31.76 21.5 12.96 20.49 17.94 9.25 16.08 10.98 7.1 16.23
2;2;8+WL+GPS(0.7) 15.3M 32.22 21.81 12.86 20.92 18.10 9.22 16.28 11.12 6.94 16.38
2;2;8+WL+GPS(0.9) 15.3M 33.13 22.33 12.93 21.49 18.58 9.23 16.59 11.38 7.04 16.73
2;2;16+WL+GPS(0.9) 25.6M 33.06 22.27 14.24 21.44 18.58 10.49 17.44 12.02 8.42 17.33
2;2;64+WL+GPS(0.9) 86.9M 33.02 22.27 13.96 21.47 18.56 10.92 18.67 12.98 9.48 17.70

Table 1: The spBLEU scores on lang12 organized by language resource type: High-resource (H), Medium-resource
(M) and Very-low-resource (V), with the format {H;M;V} to show the rank we use for different languages in LSLo.
WL means we follow the learned architecture of Weight Learning mentioned in Section 4.1. GPS(Pr) means we use
the Gradual Pruning Schedule mentioned in Section 3.2 for High and Medium languages with the Pruning Ratio
Pr. Our most efficient structure (2;2;8+WL+GPS(0.9)) outperforms full parameter fine-tuning across all language
directions with a much smaller number of trainable parameters #Params.

shows the experimental settings. We use the format
{H;M;V} to show the rank in LSLo for languages
with different resource types. The notation WL
means we use the architecture learned from Weight
Learning in Section 6.1 and GPS(Pr) means we use
the Gradual Pruning Schedule mentioned in Sec-
tion 3.2 for high and medium-resource languages
with the Pruning Ratio Pr. See Appendix B for
more details of GPS. We choose the zero-shot (Pre-
train) and full-parameter fine-tuning (Ft-all) results
as our baselines. As shown in the first two rows,
although the spBLEU of very-low-resource lan-
guages improved after full parameter fine-tuning
(Ft-all), high-resource languages performed poorly
due to the negative interference among languages,
even worse than the zero-shot results (Pretrain).

We first experimented with the same sub-
space size for every language but varied ranks
r ∈ {4, 8, 16, 64}. Results (LSLo+WL) show a
trade-off between high-resource and low-resource
languages, i.e., a smaller rank can alleviate
the degradation of high-resource languages, e.g.,
4;4;4+WL, but limits the performance of low-
resource ones compared with higher rank settings,
e.g., 64;64;64+WL. This indicates that sharing the
same rank among languages with different resource
types is suboptimal, improving low-resource per-
formance requires a larger rank, which leads to
greater degradation of high-resource performance.
Although LSLo with r = 64 achieves the best per-
formance on very-low-resource directions, it incurs

a large number of trainable parameters and sacri-
fices high-resource performance.

Based on the findings of Section 6.2 that high
and medium-resource languages can be fine-tuned
in smaller subspaces, we set a lower rank r = 2 for
high and medium-resource languages and r = 8 for
very-low-resource languages (2;2;8+WL). Com-
pared with the setting of 8;8;8+WL, reducing pa-
rameter space for high and medium-resource lan-
guages can effectively alleviate the degradation
without compromising the performance of very-
low-resource directions. To further explore the
minimal intrinsic subspace, we implemented the
Gradual Pruning Schedule during fine-tuning men-
tioned in Section 3.2 for high and medium-resource
languages. Based on the setting of 2;2;8+WL, we
further reduce the parameter space for high and
medium-resource languages by increasing Pr. We
surprisingly find that, even after pruning 90% of the
LSLo parameters for high and medium-resource
languages (2;2;8+WL+GPS(0.9)), our method still
achieves a 1.3 spBLEU improvement over the full
parameter fine-tuning baseline, with only 2.5%
trainable parameters. Furthermore, the degradation
in high-resource languages has also been solved,
with H2H performance improved from a decline of
-2.47 spBLEU to an increase of +1.37 spBLEU.
This suggests that language-specific fine-tuning
for high and medium-resource languages actually
occurs within tiny subspaces. Therefore, we can
save more space for low-resource language learn-
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Language Direction
Methods #Params H2H H2M H2L H2V M2H M2M M2L M2V L2H L2M L2L L2V V2H V2M V2L V2V AVG

Pretrain - 28.93 20.77 6.29 3.60 22.94 17.26 4.82 2.73 11.28 8.01 3.03 1.51 7.04 4.34 1.68 0.55 9.53
Ft-all 615M 24.48 19.80 9.76 7.94 19.44 16.72 8.55 6.72 12.53 11.17 6.76 5.15 11.11 9.72 6.05 4.04 11.61
8;8;8;8+WL 76.7M 22.94 17.91 11.15 10.24 18.07 15.00 9.64 8.74 12.33 10.46 8.15 7.34 11.07 9.30 7.47 6.11 11.83
16;16;16;16+WL 153.4M 19.58 15.29 11.08 10.47 15.53 12.95 9.64 9.10 11.18 9.56 8.29 7.83 10.10 8.59 7.62 6.74 10.98
2;2;8;8+WL+GPS(0.9) 46M 29.92 22.90 11.11 10.06 23.60 19.20 9.53 8.61 15.34 12.70 8.05 7.25 13.75 11.31 7.37 6.11 13.86

Table 2: The spBLEU scores on lang30 organized by languages’ resource type: High-resource (H), Medium-
resource (M), Low-resource (L) and Very-low-resource (V), with the format {H;M;L;V} to show the rank we use
for different languages in LSLo. Our most efficient structure (2;2;8;8+WL+GPS(0.9)) outperforms full parameter
fine-tuning, demonstrating the effectiveness and scalability of our proposed method.

ing. Simply increasing the rank for very-low-
resource languages to 64 (2;2;64+WL+GPS(0.9))
can achieve a 2.26 spBLEU improvement and is
more parameter-efficient.

We also expand our experiments to 30 languages
lang30 in Table 2 to assess our method’s scalabil-
ity. Languages are divided into four resource types:
High (H), Medium (M), Low (L), and Very-low (V).
Similar to Table 5, we use the format {H;M;L;V}
to represent the rank setting in LSLo. Although
the number of trainable parameters increases with
the additional introduction of language-specific
modules, our method (2;2;8;8+WL+GPS(0.9)) still
achieved a 2.25 spBLEU improvement over full
parameter fine-tuning with only 7% trainable pa-
rameters. This demonstrates our method’s potential
to support hundreds of languages while still keep-
ing the number of trainable parameters near the
original model.

7 Analysis and Discussion

7.1 Is Weight Learning Effective?

In this section, we analyze the improvements
brought by the structure learned via Weight Learn-
ing from Section 6.1. Given the results in Fig-
ure 1 that the decoder always focuses on the tar-
get side information, we concentrate on compar-
ing different encoder settings. We compared three
different encoder settings in Table 3: (1) Weight
Learning (WL) as described in Section 6.1, where
LSLo modules in the first 9 layers of encoder
are source-indexed and in the last 3 layers are
target-indexed; (2) Source Encoder (SRC), where
all LSLo modules in encoder are source-indexed;
(3) Target Encoder (TGT), where all LSLo mod-
ules in encoder are target-indexed. We found
that the structure selected through Weight Learn-
ing (2;2;8+WL+GPS(0.9) exhibited better overall
performance, especially for very-low-resource lan-
guages.

7.2 What Causes the Degradation of
High-resource Languages?
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(a) H2H Performance per epoch
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(b) V2V Performance per epoch

Figure 3: We examined the performance of H2H and
V2V directions per epoch. H2H performance declined
during training.

In previous experiments of Section 6.3, we dis-
covered that merely isolating each language rep-
resentation into different parameter spaces via
LSLo did not mitigate the performance degrada-
tion of high-resource languages. This indicates that
the trading or competing language representation
might not be the only factor causing the decline.

We examined the spBLEU of H2H and V2V
directions per epoch, as shown in Figure 3. We ob-
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Language Direction
Methods #Params H2H H2M H2V M2H M2M M2V V2H V2M V2V AVG

Pre-trained - 31.76 20.06 5.56 20.71 17.12 3.47 9.24 5.03 0.52 12.26
Ft-all 615M 29.29 20.46 12.53 19.28 17.14 8.95 15.23 11.02 6.66 15.43
2;2;8+WL+GPS(0.9) 15.3M 33.13 22.33 12.93 21.49 18.58 9.23 16.59 11.38 7.04 16.73
2;2;8+SRC+GPS(0.9) 15.3M 33.06 22.40 12.42 21.41 18.59 8.76 16.41 11.24 6.59 16.52
2;2;8+TGT+GPS(0.9) 15.3M 32.97 22.34 13.05 21.40 18.53 9.23 11.91 7.69 5.05 15.52

Table 3: The spBLEU scores of different index strategies on lang12 .

Language Direction
Methods #Params H2H H2M H2V M2H M2M M2V V2H V2M V2V AVG

Baselines
Pre-trained - 31.76 20.06 5.56 20.71 17.12 3.47 9.24 5.03 0.52 12.26
Ft-all 615M 29.29 20.46 12.53 19.28 17.14 8.95 15.23 11.02 6.66 15.43

All
2;2;8+WL+GPS(0.9) 15.3M 33.13 22.33 12.93 21.49 18.58 9.23 16.59 11.38 7.04 16.73
2;2;16+WL+GPS(0.9) 25.6M 33.06 22.27 14.24 21.44 18.58 10.49 17.44 12.02 8.42 17.33

Only attn
2;2;8+WL+GPS(0.9) 10.6M 33.16 22.32 10.83 21.47 18.59 7.37 15.12 10.11 4.65 15.70
2;2;16+WL+GPS(0.9) 17.7M 33.16 22.25 12.00 21.45 18.61 8.34 15.91 10.76 5.88 16.24

Only fc
2;2;16+WL+GPS(0.9) 7.7M 33.29 22.19 12.64 21.60 18.56 8.83 17.33 11.65 6.90 16.76
2;2;32+WL+GPS(0.9) 14.1M 33.24 22.31 14.11 21.50 18.46 10.12 18.19 12.47 8.19 17.44
2;2;64+WL+GPS(0.9) 26.7M 33.27 22.26 14.86 21.59 18.48 10.95 18.97 12.97 9.79 17.91

Table 4: We compare the performance on lang12 of adding LSLo to all modules (with *) versus only adding it to
fully connected layers (Only fc) and only adding it to attention modules (Only attn). We found that, given a similar
parameter budget, adding LSLo to fc1 and fc2 results in better performance.

served that the spBLEU of low-resource languages
continuously improved during training, whereas
high-resource languages’ performance increased in
the first epoch and then gradually declined. This
suggests the pre-trained model has already acquired
substantial knowledge of high-resource languages,
making their subspace smaller compared to low-
resource ones. When allocating same-sized pa-
rameter spaces for languages of different resource
types, high-resource languages are more suscep-
tible to over-fitting, which contributes to an over-
fitting phenomenon leading to degradation.

This also explains why reducing the trainable
parameter of high-resource languages can achieve
better performance. As shown in Figure 3a, over-
fitting is mitigated by continuously reducing the
subspace size (2;2;8+WL+GPS(0.9)), without com-
promising the performance of low-resource lan-
guages.

7.3 Where Should We Apply LSLo to?

In this section, we want to discuss which weight
matrices in the Transformer architecture are more
crucial for LSLo. Similar to Section 4.2, we em-
ploy language-specific pruning on the training data
of lang12 to measure the demands for different
weight matrices using Equation 6. Specifically, we
add LSLos with a rank of 8 to all possible weight

matrices and group the B matrix from all LoRA
modules for each language into respective prun-
ing groups. See Appendix B for more details of
language-specific pruning. In this setting, we aim
to examine which weight matrices are more im-
portant for different languages. The results aver-
aged across all 12 languages are shown in Figure
4. Further details for each language respectively
are shown in Appendix D. We observed a clear
trend across all 12 languages: fc1 and fc2 play a
more important role in both encoder and decoder
compared to other weight matrices. This is in line
with the observation by Geva et al. (2021) that feed-
forward layers in Transformer architecture function
as key-value memories for refining the final output,
thus more crucial than other weight matrices.

In Table 4, we compared the results on lang12
of applying LSLo to all weight matrices (All) ver-
sus only applying it to fc1 and fc2 (Only fc) and
only applying it to attention modules including
cross-attention (Only attn), given a similar parame-
ter budget. We found that applying LSLo only to
fc1 and fc2 consistently yields better results. This
suggests that, under a limited parameter budget,
concentrating parameters in the feed-forward lay-
ers are more effective than distributing them across
all possible weight matrices.
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Figure 4: Illustration of the parameter space demands
for each weight matrix, averaged across all languages.
Color indicates the demands from low (blue) to high
(red). Columns are organized by weight matrices in the
encoder and decoder: query, key, and value matrices
of attention (q, k, v) and cross-attention (c-q, c-k, c-v);
down and up matrices of MLP (fc1, fc2).

8 Related work

Intrinsic Subspace Intrinsic Subspace is the min-
imal parameter subspace required for models to
learn new tasks. Li et al. (2018) first showed that
intrinsic structures exist in deep neural networks
through random subspace projection. Aghajanyan
et al. (2021) further used this concept to explain
the fine-tuning of Pre-trained Models. Following
their works, Qin et al. (2022) found a universal task
subspace that only includes hundreds of parame-
ters through prompt-tuning (Brown et al., 2020;
Li and Liang, 2021; Liu et al., 2022), and Zhang
et al. (2023b) observe outlier dimensions during
fine-tuning. However, their experiments do not in-
clude natural language generation (NLG) tasks. To
bridge this gap, our work focuses on Multilingual
Neural Machine Translation, a particularly chal-
lenging NLG task.

Low-Rank Adaptation (LoRA) LoRA (Hu
et al., 2021) employs the product of two low-rank
matrices to replace the original parameter matrix
for fine-tuning. This method is parameter-efficient
and widely used in Large Language Models. Re-
cent works (Zhang et al., 2023a; Kopiczko et al.,
2024) have focused on how to further enhance the
efficiency of LoRA. Zhang et al. (2023a) modeled
LoRA in the form of singular value decomposition
and improved efficiency by pruning less important
singular values. Kopiczko et al. (2024) reduced
trainable parameters of LoRA by only leaning scal-
ing vectors during training, fixed low-rank matrices
are randomly initialized and shared for each layer.

Inspired by these works, we propose LSLo, a LoRA
based method, to model the intrinsic subspace of
language-specific learning.

Language-specific Learning Multilingual mod-
els suffer from the negative interaction among lan-
guages (Duh et al., 2012; Chen et al., 2023; Huang
et al., 2023; Tan et al., 2024). Introducing language-
specific structures is a common strategy to address
this issue. Sachan and Neubig (2018); Escolano
et al. (2021); Pires et al. (2023) built language-
specific encoder or decoder layers. Despite its ef-
fectiveness, a large number of trainable parameters
are required for such architecture. Another line of
work (Lin et al., 2021; Wang and Zhang, 2022; He
et al., 2023) tried to extract sub-networks by first
fine-tuning on all language pairs separately and
then jointly training these sub-networks. However,
the number for fine-tuning will increase quadrat-
ically with the number of languages, consuming
significant computational resources. In this work,
we propose a parameter-efficient method that max-
imizes the utilization of the substantial knowledge
learned by Pre-trained Multilingual Models to im-
prove the performance of all language pairs.

9 Conclusion

In this work, we studied the imbalance size dis-
tribution of intrinsic language-specific subspaces
in a Pre-trained Multilingual Model. We mod-
eled the intrinsic language-specific subspaces using
LSLo. We further proposed an intrinsic subspace
estimation method and found that the size of the
intrinsic subspace for each language is highly corre-
lated with its resource type. The required subspace
size for higher-resource languages is much smaller
than for lower-resource ones. Therefore, there is
no need to set the same parameter budget for all
languages when fine-tuning multilingual models.
By fine-tuning languages in their respective intrin-
sic subspaces with different sizes using LSLo, we
achieved significant improvements compared to
full parameter fine-tuning while greatly reducing
the number of trainable parameters. We also pro-
posed methods to search for the optimal placement
of LSLo. We showed that the model completes the
transformation from the source side to the target
side in the top layers of the encoder and that plac-
ing the LSLo module in the fully connected layers
is most effective in the Transformer architecture.
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Limitations

Despite the insights gained from our work, our
research still has some limitations.

During the experiments, we categorized lan-
guages based on resource types, which is still a
relatively coarse classification. We believe that set-
ting individual ranks and pruning ratios for each
language could further improve performance and
efficiency. Although we did not conduct experi-
ments for all the languages due to time constraints,
our proposed optimal architecture search methods
can support analysis for each language respectively.

Our experiments only used M2M124-615M
Model. We believe that introducing more lan-
guages and larger-scale models would yield more
interesting findings. However, due to resource and
time constraints, it is challenging to use large lan-
guage models for many-to-many training and con-
duct comprehensive analysis.
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Resource Type Language Code Family Bitext w/ En

High

English en Germanic -
French fr Romance 289M
German de Germanic 216M
Italian it Romance 116M

Medium

Chinese zh Sino-Tibetan 37.9M
Dutch nl Germanic 82.4M
Japanese ja Japonic 23.2M
Korean ko Koreanic 7.46M

Very Low

Occitan oc Romance 5.11K
Oriya or Indo-Aryan 5K
Sindhi sd Indo-Aryan 21.8K
Wolof wo Nilotic+Other AC 86.9K

Table 5: Details for each language in lang12 .

Resource Type Language Code Family Bitext w/ En

High

English en Germanic -
French fr Romance 289M
German de Germanic 216M
Italian it Romance 116M
Portuguese pt Romance 137M
Russian ru Balto-Slavic 127M
Spanish es Romance 315M

Medium

Arabic ar Afro-Asiatic 25.2M
Chinese zh Sino-Tibetan 37.9M
Dutch nl Germanic 82.4M
Hebrew he Afro-Asiatic 6.64M
Hindi hi Indo-Aryan 3.3M
Japanese ja Japonic 23.2M
Korean ko Koreanic 7.46M
Maltese mt Afro-Asiatic 5.82M
Norwegian no Germanic 10.9M

Low

Afrikaans af Germanic 570K
Amharic am Afro-Asiatic 339K
Armenian hy Other IE 977K
Hausa ha Afro-Asiatic 335K
Nyanja ny Bantu 932K
Shona sn Bantu 877K
Yoruba yo Nilotic+Other AC 171K
Zulu zu Bantu 123K

Very Low

Fula ff Nilotic+Other AC 71K
Kamba kam Bantu 50K
Occitan oc Romance 5.11K
Oriya or Indo-Aryan 5K
Sindhi sd Indo-Aryan 21.8K
Wolof wo Nilotic+Other AC 86.9K

Table 6: Details for each language in lang30 .

A Dataset Setting

The details of lang12 and lang30 are reported
in Table 5 and Table 6. We follow the resource
type classification from FLORES-101 (Goyal et al.,
2021) based on available Bitext data through En-
glish (Bitext w/En). We use the language code of
M2M-124 model. The Language Family informa-
tion and available Bitext data through English are
all from FLORES-101.

B Gradual Pruning Schedule

In Table 7, we show the settings of Gradual Pruning
Schedule in different experiments, where ISE de-
notes Intrinsic Subspace Estimation mentioned in
Section 6.2, LSP denotes Language-specific Prun-

ing mentioned in Section 7.3 and LSLo denotes the
Language-specific LoRA in Section 6.3. We empir-
ically set PISE = 0.7 and PLSP = 0.7. If P is too
small, it may not effectively demonstrate the differ-
ences between different languages. Conversely, if
P is too large, it can lead to overly aggressive prun-
ing, making some LoRA modules entirely pruned
and causing training issues. Therefore, based on
the model size, we think 0.7 is a reasonable number
for ISE and LSP. For PLSLo, as shown in Table 1,
we tried different values to exhaustively explore
the possible minimal intrinsic subspace.

Experiments P E k T

ISE 0.7 2 8 15
LSP 0.7 2 8 15
LSLo {0.1,0.3,0.5,0.7,0.9} 2 8 15

Table 7: Settings of Gradual Pruning Schedule in differ-
ent experiments.

We set the same E = 2, k = 8, T = 15 based
on the following two intuitions: (1) Given the high
pruning ratio for high-resource languages, more
training epochs should follow after pruning; (2)
Pruning should last for more epochs to ensure the
stability of the training process. We want to em-
phasize that the purpose of using Gradual Pruning
Schedule is stability in training instead of search-
ing for good parameters under a specific hyperpa-
rameter setting. As shown in the following Ta-
ble 8, we also checked different start epoch E
and duration k. Except for the unreasonable set-
ting of E = 7,k = 8 where there is no enough
training after pruning, other settings achieve bet-
ter performance than the score we reported but
no significant differences (max to 0.1). Consider-
ing the space limitation and the limited improve-
ment (+0.01 ∼ +0.1) compared with our pro-
posed method (more than 1), we simply choose
the empirical setting in our paper for brevity.

C Intrinsic Subspace Estimation

We present the results of Intrinsic Subspace Esti-
mation in all 12 layers of encoder and decoder in
Figure 5. The results show a clear tendency that
the required subspace size for each language is
highly correlated with its resource type. Very-low-
resource languages require more parameters for
fine-tuning compared to high and medium-resource
languages. To more concretely measure the ob-
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Language Direction
Pruning Strategy #Params H2H H2M H2V M2H M2M M2V V2H V2M V2V AVG

Pre-trained - 31.76 20.06 5.56 20.71 17.12 3.47 9.24 5.03 0.52 12.26
Ft-all 615M 29.29 20.46 12.53 19.28 17.14 8.95 15.23 11.02 6.66 15.43
E=2,K=8 15.3M 33.13 22.33 12.93 21.49 18.58 9.23 16.59 11.38 7.04 16.73
E=5,K=8 15.3M 33.05 22.23 13.10 21.51 18.50 9.36 16.79 11.46 7.16 16.79
E=7,K=8 15.3M 32.96 22.14 12.90 21.38 18.43 9.24 16.50 11.28 7.02 16.64
E=2,K=2 15.3M 33.16 22.46 13.04 21.49 18.61 9.33 16.84 11.52 7.13 16.83
E=7,K=2 15.3M 33.13 22.31 12.88 21.58 18.56 9.22 16.71 11.38 6.96 16.74

Table 8: 2;2;8+WL+GPS(0.9) with different pruning strategies on lang12 (start from E epoch, end at E + k epoch,
T = 15).

Module Correlation Coefficients P-value

q 0.67 0.023
k 0.64 0.032
v 0.60 0.050
fc1 0.65 0.029
fc2 0.64 0.033
AVG 0.64 0.033

Table 9: The correlation coefficients in Encoder.

Module Correlation Coefficients P-value

q 0.65 0.029
k 0.58 0.059
v 0.47 0.143
c-q 0.70 0.017
c-k 0.59 0.052
c-v 0.80 0.003
fc1 0.72 0.012
fc2 0.74 0.008
AVG 0.66 0.041

Table 10: The correlation coefficients in Encoder.

served relationship, we calculate the correlation 4

between the number of available Bitext with En-
glish in Table 5 and the importance score for each
module. As shown in following Table 9 and Table
10, the results show a positive correlation between
the resource level and our proposed importance
score (the lower the resource, the lower the impor-
tance score, and the higher the parameter space
demands).

4https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.pearsonr.html

D Language-specific Pruning

Language-specific pruning is applied to analyze the
importance of different weight matrices for each
language. We add LSLo with a rank of 8 to all
weight matrices. Given n languages, each LSLo
module will have n language-specific LoRA mod-
ules. All B matrices of LoRA are divided into n
groups by language. By applying global pruning to
each group, we can analyze which weight matrices
are most important for each language. As shown
in Figure 6, we can see a clear tendency among all
languages that fc1 and fc2 play a more important
role than other weight matrices.
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Figure 5: The parameter space demands for each language in all 12 layers of encoder and decoder respectively.
Red color means a higher demand. We can see a clear tendency that very-low-resource languages require more
parameters during fine-tuning.
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Figure 6: Parameter space demands of different languages in encoder and decoder respectively. Red color means a
higher demand. We can see a clear trend across all languages that fc1 and fc2 in the top layers of the encoder are
more important than other weight matrices.
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