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Abstract

Knowledge graph–grounded dialog generation
requires retrieving a dialog-relevant subgraph
from the given knowledge base graph and in-
tegrating it with the dialog history. Previous
works typically represent the graph using an ex-
ternal encoder, such as graph neural networks,
and retrieve relevant triplets based on the sim-
ilarity between single-vector representations
of triplets and the dialog history. However,
these external encoders fail to leverage the
rich knowledge of pretrained language mod-
els, and the retrieval process is also subopti-
mal due to the information bottleneck caused
by the single-vector abstraction of the dia-
log history. In this work, we propose Dia-
log generation with Generative Subgraph Re-
trieval (DialogGSR), which retrieves relevant
knowledge subgraphs by directly generating
their token sequences on top of language mod-
els. For effective generative subgraph retrieval,
we introduce two key methods: (i) structure-
aware knowledge graph linearization with self-
supervised graph-specific tokens and (ii) graph-
constrained decoding utilizing graph structural
proximity-based entity informativeness scores
for valid and relevant generative retrieval. Di-
alogGSR achieves state-of-the-art performance
in knowledge graph–grounded dialog gener-
ation, as demonstrated on OpenDialKG and
KOMODIS datasets.

1 Introduction

The goal of dialog generation is to generate an in-
formative and appropriate response given an input
dialog. Pretrained Language Models (PLMs) have
demonstrated promising performance on the dia-
log generation (Roberts et al., 2020; Touvron et al.,
2023; Achiam et al., 2023). However, they often
generate irrelevant, factually incorrect, or hallucina-
tory responses since the generation process heavily
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depends on the internal parameters of the language
models (Lewis et al., 2020; Shuster et al., 2021). To
mitigate these issues, several studies (Wang et al.,
2020; Zhao et al., 2020) have explored knowledge-
grounded dialog generation models, which incorpo-
rate external knowledge to generate more factually
accurate responses. Some approaches utilize un-
structured texts such as Wikipedia articles (Dinan
et al., 2019) and internet web pages (Ghazvinine-
jad et al., 2018) while others (Moon et al., 2019;
Galetzka et al., 2021; Tuan et al., 2022; Kang et al.,
2023) leverage structured knowledge graphs (KGs)
to capture both the relational and semantic infor-
mation for grounding dialog responses.

Many existing knowledge graph–grounded di-
alog generation models (Tuan et al., 2022; Kang
et al., 2023) employ encoder-based retrieval meth-
ods. They encode the dialog history into a single
vector and then use it on another encoder (e.g., bi-
encoder) to retrieve relevant triplets from the KG.
However, this approach can lead to an information
bottleneck due to the limited capacity of a single
vector to represent long and complex multi-turn
dialogs (Humeau et al., 2020; Cao et al., 2021; Lee
et al., 2022). Moreover, these methods (Galetzka
et al., 2021; Tuan et al., 2022; Kang et al., 2023)
often rely on separate models, such as graph neu-
ral networks (GNNs), to encode the knowledge
graphs, which limits the integration of natural lan-
guage comprehension capabilities of PLMs.

Recent studies (Lee et al., 2022; Sun et al., 2023)
have addressed the information bottleneck issue by
applying generative retrieval methods, which cast
retrieval as an autoregressive generation process to
facilitate direct interactions between query context
and knowledge paragraphs. Despite this progress,
most generative retrieval works focus solely on
natural language-based knowledge, employing con-
ventional token representations and decoding strate-
gies, which do not fully capture the structure and
properties of knowledge graphs.
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To address the aforementioned issues, we pro-
pose Dialog Generation model with Generative
Subgraph Retrieval (DialogGSR), which integrates
generative subgraph retrieval with response gen-
eration. Our proposed method adopts two key
graph-specialized techniques: (1) a structure-aware
knowledge graph linearization for effective graph
representation and (2) graph-constrained decoding
for valid subgraph retrieval. Our knowledge graph
linearization approach introduces a small set of
special token embeddings to account for both the
structural positioning of knowledge entities and
the reverse relationships between them. By self-
supervising these special tokens using a knowl-
edge graph reconstruction loss, the method effec-
tively represents the knowledge graph. The graph-
constrained decoding facilitates autoregressively
retrieving the knowledge considering the graph
structural information, thus generating valid and
relevant knowledge subgraphs. Since DialogGSR
utilizes pretrained language models for both sub-
graph retrieval and dialog generation, it leverages
the pretrained language models’ internal knowl-
edge in both tasks.

We evaluate DialogGSR on two KG–grounded
dialog generation datasets: OpenDialKG (Moon
et al., 2019) and KOMODIS (Galetzka et al., 2020).
Our proposed method shows the best performance
on both benchmark datasets.

Our contributions are three-fold as follows:

• We propose Dialog generation with Genera-
tive Subgraph Retrieval (DialogGSR), which
retrieves the relevant knowledge subgraphs by
generating their token sequences.

• We design knowledge graph linearization for
effective graph representations and graph-
constrained decoding for retrieving valid and
relevant subgraphs.

• We show the state-of-the-art response genera-
tion performance on two benchmark datasets,
OpenDialKG and KOMODIS.

2 Related Works

2.1 Generative Retrieval

Retrieving relevant information from a large corpus
such as a text corpus or a knowledge base is crucial
in many tasks (Chen et al., 2017; Thorne et al.,
2018; Lewis et al., 2020; Izacard and Grave, 2021).
Recent studies (Cao et al., 2021; Bevilacqua et al.,

2022; Wang et al., 2022; Lee et al., 2022, 2023)
have demonstrated that generative retrieval models
can be more effective than conventional encoder-
based retrieval models. They cast retrieval tasks
as generation tasks, where relevant sequences are
generated rather than retrieved given input queries.
Several studies (Chen et al., 2022a; Thorne, 2022;
Lee et al., 2022; Yu et al., 2023; Xu et al., 2023;
Luo et al., 2024) have shown the effectiveness of
generative retrieval in various knowledge-intensive
natural language processing tasks. Motivated by
these works, we propose a generative subgraph
retrieval model with knowledge graph linearization
and graph-constrained decoding for effective graph
representation and generation.

2.2 Knowledge-Grounded Dialog Generation

Many language generation approaches leverage pre-
trained language models (PLMs) (Radford et al.,
2019; Devlin et al., 2019; Roberts et al., 2020;
Thoppilan et al., 2022; Touvron et al., 2023;
Achiam et al., 2023), showing strong performance.
However, they often suffer from the hallucination
issue (Dušek et al., 2018; Balakrishnan et al., 2019;
Dušek et al., 2020), which generates plausible but
factually wrong responses since they rely on the
models’ internal parameters. To address this prob-
lem, recent works (Moon et al., 2019; Dinan et al.,
2019; Lian et al., 2019) have proposed to aug-
ment the models with external knowledge sources.
This approach is effective in generating factually
accurate responses in various language genera-
tion tasks (Fernandes et al., 2019; Huang et al.,
2020; Yasunaga et al., 2021; Yu et al., 2022; Zhang
et al., 2022b). Regarding dialog generation, vari-
ous works incorporate external knowledge graph
into the generation (Moon et al., 2019; Zhou et al.,
2018; Tuan et al., 2019; Zhang et al., 2020; Zhou
et al., 2021). For instance, Space Efficient (Galet-
zka et al., 2021) proposes an efficient method to
encode knowledge triplets. RHO (Ji et al., 2023)
generates responses with the dialog history and
knowledge graph represented by graph embedding
methods (e.g., TransE (Bordes et al., 2013)). Dif-
fKG (Tuan et al., 2022) uses a graph reasoning
encoder on top of sparse matrices for graph rep-
resentations. SURGE (Kang et al., 2023) applies
GNNs to retrieve context-relevant subgraphs. Dif-
ferent from these works, our work autoregressively
retrieves the context-relevant subgraphs and then
generates knowledge-grounded dialogs without re-
quiring separate knowledge graph modules.
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Figure 1: The overall inference process of DialogGSR. DialogGSR consists of a generative subgraph retriever
and response generator. (a) Generative subgraph retrieval autoregressively retrieves subgraphs via generative
subgraph retriever with graph-constrained decoding based on entity informativeness score. In step 0, given the
dialog, GSR retrieves the most relevant triplets by referring to the graph constraint. In step 1, given the dialog
and the prompt-augmented triplet, we generatively retrieve the next triplets. (b) Resposne generator generates the
responses with the dialog and the prompt-augmented generated subgraph.

3 Methods

We propose a retrieval-augmented dialog genera-
tion approach that retrieves contextually relevant
subgraphs from knowledge graphs to generate bet-
ter responses. Our model, Dialog Generation
model with Generative Subgraph Retrieval (Di-
alogGSR) consists of a generative subgraph re-
triever and a response generator. We first de-
fine the task of knowledge graph–grounded di-
alog generation (Sec. 3.1). Next, we propose
Generative Subgraph Retrieval (GSR), which
autoregressively retrieves subgraph by applying
structure-aware knowledge graph linearization and
graph-constrained decdoing (Sec. 3.2). We then
present a response generator, which performs sub-
graph–grounded dialog generation (Sec 3.3). Fi-
nally, we provide the training details of DialogGSR
including our self-supervised knowledge graph re-
construction loss (Sec 3.4). The inference process
of DialogGSR is illustrated in Figure 1.

3.1 KG–Grounded Dialog Generation

The goal of knowledge graph–grounded dialog gen-
eration is to generate a dialog response by jointly
reasoning over a dialog history and a knowledge
graph. We represent a dialog history as a token se-
quence, x = [x1, x2, . . . , xn], where xi ∈ V is the
i-th token of the dialog history and V denotes the
vocabulary set. A knowledge graph is defined as

G = (E ,R, T ), where E is the set of entities and R
is the set of relations. T denotes the set of triplets,
(eh, r, et) ∈ T , each of which are composed of
a head entity eh ∈ E , a tail entity et ∈ E , and a
relation r ∈ R between the two entities. We use
k-hop subgraph linked to the entities mentioned in
the input dialog as retrieval candidates following
previous works (Kang et al., 2023). The example
of a extracted candidate subgraph is in Figure 3.
We formulate knowledge graph–grounded dialog
generation as follows:

pθ(y|x,G) =
t∏

j=1

pθ(yj |x,y<j ,G), (1)

where y = [y1, y2, . . . , yt] is the output response,
t is the length of the response, and y<j =
[y1, . . . yj−1] denotes the generated sequence at the
previous time steps. Since a KG can include a
huge number of irrelevant entities and relations,
KG-grounded dialog generation works generally
retrieve subgraphs related to the dialog context for
the efficiency and effectiveness.

3.2 Generative Subgraph Retrieval
We introduce Generative Subgraph Retrieval
(GSR), which autoregressively retrieves a knowl-
edge subgraph Ĝ. Since a knowledge subgraph
can be represented as a set of triplets, retrieving
sequences of knowledge triplets is equivalent to
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subgraph retrieval. Many subgraph retrieval meth-
ods in dialog generation (Zhang et al., 2022a; Kang
et al., 2023) compute the relevance score between
the dialog history and each knowledge triplet and
retrieve the triplets with the highest scores.

However, these methods often suffer from the in-
formation bottleneck problem (Izacard et al., 2020;
Luan et al., 2021), as they encode long, multi-turn
dialog histories into a single fixed-length vector,
which has a limited capacity to accurately repre-
sent complex multi-turn dialogs. Moreover, these
approaches require independent knowledge graph
encoders to represent knowledge graphs, which
cannot fully leverage the pre-trained knowledge
embedded in the pretrained language models.

To address these limitations, generative subgraph
retrieval casts graph retrieval as a graph generation,
enabling more direct interaction between the dialog
context and the knowledge graph by representing
the graph with a token sequence. For effective gen-
erative retrieval, our GSR model incorporates two
novel techniques: (1) Structure-aware knowledge
graph linearization, which converts the knowledge
graph into token sequences enriched with learnable
special tokens that capture the connectivity and
reverse relations between entities, and (2) Graph-
constrained decoding, which ensures the language
model to generate valid knowledge subgraphs by
predicting the next tokens based not only on the
language model’s scores but also on the relational
proximities of entities within the graph.

Structure-aware knowledge graph linearization.
The goal of knowledge graph linearization is to
convert a knowledge graph into a token sequence
comprehensible to language models. Our structure-
aware knowledge graph linearization augments a
sequence of knowledge graph tokens with graph-
specific learnable special tokens to help the lan-
guage model understand the graph’s structural in-
formation without separate graph encoders. Differ-
ent from prior graph linearization methods such as
Xu et al. (2023), which do not take into account
multi-hop graph connections and reverse relations,
our structure-aware knowledge graph linearization
better captures and effectively represents the under-
lying structures of knowledge graphs.

Specifically, if there are connected triplets (e.g.,
(e1, r1, e2) and (e2, r2, e3)), we efficiently repre-
sent the path as [Head] e1 [Int1] r1 [Int2] e2
[Int3] r2 . . . el+1 [Tail]. To represent multiple
disconnected triplets or paths, we insert [SEP] be-

tween them. For more expressive representations
of the special tokens, we use multiple consecutive
tokens to represent each of [Int],[Rev], which
improves the performance as in Section A.1.

Additionally, since a knowledge graph can con-
tain reverse relations, representing them is cru-
cial in knowledge graph processing (Feng et al.,
2020; Qi et al., 2023; Zhu et al., 2024). There-
fore, we introduce another special token [Rev] for
reverse relations when (1) there is a mentioned
entity that is the tail of a triplet because the de-
coding always starts with one of the mentioned
entities, or (2) two triplets are connected with op-
posite directions (e.g., (e1, r1, e2) and (e3, r2, e2)).
We effectively represent reverse relations by adding
special tokens [Rev1] and [Rev2] without modi-
fying the relation tokens. For example, given a
triplet (e3, r2, e2), the corresponding triplet with
the reverse relation (e2, r̃2, e3) is represented as
[Head] e2 [Rev1] r2 [Rev2] e3 [Tail].

In sum, we represent the subgraph Ĝ as the con-
catenation of the knowledge paths converted with
the special tokens as follows:

zĜ =[Head]e1[Int1]r1 . . .

el+1[Tail][SEP][Head]ek · · · .
(2)

All the special tokens are learnable with soft
prompting. They are learned with both down-
stream task loss and knowledge graph reconstruc-
tion loss, which will be introduced in Section 3.4.
Our structure-aware knowledge graph linearization
with the special tokens helps the language model
capture knowledge graph information without any
separate knowledge graph encoders, which leads
to the full utilization of the power of PLMs.

Graph-constrained decoding. The language
model is prone to generating invalid or irrelevant
subgraphs due to its bias, often disregarding the
knowledge graph structures (Cao et al., 2021; Chen
et al., 2022b). To address this issue, we introduce
a graph-constrained decoding method that ensures
the generation of valid and relevant subgraphs. For-
mally, given a dialog x and the previously gener-
ated segments of linearized knowledge path π<t,
the log probability of the next token w is computed
with log pvocab (w|x, π<t, CM). Here, CM repre-
sents a prefix tree derived from the ego-graph (Zhu
et al., 2021) of a set of mentioned entities em ∈ M
as depicted in Figure 1 (right). The mentioned en-
tities are the entities that appear in the input dialog
history and correspond to entities in the knowledge
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graph (Kang et al., 2023). For example, given the
dialog “Do you know Lionel Messi?" in Figure 1,
the entity ‘Messi’ is a mentioned entity since it ex-
ists in the knowledge graph. The next token predic-
tion probability pvocab is restricted to tokens within
the valid set defined by the constraint CM (i.e.,
(π<t, w) ∈ CM). This constraint ensures that only
valid knowledge subgraphs are generated.

In addition, to account for the importance of
each entity in the knowledge graph, we introduce
a graph-based next-token prediction probability,
which is defined as:

log p̃(w|x, π<t, CM)

= α · log pvocab (w|x, π<t, CM)

+ (1− α) · log pgraph (w|π<t, CM) ,

(3)

where pgraph is the probability of predicting the
next token based on graph structure, and α is a
hyperparameter controlling the balance between
the language model and graph-based predictions. If
the next token w corresponds to a tokenized entity,
the probability pgraph is defined as:

pgraph (w|π<t, CM) ∝ S(ei,M), (4)

where S (ei,M) is the entity informativeness score
of entity ei with respect to the mentioned entity
set M. In cases where all entities have identical
informativeness scores, the next token prediction
is driven purely by pvocab.

To capture the structural proximity between en-
tity ei and mentioned entities em ∈ M on the
graph, we define the structure-based entity Infor-
mative Score (IS) as

S(ei,M) =
1

|M|
∑

em∈M
s(ei, em), (5)

where s(ei, em) denotes the graph structural prox-
imity between entity ei and em. The proxim-
ity can be measured using methods such as the
shortest path and common neighbors (Katz, 1953;
Brin, 1998; Gasteiger et al., 2019). A typical ap-
proach for measuring graph structural proximity
is counting the number of connections between
node pairs, which can be defined as scon(ei, em) =∑

N (em) 1(ei = em), where N (e) is the neighbor-
hood set of entity e.

However, the connection-based proximity mea-
surement fails to account for multi-hop relations.
To address this, we introduce a Katz index–based

entity informativeness score (ISkatz) (Katz, 1953),
formulated as follows:

ISkatz(ei,M) =
1

|M|
∑

em∈M

K∑

k=1

βk(Ak)i,m,

(6)
where A is the adjacency matrix of graph G, K
denotes the maximum length of knowledge paths
and βk means a weight of knowledge path of
length k. Since the term Ak represents the num-
ber of paths between entity ei and em, this Katz
index–based entity informativeness score enables
multi-hop relationship modeling, in contrast to the
simple connection-based metrics.

3.3 Response Generation
After retrieving the subgraphs, we generate a re-
sponse based on both the dialog history and the
retrieved subgraphs. To incorporate the retrieved
knowledge subgraph Ĝ, we first apply the knowl-
edge graph linearization to convert Ĝ into a se-
quence of tokens, zĜ . This linearized subgraph is
then concatenated with the dialog history x, form-
ing the input sequence for the dialog generation
model as

x̂ =
[
zĜ ;x

]
, (7)

where [; ] denotes concatenation operation. The
combined sequence is fed into the response genera-
tion model to get the final response y. By augment-
ing the dialog input with the knowledge graph, this
method ensures that the generated response is both
contextually relevant and knowledge-grounded.

3.4 Training DialogGSR
Our DialogGSR is trained in a multi-stage pro-
cess. The training process consists of: (1) self-
supervision through knowledge graph reconstruc-
tion, (2) training the generative subgraph re-
triever, and (3) optimizing the response generation
model. These stages work in synergy to ensure the
model effectively retrieves knowledge from graphs
and generates coherent, knowledge-grounded re-
sponses. We also train the response generator by
minimizing response generation loss.

Knowledge graph reconstruction. Inspired by
masked language modeling techniques (Roberts
et al., 2020; Devlin et al., 2019), we propose a self-
supervised learning approach to learn the special
tokens by masking either an entity token or a rela-
tion token in the token sequence of each knowledge
path and reconstructing it. Specifically, we first
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sample k-hop path G′ from the knowledge source
graph G and convert it into token sequence zG′ .
During training, we randomly mask out either an
entity token or a relation token from the sequence.
The loss is formulated as

LGraphRecon = − log p(zG′ |ẑG′), (8)

where zG′ is the token sequence of a sampled path
and ẑG′ is its randomly masked sequence. For
example, a knowledge triplet zp = ⟨ ‘Scarlet Let-
ter’, ‘written by’, ‘N.Hawthorne’ ⟩ can be randomly
masked as

⟨<M>, ‘written by’, ‘N.Hawthorne’⟩
⟨‘Scarlet Letter’, <M>, ‘N.Hawthorne’⟩
⟨‘Scarlet Letter’, ‘written by’, <M>⟩.

Note that masking is done at the entity or re-
lation level as done in Roberts et al. (2020).
By minimizing the graph reconstruction loss,
our framework self-supervise the special tokens
[Head],[Int],[Rev],[Tail] in (2), resulting in
better knowledge graph representations. All the
other parameters are frozen during this stage.

Knowledge subgraph retrieval. We train our
generative subgraph retriever (GSR) to identify rel-
evant subgraphs for dialog generation. Unlike con-
ventional retrieval methods, our approach frames
retrieval as a generation task, enabling a more seam-
less integration with the dialogue context. The loss
is defined as follows:

LRet = Ex [− log p (G⋆|x)] (9)

where G⋆ is the gold subgraph and x is the dia-
log context We use cross-entropy loss to train the
retriever, ensuring it generates subgraphs that are
both relevant and informative.

Response generation. The final stage of training
DialogGSR is response generation. We generate
dialog responses with dialog history x and context-
relevant knowledge subgraphs Ĝ retrieved from
GSR. The response generation loss is defined as
follows:

LGen = Ex

[
− log p

(
y⋆|x, Ĝ

)]
, (10)

where y⋆ is the golden response.

4 Experiments

In this section, we evaluate the effectiveness
of the proposed DialogGSR on knowledge
graph–grounded dialog generation. We first intro-
duce the two datasets (OpenDialKG (Moon et al.,
2019) and KOMODIS (Galetzka et al., 2020)), and
the experimental setup and metrics. Then, we
demonstrate the effectiveness of DialogGSR on
the two benchmark datasets. Lastly, we provide
ablation studies, and analyses of our DialogGSR.

4.1 Datasets

OpenDialKG is an open-domain dialog dataset,
which consists of 15K dialogs with 91K turns
and 1.12M triplets from Freebase knowledge
graph (Bast et al., 2014). The knowledge graph
has 1,190,658 triplets, 100,813 entities, and 1,358
relations. There are 49% of the turns having
gold knowledge triplets. Following (Galetzka
et al., 2020), we randomly split the samples into
train (70%), validation (15%), and test (15%) sets.
We evaluate the response generation and retrieval
performance of our DialogGSR with other base-
lines using OpenDialKG dataset.
KOMODIS is a closed-domain dialog dataset that
consists of 7.5k dialogs with 103k turns and the cor-
responding KG, which contains 88K triplets. Fol-
lowing (Moon et al., 2019; Kang et al., 2023; Galet-
zka et al., 2020), we randomly split the dialogs
into train (70%), validation (15%), and test (15%)
sets for KOMODIS dataset, too. With KOMODIS
dataset, we evaluate the response generation perfor-
mance of our DialogGSR with other baselines fol-
lowing (Kang et al., 2023; Galetzka et al., 2021).

4.2 Experimental Setup

For fair comparisons with previous works, we use
T5-small (Roberts et al., 2020) as the base PLM.
We select the best model on the validation set to
evaluate the performance of all experiments. More
details are in Appendix B.

Evaluation metrics. We evaluate the dialog
generation performance of different models with
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and unigram F1 score, by comparing the generated
responses with the gold responses. In addition, we
use the KQA metric (Kang et al., 2023), which
measures whether the factually correct and neces-
sary knowledge is contained in the generated re-
sponse given the dialog history. We also evaluate
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Method BLEU ROUGE Unigram KQA
B-1 B-2 B-3 B-4 R-1 R-2 R-L F1 EM F1

T5 (w/o KG) 15.79 9.19 5.61 3.43 19.67 7.13 19.02 22.21 12.25 20.69
Space Efficient (series) 16.15 10.03 6.66 4.50 21.15 8.56 20.44 24.55 36.60 42.64
Space Efficient (parallel) 16.33 10.22 6.81 4.64 21.42 8.85 20.68 24.87 38.54 44.34
EARL 11.49 6.34 4.06 2.75 15.36 4.37 14.61 16.88 32.47 35.88
DiffKG 15.68 9.13 5.60 3.46 19.50 7.07 18.84 22.26 12.25 20.99
SURGE (unsup.) 17.77 11.30 7.69 5.36 21.64 9.14 20.75 25.24 48.49 55.77
SURGE (semi-sup.) 17.70 11.21 7.61 5.28 21.43 8.85 20.57 25.07 51.00 57.63
SURGE (contrastive) 17.29 11.04 7.54 5.28 21.35 8.98 20.48 25.10 50.45 57.70

DialogGSR (Ours) 19.30 12.10 8.30 5.83 22.32 9.24 21.23 25.50 54.61 60.57

Table 1: Response generation performance comparison on OpenDialKG dataset.

Method BLEU ROUGE F1

T5 (w/o KG) 7.58 18.54 16.60
Space Efficient (series) 8.34 22.36 17.37
Space Efficient (parallel) 9.33 22.80 17.72
SURGE (unsup.) 11.46 23.49 18.70
SURGE (semi-sup.) 11.28 23.58 18.68
SURGE (contrastive) 11.51 24.13 19.51

DialogGSR (Ours) 11.96 24.47 19.60

Table 2: Experimental results on KOMODIS dataset.

Method path@1 path@3

Seq2Seq 3.1 18.3
Tri-LSTM 3.2 14.2
EXT-ED 1.9 5.8
DialKG Walker 13.2 26.1
AttnFlow 17.37 24.84
AttnIO 23.72 37.53
DiffKG 26.12 44.50
SURGE 16.76 28.64

DialogGSR (Ours) 28.96 46.76

Table 3: Retrieval performance on OpenDialKG.

the performance of the retriever with path@k met-
rics, which are the recall@k of ground-truth paths
following (Moon et al., 2019; Jung et al., 2020).

4.3 Experimental Results

We compare our DialogGSR with existing knowl-
edge–grounded dialog generation models on Open-
DialKG dataset. Table 1 shows that Dialog-
GSR achieves the best performance in all met-
rics (BLEU, ROUGE, KQA, and F1 score). In
particular, DialogGSR outperforms other baselines
on KQA metrics by a large margin (4.61 on EM
metric), which indicates that the proposed method
generates more factually correct responses with rel-
evant knowledge. In addition, our method achieves
a 1.53 performance gain on BLEU-1 metric com-
pared to the best baseline method, which is an
8.61% improvement. The performance gain of Di-

Method DialogGSR (Ours) SURGE

Consistency 2.57 (0.168) 2.41 (0.196)
Informativeness 2.28 (0.136) 1.81 (0.260)

Fluency 2.64 (0.200) 2.53 (0.286)

Table 4: Human evaluation results. () indicates standard
deviation.

alogGSR compared to SURGE, which retrieves the
subgraph with a bi-encoder and uses graph neural
networks for graph representations, indicates that
our generative retrieval is effective in retrieving
relevant knowledge and generating more accurate
responses based on the retrieved knowledge.

We also conduct experiments on KO-
MODIS (Galetzka et al., 2020) dataset. Similar
to the OpenDialKG result, Table 2 demonstrates
that our DialogGSR achieves the best performance
compared to all the previous approaches. To
further validate the effectiveness of our generative
subgraph retrieval, we compare the retrieval
performance by path@k metrics. Table 3 shows
that DialogGSR achieves the best performance
compared to the other baselines. This result
indicates that our generative subgraph retrieval
successfully retrieves context-relevant subgraphs
from the knowledge graph by fully utilizing the
power of pretrained language models.

4.4 Human Evaluation

We conduct human evaluation to assess the gen-
erated responses of our dialog generation model.
The detailed process of human evaluation is in Ap-
pendix C. Table 4 shows the experimental results
of the human evaluation, where DialogGSR out-
performs SURGE in all the metrics (Consistency,
Informativeness, Fluency). In particular, on the
Consistency and Informativeness metrics, Dialog-
GSR achieves statistically significant performance
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Graph Const. Special tokens B-1 B-2 B-3 B-4 path@3

w/o Const. with Special tokens (w/o Recon.) 17.02 10.96 7.53 5.25 10.00
Hard Const. w/o Special tokens 18.44 11.68 7.93 5.44 35.83
Hard Const. with Special tokens (w/o Recon.) 18.77 11.74 8.03 5.48 39.53
Hard Const. with Special tokens (with Recon.) 18.83 11.84 8.01 5.49 43.27
Connection Const. with Special tokens (with Recon.) 19.17 11.90 8.15 5.68 45.85
Katz Const. with Special tokens (with Recon.) 19.30 12.10 8.30 5.83 46.76

Table 5: Ablation study of each component in DialogGSR on OpenDialKG dataset.

Method B-1 B-2

Base (w/o KG) 18.68 11.96
DialogGSR (w/o Const.) 19.60 13.32
DialogGSR (ours) 21.10 14.44

Table 6: Experimental results on OpenDialKG dataset
with large language model Llama-3-8b under the fine-
tuning with LoRA (Hu et al., 2022). ‘Const.’ denotes
graph-constrained decoding.
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Figure 2: Retrieval performance according to the num-
ber of turns.

gains of 0.16 and 0.47 over SURGE (based on
t-test with p-value < 0.05), which indicates that
our generative subgraph retrieval performs signifi-
cantly better in retrieving informative knowledge
compared to existing retrieval methods. Our Di-
alogGSR provides a relatively small performance
gain of 0.11 on the Fluency metric. Since the Flu-
ency metric is more influenced by the language
model’s performance than the knowledge retrieval
performance, it is reasonable to expect similar flu-
ency scores when using the same base language
model (T5-small) for fair comparisons.

4.5 Analysis

We analyze DialogGSR to answer the following
research questions: [Q1] Does each component of
DialogGSR contribute to a performance improve-
ment? [Q2] Are graph-constrained decoding and
the entity informativeness score helpful for retriev-
ing context-relevant subgraphs? [Q3] Is GSR ro-

bust to the information bottleneck issue? [Q4] Is
DialogGSR effective with large language models
(LLMs)?

Ablation studies. We provide the ablation stud-
ies to answer [Q1], [Q2] by empirically showing
the contribution of each component of DialogGSR
in Table 5. w/o Const. is generative retrieval
without graph-constrained decoding. Hard const.
is the retrieval with graph-constrained decoding
but not considering entity informativeness score.
Connection and Katz use entity informativeness
scores based on Connection (IScon) and Katz met-
rics (ISKatz) referred in Section 3.4, respectively.
with Special tokens (w/o Recon.) uses special
tokens to linearize the knowledge graph without
graph reconstruction learning while with Special
tokens (w/ Recon.) uses prompts learned with
graph reconstruction. Table 5 shows that each com-
ponent contributes to the performance improve-
ment of the model. In particular, graph-constrained
decoding is crucial in our generative approach.

In addition, the models with graph constraints
show improvements compared to the model with-
out the constraints, which indicates that the graph
constraint is important for the generative retrieval
of knowledge subgraphs. Also, using entity infor-
mative score (Connection, Katz) performs better
than graph constraints without it since the entity
informativeness score reflects graph structural prox-
imity in the decoding process.

Effectiveness of DialogGSR with LLMs. To as-
sess the effectiveness of our DialogGSR with Large
Language Models (LLMs) ([Q4]), we apply it to
LLaMA-3 (Meta, 2024). The experimental result
is shown in Table 6. From the table, the perfor-
mance gain of DialogGSR compared to the base
model is 2.42 in BLEU-1 score. In addition, the
experimental result demonstrates that our proposed
graph-constrained decoding is still important in
LLMs. This indicates that DialogGSR is also effec-
tive in LLMs.
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Dialog Gold response SURGE (Baseline) DialogGSR (Ours)

(a) Do you like Shaun White?
(b) I know he’s an Olympic snowboarder he was funny in

Friends With Benefits.
(a) Oh, I’ve never seen that movie, isn’t Mila Kunis in it?

I love her!
(b) She is. Justin Timberlake and Woody Harrelson were also

in it. Shaun just played a small part.
(a) Do you by any chance remember who Mila Kunis is married

too, I totally forgot.

She’s married to
Ashton Kutcher.

Mila Kunis is married
to Jennifer Lawrence.

Mila Kunis is married
to Ashton Kutcher.

Knowledge triplets τ retrieved by Baseline
⟨ ‘Justin Timberlake’, ‘place musical career began’, ‘Shelby Forest’ ⟩
⟨ ‘Justin Timberlake’, ‘place musical career began’, ‘Millington’ ⟩
⟨ ‘Justin Timberlake’, ‘romantic relationship (with celebrities)’, ‘Scarlett Johansson’⟩
Knowledge triplets τ retrieved by DialogGSR (ours)
⟨ ‘Ashton Kutcher’, ‘romantic relationship (with celebrities)’, ‘Mila Kunis’ ⟩
⟨ ‘Friends with Benefits’, ‘starred_actors’, ‘Mila Kunis’ ⟩
⟨ ‘Friends with Benefits’, ‘starred_actors’, ‘Patricia Clarkson’ ⟩

Table 7: Comparison on responses generated by SURGE (Baseline) and DialogGSR given a dialog.

Information bottleneck issue. Information bot-
tleneck issue (Humeau et al., 2020; Lee et al., 2022)
usually occurs when a long text sequence, such as a
dialog history, is encoded into a single fixed length
of vector. To explore the robustness of DialogGSR
to the information bottleneck issue ([Q3]), we com-
pare the retrieval performance of DialogGSR with
the baselines such as DiffKG and SURGE with
respect to the number of turns in dialog histories
in Figure 2. The result shows that DialogGSR is
robust for long dialogs whereas the other methods
often deteriorate as the number of turns increases.

Qualitative analysis. We perform qualitative
analysis by comparing responses generated from
SURGE and DialogGSR. Table 7 shows a sam-
pled Gold response and the responses gener-
ated by SURGE (Baseline response) and Dialog-
GSR (DialogGSR response) given a multi-turn
dialog. From the table, DialogGSR retrieves more
informative knowledge to generate responses com-
pared to the baseline. Given the last turn “Do
you by any chance remember who Mila Kunis is
married too, I totally forgot”, DialogGSR success-
fully retrieves the knowledge information related
to ‘Mila Kunis’ to help provide the appropriate re-
sponse from the question while the baseline fails
to retrieve information related to answer the ques-
tion. In contrast, the baseline incorrectly retrieves
knowledge information related to “Justin Timber-
lake”, who is mentioned in the past turn (4th turn),
which results in a factually incorrect response. This
demonstrates that generative retrieval is effective
in retrieving informative knowledge and generat-
ing knowledge-grounded multi-turn dialogs. More

qualitative results are included in Appendix A.2.

5 Conclusion

We have presented DialogGSR, a dialog genera-
tion model with generative subgraph retrieval. Di-
alogGSR retrieves context-relevant subgraphs, by
generating the subgraph token sequences consid-
ering both the dialog context and the graph infor-
mation. We have proposed novel knowledge graph
linearization to convert knowledge triplets into to-
ken sequences with self-supervised graph-specific
tokens to represent knowledge graphs without sep-
arate knowledge graph modules. In addition, we
have formulated a graph-constrained decoding for
valid and relevant generative retrieval. Our exper-
iments demonstrate the effectiveness of our pro-
posed method in knowledge–graph grounded dia-
log generation. Our codes are publicly available at
https://github.com/mlvlab/DialogGSR.

Limitations

The proposed DialogGSR generatively retrieves
token sequences of the subgraph from a knowl-
edge graph and then generates a response with the
retrieved subgraph. However, similar to works us-
ing graph retrieval on knowledge-grounded dia-
log generation, our generative subgraph retrieval
can retrieve only the knowledge information con-
tained in the knowledge graph. Second, the bench-
mark datasets for knowledge graph–grounded dia-
log generation are limited. Therefore, new bench-
mark datasets on dialog generation with knowledge
graphs warrants greater attention.
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Ethics Statement

Our DialogGSR does not have any direct negative
social impacts, but it can potentially be used ma-
liciously, similar to other dialog generation mod-
els. These models may produce factually incorrect
or biased responses, particularly in sensitive areas
such as politics, religion, and diplomacy. To ad-
dress these risks, we advocate for the release of
benchmark datasets without private information
and emphasize the need for research into the meth-
ods that detect the source of texts. These measures
are essential for the responsible development and
use of dialog generation technologies.
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Reverse Multiple B-1 B-2 path@3

18.74 11.99 41.28
✓ 19.07 12.03 44.54

✓ 19.22 12.01 45.06
✓ ✓ 19.30 12.10 46.76

Table 8: Ablation studies on special tokens with Open-
DialKG dataset. ‘Reverse’ denotes reverse tokens and
‘Multiple’ denotes multiple tokens.

A Additional experiments

A.1 Additional Quantitative Analysis

We also conduct experiments to verify the contribu-
tion of using [Rev] to represent reverse relations
and multiple consecutive tokens to represent each
[Rev] or [Int] in Table 8. By adding reverse to-
kens to the knowledge, which allows mentioned
entities that are tail entities in the provided triplets
to be the starting points for the decoding, the per-
formance is improved by 0.33 on BLEU-1 metric.
Also, using multiple consecutive tokens to repre-
sent each [Rev] or [Int] (e.g., [Head] e1 [Int11]
[Int12] r1 [Int21] [Int22] e2 [Tail]) gives the
performance gain on all the metrics since using the
multiple tokens improve the capacity of represent-
ing the entities and the relations on top of language
models. By adding all the components, perfor-
mance significantly improves by 0.56 on BLEU-1
metric compared to the linearized knowledge graph
without any special tokens, which demonstrates the
effectiveness of our proposed knowledge graph lin-
earization approaches with special tokens. Inter-
estingly, adding reverse tokens with using multi-
ple consecutive tokens improves the overall perfor-
mance compared to adding reverse tokens without
using multiple consecutive tokens, which indicates
that representing reverse relations is more effective
when the capacity of the knowledge representation
is increased.

A.2 Additional Qualitative Analysis

In Table 9, we provide additional qualitative ex-
amples for what we have shown in Table 7 of the
main paper. Our DialogGSR often generates high-
quality responses similar to the main paper. For
example, in the first example, our DialogGSR gen-
erates a factually correct response "It was written
by Frank Beddor" based on the retrieved triplet
⟨‘The Looking Glass Wars’, ‘written_by’, ‘Frank
Beddor’⟩ while SURGE generates a factually incor-
rect response "Terry Pratchett" with the same triplet

⟨‘The Looking Glass Wars’, ‘written_by’, ‘Frank
Beddor’⟩. It demonstrates that our DialogGSR is
more effective in generating responses even with
the same knowledge information given. In the sec-
ond example, DialogGSR successfully generates
a factually correct response by retrieving context-
relevant knowledge triplets whereas the factually
incorrect response is generated by the baseline due
to the retrieval of irrelevant knowledge. These re-
sults demonstrate that our generative retrieval is
effective in retrieving informative knowledge and
generating knowledge-grounded dialogs.

B Experimental details

B.1 Implementation details
In this section, we describe the implementation
details not included in our main paper. For all the
experiments, we use PyTorch1 (Paszke et al., 2019)
and Transformer module of Huggingface2 (Wolf
et al., 2019) as our code base. All experiments are
conducted with 48GB NVIDIA RTX A6000 GPU.
We select the best model on the validation set to
evaluate the performance of all experiments. The
epoch for training is set to 50 and the weight decay
is 0.1. We use AdamW optimizer (Loshchilov and
Hutter, 2019) to train our model and adopt learning
rate decay.

Knowledge graph–constrained decoding.
Without the graph constraints, the language model
is prone to generate invalid or irrelevant subgraphs
due to the language model’s bias (Chen et al.,
2022b; Cao et al., 2021). To inject the knowledge
graph information into the language model in
the decoding step, we present a knowledge
graph–constrained decoding method. We use
α = 0.8 and k = 2 for calculating Katz (Katz,
1953) index-based entity informativeness score.
pgraph is defined in Eq. (6) of the main paper, and b
is 5.

C Details of Human Evaluation

We first randomly selected 30 dialogs from Open-
DialKG test dataset (Moon et al., 2019) and gener-
ated responses using our model and SURGE (Kang
et al., 2023) for the comparison. We recruited 22
participants who were not involved in our research
and allowed the use of external sources, such as the

1Copyright (c) 2016-Facebook, Inc (Adam Paszke), Li-
censed under BSD-style license

2Copyright 2018-The Hugging Face team, Licensed under
the Apache license
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Dialog

___________________.

Do you know 
Lionel Messi? Messi

Barcelona

World cupArgentina

Forward

Figure 3: An example of extracting a 2-hop candidate
subgraph from the knowledge graph. Yellow region
indicates the 2-hop candidate subgraph centered on the
mentioned entity “Messi".

Internet, to verify the factual correctness of gener-
ated responses. Following the process outlined in
the other work (Kang et al., 2023), we utilized a
3-point Likert-like scale to evaluate three criteria:
Consistency, Informativeness, and Fluency. Con-
sistency measures the coherence and logical flow
within the context of the conversation, Informa-
tiveness assesses the correctness and usefulness
of the information in the generated responses, and
Fluency focuses on the naturalness and linguistic
quality of the dialog. With the human evaluation
metrics and the automatic metrics in the main pa-
per, we establish a comprehensive evaluation frame-
work that enables accurate comparisons between
models, enhancing the reliability of our assessment.

D Baselines

D.1 Response Generation

In our experiments, the following baseline models
are used for comparing the response generation
performance with our DialogGSR.

• T5–small (w/o KGs)3 (Roberts et al., 2020):
T5-small is an encoder-decoder Transformer
architecture for various natural language pro-
cessing tasks.

• Space Efficient (series)4 (Galetzka et al.,
2021): Space Efficient (series) is the model
proposed in (Galetzka et al., 2021). It utilizes
all knowledge triplets related to the entities
by matching the entities of KG and the enti-
ties mentioned in dialog history without any
retrieval process. This model sequentially en-
codes knowledge triplets and feeds them into
the encoder.

3Licensed under the Apache license
4Copyright (c) 2021 Fabian Galetzka, Licensed under MIT

license

• Space Efficient (parallel) (Galetzka et al.,
2021) : This model is also proposed by (Galet-
zka et al., 2021). Different from Space Effi-
cient (series), this model constructs a segmen-
tation block for each entity and encodes the
relation in the segmentation block to reflect
relational information.

• Diff-KG (Tuan et al., 2022): Diff-KG reasons
differentiable knowledge paths to jointly gen-
erate a response with the dialog history. After
the path reasoning, entities included in the
path are concatenated with dialog history, and
they are fed into a pretrained language model.

• SURGE (unsup.) (Kang et al., 2023):
SURGE is a graph neural network–augmented
Transformer-based dialog generation model
that encodes knowledge triplets with graph
neural networks. SURGE also retrieves
context-relevant triplets via a subgraph re-
triever. This model trains the retriever without
the guidance of gold knowledge and is implic-
itly trained with response generation loss.

• SURGE (semi-sup.) (Kang et al., 2023):
SURGE (semi-sup.) uses gold knowledge to
train the retriever.

• SURGE (contrastive) (Kang et al., 2023):
SURGE (contrastive) uses both the retrieval
supervision from SURGE (Semi-sup.) and
contrastive learning to encourage the encoder
output and the decoder output to be closer.

D.2 Knowledge Retrieval
The models below are used as the baselines for
validating the effectiveness of our DialogGSR on
knowledge subgraph retrieval.

• Seq2Seq (Sutskever et al., 2014): Seq2Seq is
used as a baseline in (Moon et al., 2019; Tuan
et al., 2022). Given all of the dialog contexts,
Seq2Seq generates entity paths.

• Tri-LSTM (Young et al., 2018): Tri-LSTM is
another baseline in (Moon et al., 2019; Tuan
et al., 2022). It encodes dialog contexts and re-
lated 1-hop knowledge from a KG to retrieve
knowledge paths.

• Ext-ED (Extended Encoder-
Decoder) (Parthasarathi and Pineau,
2018): Extended Encoder-Decoder is also
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one of the baselines in (Moon et al., 2019;
Tuan et al., 2022). It generates a response
conditioned on an external knowledge vector
input, which is encoded by GloVe embedding.

• DialKG Walker (Moon et al., 2019): DialKG
Walker is an attention-based knowledge path
retrieval model designed to traverse a knowl-
edge graph with dialog context and knowledge
paths.

• AttnFlow (Jung et al., 2020): AttnFlow is
an attention-based knowledge path retrieval
model based on GAT (Veličković et al., 2018)
and the encoded dialog context. It only uses
incoming attention flow to update knowledge
representation.

• AttnIO (Jung et al., 2020): AttnIO is an exten-
sion of AttnFlow, where both incoming and
outcoming attention flows are used to repre-
sent knowledge paths with dialog contexts and
entity features.
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Dialog Gold response SURGE (Baseline) DialogGSR (Ours)

(a) Could you recommend and books by the author of
Colour of Magic?

(b) The Colour of Magic has genre fantasy. So do you
want to read fantasy books?

(a) Like Through the Looking Glass? Sure I like
Fantasy okay.

(b) yes like The Looking Glass Wars it’s really a good
book. I suggest reading it.

(a) Do you know who wrote it by any chance?

Yes Frank Beddor wrote it,
who also wrote Seeing Redd.

Terry Pratchett
It was written by
Frank Beddor.

Knowledge triplets τ retrieved from Baseline
⟨ ‘The Colour of Magic’, ‘written_by’, ‘Terry Pratchett’ ⟩
⟨ ‘The Looking Glass Wars’, ‘written_by’, ‘Frank Beddor’ ⟩
Knowledge triplets τ retrieved from DialogGSR
⟨ ‘The Looking Glass Wars’, ‘written_by’, ‘Frank Beddor’ ⟩
⟨ ‘Frank Beddor’, ‘is-a’, ‘Film Producer’ ⟩

(a) I like the book Where’d You Go, Bernadette.
Do you have any other suggestions for me?

(b) Definitely! That’s a great book by Maria Semple.
Do you like her?

(a) I do! Has she written anything else?

She is a screenwriter,
television producer, and
she produced Mad About You.

She’s written a lot
of books, including
Where’d You Go, Bernadette.
Have you read that one?

She has. She also
wrote the TV program,
Mad About You.
Have you heard of that one?

Knowledge triplets τ retrieved from Baseline
⟨ ‘Where’d You Go, Bernadette’, ‘written_by’, ‘Maria Semple’ ⟩
⟨ ‘Where’d You Go, Bernadette’, ‘release_year’, ‘2012’ ⟩
⟨ ‘2012’, ‘release_year (reverse)’, ‘Where’d You Go, Bernadette’ ⟩
Knowledge triplets τ retrieved from DialogGSR
⟨ ‘Where’d You Go, Bernadette’, ‘written_by’ ,‘Maria Semple’ ⟩
⟨ ‘Maria Semple’, ‘tv program produced’, ‘Mad About You’ ⟩
⟨ ‘Mad About You’, ‘has_genre’, ‘sitcom’ ⟩

(a) Do you know any movies directed by
Bennett Miller?

(b) He has some great ones. Have you seen
Moneyball or Capote?

(a) I haven’t seen Moneyball,
who stars in it?

Steve Zaillian wrote Moneyball.
It starred Brad Pitt along with
Tammy Blanchard. It’s a
really good movie!

Capote stars Seymour
Hoffman and Ben
Stiller. It’s a
romantic comedy.

Tammy BLanchard and
Brad Pitt are in it.
Do you like action movies?

Knowledge triplets τ retrieved from Baseline
⟨ ‘Moneyball’, ‘starred_actors’, ‘Philip Seymour Hoffman’ ⟩
⟨ ‘Capote’, ‘starred_actors’,‘Philip Seymour Hoffman’ ⟩
⟨ ‘Philip Seymour Hoffman’, ‘starred_actors (reverse)’, ‘Moneyball’ ⟩
Knowledge triplets τ retrieved from DialogGSR
⟨ ‘Moneyball’, ‘starred_actors’, ‘Tammy Blanchard’ ⟩
⟨ ‘Moneyball’, ‘starred_actors’, ‘Brad Pitt’ ⟩
⟨ ‘Moneyball’, ‘starred_actors’, ‘Robin Wright’ ⟩

(a) Can you tell me some
Beatrix Potter books?

(b) Would you prefer her biography,
or children’s literature?

(a) Children’s literature please.
(b) Would you like The Tale of Peter

Rabbit? Or The Tale of Mrs Tiggy-Winkle?
I hear they’re both good.

(a) Ill try Peter Rabbit,
out of curiosity when
were these books written?

I believe they were written
in the year 1905, to be exact.

The Tale of Mrs. Tiggy-Winkle
was written in 1851.

I’m not sure when they
were written, but they were
released in the year 1905.

Knowledge triplets τ retrieved from Baseline
⟨ ‘The Complete Tales of Beatrix Potter’, ‘written_by’, ‘Beatrix Potter ’ ⟩
⟨ ‘The Complete Adventures of Peter Rabbit’, ‘written_by’, ‘Beatrix Potter ’ ⟩
⟨ ‘The Tale of Mrs. Tiggy-Winkle’, ‘written_by’, ‘Beatrix Potter ’ ⟩
Knowledge triplets τ retrieved from DialogGSR
⟨ ‘The Tale of Mrs. Tiggy-Winkle’, ‘written_by’, ‘Beatrix Potter’ ⟩
⟨ ‘The Tale of Mrs. Tiggy-Winkle’, ‘release_year’, ‘1905’ ⟩
⟨ ‘The Return Of Sherlock Holmes’, ‘release_year’, ‘1905’ ⟩

Table 9: Comparison on responses generated by SURGE (Baseline) and DialogGSR given a dialog.
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