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Abstract

De-identification (de-ID) refers to removing the
association between a set of identifying data
and the data subject. In clinical data manage-
ment, the de-ID of Protected Health Informa-
tion (PHI) is critical for patient confidentiality.
However, state-of-the-art de-ID models show
poor generalization on a new dataset. This is
due to the difficulty of retaining training cor-
pora. Additionally, labeling standards and the
formats of patient records vary across differ-
ent institutions. Our study addresses these is-
sues by exploiting GPT-4 for data augmenta-
tion through one-shot and zero-shot prompts.
Our approach effectively circumvents the prob-
lem of PHI leakage, ensuring privacy by redact-
ing PHI before processing. To evaluate the
effectiveness of our proposal, we conduct cross-
dataset testing. The experimental result demon-
strates significant improvements across three
types of F1 scores.

1 Introduction

In the realm of healthcare data management,
the protection of sensitive information embedded
within medical records is essential. Protected
Health Information (PHI) encompassing identifiers,
such as names, addresses, and contacts, requires
safeguards to prevent unauthorized access and en-
sure patient confidentiality. The U.S. Health Insur-
ance Portability and Accountability Act (HIPAA)
lists a comprehensive set of 18 categories of PHI
that must be de-identified in Electronic Health
Records (EHRs) for secondary use.

The advent of automated systems for the de-
identification (de-ID) of PHI within medical data
has been facilitated by advances in rule-based meth-
ods, machine learning, and deep learning mod-
els (Liu et al., 2023b). For deep-learning-based
approaches, a de-ID task is basically a sequence
tagging task of named entity recognition (NER).
Currently, i2b2 2006 (Uzuner et al., 2006, 2007)

Figure 1: Performance degradation in cross-dataset set-
tings using Bio-ClinicalBERT (Alsentzer et al., 2019).
Binary, token, and entity refers to binary token-level F1,
token-level micro F1, and entity-level micro F1. They
are types of F1 scores used to evaluate sequence tagging
of de-ID models. See Section 4.3 for the details regard-
ing these metrics.

and i2b2 2014 de-ID challenge datasets (Stubbs
et al., 2015; Stubbs and Uzuner, 2015) are widely-
used for training de-ID models. These datasets con-
tain clinical notes with PHI replaced with surrogate
PHI for privacy and annotated with multi-classes
of PHI labels, such as PATIENT, DOCTOR, etc.
LSTM-based models (Dernoncourt et al., 2017)
and BERT-based models (Alsentzer et al., 2019)
have achieved micro F1 scores exceeding 0.97,
demonstrating the effectiveness of deep-learning-
based models to address the critical task of PHI
de-ID in medical records.

However, de-ID tasks present unique challenges
compared to other NER tasks, primarily due to
the difficulty in accessing suitable datasets. More-
over, making a publicly available dataset requires
expertise and efforts to anonymize and annotate
PHI (Yue et al., 2020). This leads to poor gener-
alization of deep-learning-based models. While
the i2b2 2006 and i2b2 2014 corpora offer clini-
cal de-ID datasets both annotating PHI with sur-
rogate PHI, the nuanced differences in annota-
tion standards and the variability of institutes (e.g.,
hospitals) across datasets can significantly impact
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cross-dataset test performance in cross-institute set-
tings (Yang et al., 2019; Yue and Zhou, 2020).

Figure 1 shows the performance decrease in
three types of F1 scores in a cross-dataset setting
when training on the i2b2 2006 dataset and test-
ing on the i2b2 2014 dataset, and vice versa. Data
augmentation can be a solution to the problem of
acquiring sensitive data and enhancing generaliza-
tion, and some studies have explored this approach.
Yue and Zhou (2020) propose rule-based EHR data
augmentation with PHI replacement and context
augmentation (i.e., synonym replacement). They
improve token-level micro F1 on a cross-dataset
setting of i2b2 datasets. However, rule-based aug-
mentation lacks context diversity.

This paper proposes a data augmentation method
using GPT-4 (Achiam et al., 2023) that can enrich
the context of augmented datasets while ensuring
privacy. As illustrated in Figure 2, our framework
preemptively conducts PHI-scrubbing (i.e., replac-
ing PHI with placeholders like "John" → "[PA-
TIENT]," and "16th of November" → "[DATE]")
before providing samples to GPT-4. This can ef-
fectively circumvent the problem of PHI leakage
through APIs.

Our method includes zero-shot and one-shot
prompt engineering for generating synthetic de-ID
clinical corpus with i2b2 2006 and 2014 datasets.
Zero-shot generation does not require any pre-
obtained dataset. On the other hand, one-shot aug-
mentation requires a pre-obtained dataset. With the
one-shot augmented dataset, we conduct a cross-
dataset test on i2b2 2006 and i2b2 2014 and achieve
performance boosts up to 6.48%, 29.83%, and
36.50% across three types of F1 scores: binary
token-level F1, token-level micro F1, and entity-
level F1, respectively.

Overall, the contributions of this paper are sum-
marized as follows:

• We propose a novel method for augmenting
data for sequence tagging tasks using GPT-4
to generate diverse synthetic data even without
any pre-obtained datasets.

• Our method overcomes the limitations of pre-
vious rule-based augmentation approaches in
the clinical de-ID, which mainly focuses on
entity replacements or minor textual modifica-
tions without significantly altering the context.
By addressing data scarcity through augmen-
tation, our method enhances generalization in
cross-dataset settings.

• We propose a framework for handling sensi-
tive data using online Large Language Mod-
els, which can be beneficial for applications
in domains that manage sensitive information.

2 Related Work

This section briefly describes the related work to
this paper.

2.1 Manual and Rule-based De-ID

Manual de-ID requires human experts or annotators
who can access EHRs and redact sensitive informa-
tion (Ubani et al., 2023). Manually redacting PHI is
time-consuming and costly (Dorr et al., 2006; Dou-
glass et al., 2005). Despite the high cost, existing
reports demonstrate that manual removal of PHI
is not that accurate, with recall ranging from 63%
to 94% depending on the annotator (Neamatullah
et al., 2008). Meanwhile, rule-based de-ID (Nea-
matullah et al., 2008; Meystre et al., 2010; Lison
et al., 2021; Emelyanov, 2021) pre-defines regular
expressions for word patterns and find the matching
patterns in unstructured texts. Though it is faster
than manual de-ID, it still needs fine-tuning the
rules and patterns for each dataset (Ubani et al.,
2023).

2.2 Learning-based De-ID

There are some prior deep-learning-based de-ID
methods based on LSTM (Dernoncourt et al.,
2017; Liu et al., 2017; Tang et al., 2019) and
BERT (Alsentzer et al., 2019; Yue and Zhou, 2020).
They fine-tune baseline models on PHI-labelled
datasets, such as i2b2 2006 and i2b2 2014. Al-
though these methods show promising performance
on their test dataset, they show unstable perfor-
mance when they are tested on the unseen test
data in cross-institute settings (Stubbs et al., 2017;
Yang et al., 2019; Yue and Zhou, 2020; Urbain
et al., 2022). Other approaches include training
a re-identification model in an adversarial setting
and using it for de-identifying texts (Morris et al.,
2022).

Recently, after the advent of large language
models (LLMs), Liu et al. (2023b) employ Chat-
GPT (OpenAI, 2023a) and GPT-4 directly for de-
identifying clinical data and show that the pre-
trained LLMs can considerably well de-identify
unseen texts. However, in real-life scenarios, this
method poses a potential risk of breaching HIPAA
privacy regulations, especially when using APIs
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that transmit actual PHI-containing data to the
client (Liu et al., 2023b,a). This highlights a critical
challenge in balancing the innovative use of LLMs
with the imperative of safeguarding sensitive infor-
mation. Our work uses pretrained knowledge of
GPT-4 to augment clinical data while maintaining
privacy and safety.

2.3 Data Augmentation
Data augmentation (DA) includes methods of in-
creasing the diversity of training data without gath-
ering more data (Feng et al., 2021). DA can be
performed at character, word, sentence, and docu-
ment levels (Dai et al., 2023).

DA in sequence tagging tasks. Sequence tag-
ging tasks like NER need DA for both entities and
labels. Ding et al. (2020) train an LSTM-based
model to learn linearized sequences of labeled sen-
tences for generating augmented data. Dai and
Adel (2020) modify sentence-level DA methods
of synonym replacement for NER and show im-
provements in recurrent and transformer models.
Yue and Zhou (2020) propose PHICON that con-
duct PHI and context augmentation on i2b2 2006
and i2b2 2014 datasets. The PHI augmentation
replaces PHI entities in the original corpora with
constructed surrogate-PHI candidate lists. Context
augmentation of PHICON conducts synonym re-
placement and random insertion at word level (Wei
and Zou, 2019). While there is a lack of previ-
ous studies employing synthetic data generation
for NER tasks in the medical domain, PHICON
uses rule-based augmentation on clinical notes and
improves generalization performance. However, it
still falls short during cross-testing. This shortfall
is believed to be caused by its focus on entity re-
placements or minor textual modifications without
significantly altering the context, making obtaining
large and diverse corpora difficult.

DA by prompting on LLMs. Dai et al. (2023)
propose few-shot prompting with ChatGPT for sen-
tence classification datasets by rephrasing original
sentences while preserving semantic consistency.
Ubani et al. (2023) propose zero-shot prompting
for DA, generating three text classification datasets
without providing any sample to ChatGPT. These
methods propose sentence-level augmentation on
sentence classification datasets. They show that
zero-shot and few-shot prompting-based DA out-
performs existing rule- and model-based DA tech-
niques. However, they focus on augmenting sen-

tence classification datasets. Sequence tagging or
token classification tasks involve a more complex
dataset. To our knowledge, methods for augment-
ing sequence tagging tasks, such as NER, using
prompting on LLMs have yet to be developed.

3 Proposed Methods

This section outlines our approach for enhancing
de-ID sequence tagging datasets, such as i2b2 2006
and i2b2 2014, at the document level. We employ
both one-shot and zero-shot prompting techniques
with GPT-4-turbo (OpenAI, 2023b) via the OpenAI
API. The distinction between zero-shot and one-
shot prompts is based on their use of the original
datasets; one-shot prompts incorporate sample data
from these datasets to guide the model, whereas
zero-shot prompts do not. One-shot is a type of
few-shot that uses only one example to guide the
model’s response. In our case, we use the term
one-shot as we provide one example (a clinical
record) for each prompt. Figure 2 illustrates the
overall pipeline of our one-shot augmentation. Ex-
cluding "i2b2 2006" in the figure also demonstrates
the pipeline for our zero-shot augmentation. Our
methodology uses the advanced NLP capabilities
of GPT-4-turbo to augment the datasets, potentially
improving the performance of models when fine-
tuned on them for de-ID tasks.

3.1 One-shot Prompting

PHI-scrubbing. We use data samples from the
original dataset for one-shot prompting. To prevent
PHI leakage through API functions, we create a
PHI-scrubbed corpus by replacing PHI in the origi-
nal corpus with placeholders (e.g., "John" → "[PA-
TIENT]" and "16th of November" → "[DATE]").
This process is designated by the blue arrow labeled
PHI-scrubbing in Panel A of Figure 2.

Guidelines and task descriptions. The purple
arrow labeled "Augmentation by GPT-4" in Panel
A of Figure 2 indicates that the samples are pro-
vided to GPT-4 for dataset generation. The goal is
to produce PHI-scrubbed patient reports that are
similar in format to the original dataset but with
different contexts. Prompts for one-shot augmen-
tation include a sample, guidelines, and a task de-
scription. The task description instructs creating
a synthetic patient report with PHI removed, fol-
lowing the specified guidelines. These guidelines,
detailing the requirements for the desired output,
emphasize the exclusion of actual PHI and instruct
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Figure 2: The process of one-shot data augmentation and cross-dataset test. Panel A outlines the augmentation
process using ChatGPT, which begins with PHI-scrubbing the original data. It generates a new dataset using the
training dataset of original data, repeating the augmentation process for α times to generate diverse datasets. α
represents the sequential index of each augmented version of the original data. Panel B illustrates the framework for
our cross-dataset test, where a BERT-based model uses the original and augmented datasets of i2b2 2006 to evaluate
the model’s cross-dataset performance on the i2b2 2014 dataset.

on using PHI placeholders, with explanations for
each type. The guidelines are developed consid-
ering the annotation guidelines of i2b2 2014 by
Stubbs and Uzuner (2015). With these elements,
GPT-4 generates synthetic patient reports with PHI
placeholders, referred to as "PHI-scrubbed Aug-
mented Data" in Figure 2. See Appendix A for the
detailed samples, guidelines, and task descriptions
we used.

PHI augmentation. Since the generated data are
PHI-scrubbed, we replace placeholders (e.g., "[PA-
TIENT]" and "[DATE]") with appropriate surrogate
PHI. Inspired by previous work (Yue and Zhou,
2020), surrogate PHI is randomly selected from
candidate lists according to the placeholders, as
shown in "Surrogate PHI filled data" in Panel A of
Figure 2. The augmented datasets, along with the
augmentation level α and the original data, are then
used for cross-dataset testing, as shown in Panel
B. See Appendix A for the detailed explanation of
conducting PHI augmentation.

3.2 Zero-shot Prompting

Zero-shot prompting is tailored for scenarios where
retaining any part of the training dataset for fine-
tuning de-ID models is not feasible. As shown in
Figure 4 of Appendix, zero-shot prompts consist
only of guidelines and task descriptions without
including data samples. The guidelines and task
descriptions for zero-shot prompting mirror those
used in one-shot prompting. With only the pro-
vided guidelines and task descriptions, GPT-4 gen-
erates synthetic patient reports with PHI replaced
by placeholders. The process of PHI augmentation
on the generated dataset follows the same proce-
dure as that in one-shot augmentation.

4 Experimental Setup

This section describes our experimental methodol-
ogy, which includes datasets, models, evaluation
metrics, and testing methods.
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4.1 Datasets

Original datasets. We utilize the i2b2 2006 and
i2b2 2014 datasets, dividing them into training, val-
idation, and testing sets in a 7:1:2 ratio based on the
number of notes. The datasets adhere to different
annotation standards. For instance, the i2b2 2014
datasets include 20 types of PHI labels, whereas
the i2b2 2006 datasets feature only eight types. For
the cross-dataset test, we follow the preprocessing
steps outlined by Yue and Zhou (2020), which in-
volve excluding PHI types that occur fewer than 20
times to eliminate low-frequency data and merging
specific fine-grained PHI types into broader cat-
egories to ensure consistency across the datasets.
This consolidation results in five main PHI cate-
gories: Name (encompassing Doctor, Patient, User-
name), Location (Hospital, Location, Zip, Organi-
zation), Date, ID (ID, Medical Record), and Con-
tact (Phone).

Augmented datasets. By repeating the augmen-
tation process from α = 1 to 5, we develop one-
shot augmented datasets derived from the i2b2
2006 and i2b2 2014 corpora, generating ten new
datasets. Each augmented dataset is meticulously
crafted to maintain the same number of patient
records as its corresponding original dataset. In
addition to these, we also produce five unique
datasets using the zero-shot prompting technique
by repeatedly performing the same augmentation.
Each dataset from zero-shot prompting includes
912 records, aligning with the record count of the
i2b2 2014 datasets. The preprocessing steps of aug-
mented datasets are equivalent to those of original
datasets. See Appendix B for the detailed statistics
of the datasets.

Hyperparameters Value
Learning rate 5e-5
Batch size 64
Epochs 20
Seed 1
Maximum sequence length 192

Table 1: Hyperparameters used in training the models.

4.2 Base Models and Hyperparameters

We select two BERT-based models: BioBERT (Lee
et al., 2020) and Bio+ClinicalBERT (Alsentzer
et al., 2019). They are pretrained with BERT (De-
vlin et al., 2018) on medical domains and
show superior performance on clinical NLP

tasks (Alsentzer et al., 2019; Turchin et al., 2023).
Our study focuses on improving generalization per-
formance through data augmentation. Thus, we
conduct experiments using these models, demon-
strating state-of-the-art performance on the i2b2
dataset. We train the models until the token-level
micro F1 on the validation dataset saturates, em-
ploying early stopping with patience of 3 to prevent
overfitting.

The hyperparameters to train the models on these
datasets are shown in Table 1. Considering the prac-
tice of using sentence-level inputs and the need for
reasonable comparisons, we set the maximum se-
quence length to 192 tokens. This was based on
the standards for NER tasks set by BioBERT (Lee
et al., 2020) as detailed at https://github.com/
dmis-lab/biobert-pytorch, which served as a
benchmark for our experiments. The hyperparam-
eters of GPT-4 used to augment the datasets are
explained in detail in Appendix C.

4.3 Evaluation Metrics
We assess our models’ performance using three
distinct metrics, each catering to different aspects
of the classification task. These metrics include
binary token-level F1, token-level micro F1, and
entity-level micro F1. Binary token-level F1 ("bi-
nary F1") is widely used to evaluate de-ID mod-
els (Dernoncourt et al., 2017) while handling multi-
ple classes of PHI as a single class to assess model
accuracy by classifying each token as part of a PHI
entity or not. Token-level micro F1 measures the
model’s overall performance on classifying each
token across multiple PHI classes, aggregating pre-
cision and recall for all classes. Entity-level micro
F1 (or Exact F1) evaluates the model’s accuracy in
correctly identifying and classifying entire entities,
including their exact spans. For example, if the
model incorrectly identifies "John Doe" with the
tags "B-Name, O" (where "B-Name" indicates the
beginning of a name entity, and "O" signifies a non-
entity), the entity-level F1 score for the "Name"
category would be zero, highlighting the model’s
precision in delineating entire PHI entities.

4.4 Testing Methodology
Cross-dataset test. In the cross-dataset testing
scenario, we train models using the i2b2 2006
dataset and assess their performance on the i2b2
2014 dataset ("2006 → 2014") and vice versa. For
2006 → 2014 at one-shot augmentation level
α = N(≤ 5), we train, evaluate, and test the base
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models as follows:

1. Merge original i2b2 2006 training set with
augmented datasets from levels α = 1 to α =
N to obtain training dataset at augmentation
level α = N .

2. Throughout the training epochs, we contin-
uously fine-tune our models. Evaluate the
model on the original i2b2 2006 validation set.

3. Upon completion of training and fine-tuning,
test the model on the comprehensive i2b2
2014 dataset (Train + Validation + Test).

For the reverse scenario, training on the i2b2 2014
and testing on the i2b2 2006 ("2014 → 2006"),
the process above from step 1 to step 3 is applied
analogously, merely replacing "2014" with "2006"
and vice versa at each step. We compare the results
to baselines where data augmentation is not applied.
Instead, the rule-based augmentation "PHICON" —
a rule-based augmentation method introduced by
Yue and Zhou (2020) and applied to i2b2 datasets
— is performed on the baselines.

Performance test. We use datasets generated
through zero-shot augmentation in scenarios where
no datasets can be obtained a priori. It involves ex-
clusively training models on artificially generated
data and testing their performance on i2b2 2006
and i2b2 2014 datasets. At zero-shot augmenta-
tion level α = N(≤ 5), we train, evaluate, and test
the base models as follows:

1. Combine zero-shot augmented datasets from
levels α = 1 to α = N and divide it into
training and validation datasets in an 85:15
ratio.

2. With the datasets prepared, models undergo
training on the designated training set. Sub-
sequent evaluation is conducted on the vali-
dation set derived from the same augmented
pool.

3. Upon completion of training and fine-tuning,
test the model on the comprehensive datasets
of i2b2 2014 and i2b2 2006.

We do not compare the results to the rule-based
data augmentation (i.e., PHICON) as a baseline in
this scenario. For the one-shot prompting method,
it is reasonable to compare because it generates
clinical notes using samples from datasets obtained
a priori. However, the zero-shot prompting method

assumes scenarios with no available dataset, mak-
ing it incomparable to PHICON.

5 Experimental Results

This section provides the experimental results for
the proposed method to boost the generalization
capability of the de-ID models.

5.1 One-shot Augmentation

The results of the cross-dataset tests demonstrate
that datasets augmented through one-shot prompts
across a range of augmentation levels from α = 1
to 5 exhibit enhanced performance. The summa-
rized outcomes, as presented in Table 2, alongside
a comparative analysis with PHICON, highlight
our one-shot augmentation’s effectiveness.

A key observation is a more significant improve-
ment in entity-level micro F1 score ("E") compared
to the binary token-level and token-level micro F1
scores ("B" and "T"). Specifically, when compared
to the no augmentation baseline ("No Aug"), one-
shot augmentation results in maximum improve-
ments of 6.48%, 29.83%, and 36.50%, and mini-
mum improvements of 3.36%, 2.25%, and 17.69%
for "B," "T," "E" scores, respectively. As entity-
level F1 considers the exact span of each PHI entity,
this highlights that our augmentation with GPT-4
boost models’ preciseness in de-identifying PHI
entities.

The standout performer in our analysis is
BioBERT in the entity-level F1, particularly in
"2006→2014", which shows an improvement of
29.8% in token-level F1 compared to the baseline
("No Aug") and 10.5% improvement in entity-level
F1 over PHICON. This trend is mirrored in the
2014 to 2006 setting, where the entity-level F1 of
BioBERT incorporates the most substantial gains,
with a 36.5% improvement over baseline and an
18.4% improvement over PHICON. The sudden
performance improvement from α = 4 to α = 5
in "2014→2006" appears to result from the model
escaping local minima during the training process,
despite not tuning hyperparameters and using the
settings from the previous study (Lee et al., 2020).

Meanwhile, the impact is notably more substan-
tial in the "2006→2014" test scenario compared to
"2014→2006". This variation can be attributed to
the different complexity levels of annotation stan-
dards between the datasets. The i2b2 2006 dataset
has a more complex annotation standard than the
i2b2 2014 dataset. For example, under the "DATE"
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Setting Model F1 No Aug +PHICON + One-shot Augmentation

α = 1 α = 2 α = 3 α = 4 α = 5

2006
→

2014

Bio+Clinical
BERT

B 88.63 93.2 93.97 94.34 94.37 94.19 94.29
T 79.04 87.36 90.7 90.87 91.04 90.81 91.05
E 64.03 75.01 81.16 81.82 82.27 82.32 82.36

BioBERT
B 90.84 93.03 93.89 94.27 93.6 94.01 94.19
T 70.19 85.63 90.33 91.07 90.29 91.10 91.13
E 66.79 74.45 80.69 81.86 80.86 82.29 81.70

2014
→

2006

Bio+Clinical
BERT

B 90.23 92.78 93.15 92.90 92.87 93.26 93.06
T 86.51 87.85 88.31 88.04 87.85 88.46 87.98
E 64.38 72.73 75.77 74.24 74.41 75.45 73.82

BioBERT
B 88.23 90.59 88.18 88.53 89.17 89.13 93.77
T 84.45 85.23 83.70 83.90 83.42 84.28 88.46
E 55.97 64.50 55.04 55.87 58.28 60.56 76.40

Table 2: Cross-dataset test results using One-shot augmented datasets. "B," "T," and "E" in the F1 column refer to
binary token-level F1, token-level micro F1, and entity-level micro F1, respectively. The "No Aug" column shows
the performance of the models in cross-dataset settings without any data augmentation. The "+PHICON" column
represents the performance after conducting the PHICON (Yue and Zhou, 2020) data augmentation method. Finally,
the "+ One-shot Augmentation" section evaluates the performance with incremental one-shot augmented datasets,
where α ∈ {1, 2, 3, 4, 5} The bold and underlined results represent the highest and second-highest scores achieved
for each model and setting combination.

Test on Model F1
Trained on

Cross-dataset
(06⇀↽14)

Zero-shot augmented dataset

α = 1 α = 2 α = 3 α = 4 α = 5

2014

Bio+Clinical
BERT

B 88.63 90.56 91.42 91.66 90.64 88.94
T 79.04 85.52 87.11 87.23 86.98 84.92
E 64.03 75.90 78.52 78.70 78.28 77.37

BioBERT
B 90.84 87.17 87.72 87.21 89.33 84.79
T 70.19 82.35 83.03 82.97 85.52 82.12
E 66.79 72.24 73.87 74.89 76.71 73.05

2006

Bio+Clinical
BERT

B 90.23 84.80 85.84 86.35 90.81 89.68
T 86.51 76.13 78.76 79.88 84.30 83.45
E 64.38 48.21 54.37 56.12 73.69 73.77

BioBERT
B 88.23 84.34 84.64 84.52 90.32 90.18
T 84.45 76.93 77.52 78.23 84.79 83.34
E 55.97 48.60 49.87 51.27 75.05 72.77

2006
+

2014

Bio+Clinical
BERT

B 89.43 87.68 88.63 89.01 90.73 89.31
T 82.78 80.83 82.94 83.56 85.64 84.19
E 64.21 62.06 66.45 67.41 75.99 75.57

BioBERT
B 89.54 85.76 86.18 85.87 89.83 87.49
T 77.32 79.64 80.28 80.6 85.16 82.73
E 61.38 60.42 61.87 63.08 75.88 72.91

Table 3: Test results on i2b2 2006 and i2b2 2014 with training models only on zero-shot augmented datasets. "B,"
"T," and "E" in the F1 column refer to binary token-level F1, token-level micro F1, and entity-level micro F1,
respectively. We compare the models with the baseline trained on cross-dataset (e.g., training on i2b2 2006 and
testing on i2b2 2014). For test results on "2006 + 2014", we report arithmetic means of the test results on "2006"
and "2014" as the number of test dataset samples differs. The bold and underlined results represent the highest and
second-highest scores achieved for each model and test dataset combination.
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category, i2b2 2014 encompasses both year and
date, whereas i2b2 2006 annotations include dates
but exclude the year. With the 2006 dataset’s anno-
tation standards being more intricate and the 2014
dataset providing a larger volume of patient reports,
the effectiveness of data augmentation becomes
more pronounced, especially in scenarios where
training data is limited (Wei and Zou, 2019; Yue
and Zhou, 2020).

5.2 Zero-shot Augmentation
In the context of zero-shot augmentation, where
access to actual or surrogate PHI-containing clini-
cal datasets is restricted, the potential of GPT-4 for
zero-shot augmentation/generation is evident from
the results in Table 3. Models trained on datasets
augmented through zero-shot techniques showcase
superior performance across the metrics compared
to those trained on datasets obtained a priori. This
underlines the ability of zero-shot augmentation
with GPT-4 to generalize effectively across unseen
datasets, a significant finding given that the ap-
proach does not require any synthetic sample.

When tested on the 2014 dataset, all metrics,
except the binary token-level F1 in BioBERT,
showcase improvements, reaching up to 22.9% in-
crease in performance for the entity-level F1 of
Bio+Clinical BERT. Similarly, when tested on the
2006 dataset, our method outperforms the baseline
(trained on cross-dataset) in nearly all cases, with
the BioBERT model’s entity-level metric experi-
encing the highest leap at 34%.

Overall, the aggregated performance metrics
from the "2006 + 2014" dataset report an increase
in all metrics compared to training on cross-dataset.
Moreover, the results indicate an upward trend in
performance with increasing augmentation levels
α, reaching peak performance at α = 4. This
demonstrates the strategic advantage of leverag-
ing higher augmentation levels to achieve optimal
model performance.

5.3 Influence of Augmentation Level α
At α = 5, the model uses five times larger data
than α = 1. In the one-shot augmentation set-
ting, saturation of performance is observed. In
the zero-shot setting, the performance gradually
improves but starts to degrade after level 4. In zero-
shot augmentation, the approach leverages GPT-4’s
general knowledge and adds task-specific insights
through prompts for clinical de-ID. This differs
from one-shot augmentation, which additionally

Figure 3: Performance of Bio+ClinicalBERT on i2b2
2014 with different datasets. Base, Zero, and One refer
to the model trained on i2b2 2006 dataset, zero-shot aug-
mented dataset, and i2b2 2006 + one-shot augmented
dataset, respectively.

uses synthetic examples from the dataset. Increas-
ing the augmentation level in zero-shot might not
necessarily generate meaningfully diverse data be-
cause of the constraints of the LLM’s pre-existing
knowledge. Thus, the model is more prone to over-
fit and experiences a drop in test performance in
zero-shot augmentation. Although one-shot aug-
mentation does not show significant degradation,
this should not lead to an overly optimistic con-
clusion that performance will continue to increase
with repeated augmentation. It is necessary to ex-
plore an appropriate range for the augmentation
level to understand its impact comprehensively and
to identify the optimal point.

5.4 Performance Boost Across PHI Classes

Figure 3 reports token-level F1 scores across PHI
classes. Specifically, in micro-averaged F1 scores
("Overall"), performance on one-shot augmentation
is the highest, followed by zero-shot and baseline.
The model trained with the one-shot augmented
dataset performs best in all classes. Additionally,
in "Contact," "Date," and "ID," the zero-shot aug-
mentation is significantly better than the baseline.
However, in the "Location" and "Name" classes,
the zero-shot performance is slightly worse than
the baseline. This indicates that the model trained
on a zero-shot augmented dataset may struggle
with domain-specific unseen datasets. In synthetic
patient reports, the distribution of names and lo-
cations may differ with general domains. For in-
stance, names in patient records contain initialized
names (i.e., usernames), and locations mainly con-
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Test on Model F1 Trained on

Within-dataset Cross-dataset (aug)

2014

Bio+Clinical
BERT

B 98.71 94.37
T 98.31 91.05
E 96.46 82.36

BioBERT
B 98.62 94.27
T 98.20 91.13
E 95.99 82.29

2006

Bio+Clinical
BERT

B 99.32 93.26
T 98.94 88.46
E 97.72 75.77

BioBERT
B 99.16 93.77
T 98.71 88.46
E 97.65 76.40

Table 4: Comparison of within-dataset and cross-dataset
performance. "B," "T," and "E" in the F1 column refer to
binary token-level F1, token-level micro F1, and entity-
level micro F1, respectively.

tain addresses related to hospitals.

5.5 Within-Dataset Performance

While our proposed methods significantly improve
generalization performance, a notable gap still re-
mains when comparing the performance to the
within-dataset performance, where models are
trained and tested on the same dataset. As shown
in Table 4, although the within-dataset results show
consistently higher F1 scores for all metrics, the
cross-dataset performance is significantly improved
through one-shot augmentation, highlighting the
challenge of generalizing across different institu-
tions where data formats and annotation standards
vary. This gap emphasizes the importance of ad-
dressing the generalization problem, as models
must perform robustly on unseen datasets from
various sources in real-world applications.

6 Conclusion

This paper explores and analyzes the potential of
one-shot and zero-shot data augmentation for de-
identification in cross-dataset testing and extends
the result to models pretrained with medical data.
The proposed methods leverage GPT-4 to signifi-
cantly enhance data scalability and diversity, which
is particularly vital in healthcare domains where
publicly available data is often limited. More-
over, the proposed methods of employing synthetic
data generation with PHI-scrubbed datasets offer
a strategic solution to addressing privacy concerns
for GPT-4 APIs, aligning with HIPAA regulations.
Overall, our methodology not only enriches the

dataset quality for more effective model training
but also aligns with ethical standards and privacy
regulations, highlighting its potential to transform
the data preparation process in sensitive domains.
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Limitations

There are some limitations to our study. First,
domain-specific upgrade is required for the module
that fills surrogate PHI in PHI-scrubbed data ob-
tained from GPT-4. Upon reviewing performance
across PHI classes, the observation that zero-shot
performance in certain classes (name, location) is
slightly lower than the baseline underscores the
importance of domain-specific surrogate PHI. Con-
structing a universally applicable surrogate-PHI
candidate list is deemed a crucial area for subse-
quent research, especially for practical applications
in the healthcare domain.

Second, our study identified the optimal model
using a validation set from the same source as the
training data. However, further research is needed
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to optimize performance for cross-dataset tests,
which involve test data compiled from entirely dif-
ferent sources.

Third, while our model evaluates the validity of
the augmented dataset through post-training per-
formance comparisons, it is essential to investigate
the augmentation’s effectiveness further by com-
paring it with actual medical data, including word
distribution. This step will help to ensure that the
augmentation process accurately reflects the com-
plexities of medical datasets.

Finally, our study uses GPT-4 to augment data
and improve the generalization performance of
state-of-the-art models for de-identification tasks,
particularly in scenarios where the available dataset
is extremely limited or nonexistent. Our decision to
benchmark against PHICON was driven by the lack
of previous studies that have employed synthetic
data generation for clinical de-ID. However, Com-
paring against additional baselines, such as previ-
ously studied rule-based de-identification methods
or fine-tuning offline open-source LLMs directly
for the task in a manner that does not breach privacy
concerns, could provide richer insights.

Ethics Statement

Our study advances NLP while adhering to ethical
guidelines. We use the i2b2 2006 and i2b2 2014
datasets, which contain de-identified Electronic
Health Records (EHRs) accessible upon institu-
tional consent1. We comply with data use policies
and maintain transparency by disclosing our data
sources, preprocessing, augmentation methods, and
experimental settings.

Additionally, we prioritize maintaining ethical
standards by ensuring that all personal identifiers
are removed before further use. Our data augmenta-
tion includes scrubbing personal health information
(PHI) to ensure privacy when using actual medical
data with APIs.
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A Supplements for Prompts

As shown in Figure 4, prompts for one-shot aug-
mentation include a sample, guidelines, and a task
description. In contrast, prompts for zero-shot aug-
mentation do not include samples.

A.1 Samples
For the one-shot prompts in our study, each prompt
incorporates a single sample from the pre-obtained
data. This approach ensures that every sample
within the dataset is utilized in generating aug-
mented data, maintaining a 1:1 ratio between the
original and newly created samples. Specifically,
when augmenting the i2b2 2006 dataset once (α =
1), each of the 622 samples from the i2b2 2006
training dataset is sequentially used in API calls,
resulting in the creation of 622 new samples. This
method allows for the comprehensive augmentation
of the dataset, leveraging every available sample
to enrich the training data with diverse, synthetic
instances.

The i2b2 2006 and i2b2 2014 datasets used
in this study are only authorized for research
purposes, and the distribution of these datasets
is strictly prohibited2. Therefore, it is not per-
missible to present the data samples used in the
prompts directly within this paper. Instead, only
a generalized and brief example can be provided
as illustrated below. To prevent data leakage,
we provided GPT-4 with PHI-scrubbed patient
notes as samples when prompting. A sample of
patient notes included in the one-shot prompts is
as follows:

2https://portal.dbmi.hms.harvard.edu

Hospital: [HOSPITAL]
ID: [ID]
DATE: [DATE]
Discharge Summary: . . . [PATIENT] was trans-
ferred to [HOSPITAL] due to acute kidney
injury. . .
Return Appointment: [DATE]
Electronically signed by: [DOCTOR] [DATE]
[report end]

A.2 Guidelines
Specific guidelines included in the prompts are as

follows:

1. PHI (Personal Health Information) should be
removed and annotated with PHI labels.
2. Types of PHI labels and explanation:
{
"[AGE]": "Placeholder for annotate all ages, not
just those over 90, including those for patient’s
families if they are mentioned",
"[DATE]": "Placeholder for any calendar date,
including years, seasons, months, and holidays
except time of day",
"[DOCTOR]": "placeholder for specific doctor
names. Titles (Dr., Mr., Ms., etc.) do not have to be
annotated. Information such as ’M.D.’, ’R.N.’ do
not have to be annotated. If a name is possessive
(e.g., Sam’s) do not annotate the ’s",
"[HOSPITAL]": "placeholder for the names of
medical organizations and of nursing homes where
patients are treated and may also reside. It cludes
room numbers of patients, and buildings and floors

Figure 4: One-shot and zero-shot prompts.
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related to doctors’ affiliations. e.g, The patient was
transferred to [Gates 4]",
"[ID]": "Placeholder for any identity (e.g., social
security number, health plan number, account
number, license number, vehicle ID, device ID,
biometric ID, ID number) of an individual",
"[LOCATION]": "Placeholder for geographic
locations such as cities, states, street names,
building names,"
"[MEDICALRECORD]": "Placeholder for a
medical record number",
"[ORGANIZATION]": "placeholder for specific
named organizations",
"[PATIENT]": "placeholder for specific names
of a patient. Titles (Dr., Mr., Ms., etc.) do not
have to be annotated. Information such as ’M.D.’,
’R.N.’ do not have to be annotated. If a name is
possessive (e.g., Sam’s) do not annotate the ’s",
"[PHONE]": "Placeholder for a specific phone
number",
"[PROFESSION]": "Placeholder for any job that
is mentioned that is not held by someone on the
medical staff should be tagged",
"[USERNAME]": "Placeholder for a specific
username that are initials followed by numbers
(i.e., as4)",
"[ZIP]": "Placeholder for a specific zip code",
}
3. Only use PHI labels as described in section 2
and do not use any labels that are not included in
this list.
4. Use all of PHI labels in section 2.

Details of Guidelines. Guideline 1 and 2 are de-
veloped concerning the annotation guidelines of
i2b2 2014 in Stubbs and Uzuner (2015). Guide-
line 3 and 4 are empirically added. We found that
without guideline 3, the model often generates data
using placeholders that are not on the list. With-
out guideline 4, the model consistently uses only
specific placeholders. This suggests that GPT-4,
based on its pre-trained knowledge, tends to focus
on commonly included personal information types
such as patient names, locations, and phone num-
bers. As a result, less common types of personal
information in the medical domain, such as medical
record numbers and usernames, are not used.

A.3 Task Descriptions
Specific task descriptions included in the prompts
are as follows:

Make a PHI-removed synthetic patient re-
port adhering to the above guidelines. Describe the
patient’s symptoms in detail, using precise medical
terminologies. You must evenly use the labels
from the following list.
PHI labels list:
{[AGE], [DATE], [DOCTOR], [HOSPITAL],
[ID], [LOCATION], [MEDICALRECORD],
[ORGANIZATION], [PATIENT], [PHONE],
[PROFESSION], [USERNAME], [ZIP]}.

Details of Task Descrptions. The directive to
‘evenly use’ PHI labels is implemented because
without this instruction, we empirically found that
some placeholders are not used at all. Moreover,
to improve generalization to data from different
sources, it was necessary to balance the distribu-
tion of unbalanced classes. As shown in Figure 5,
the distribution of PHI classes between the 2006
and 2014 datasets differs significantly. While the
generated data has a class distribution similar to
that of the real data, it helps to alleviate the imbal-
ance.

A.4 PHI Augmentation
Since the generated data using the prompts are
PHI-scrubbed, we replace placeholders (e.g., [PA-
TIENT], [DATE]) with appropriate surrogate PHI.
We implemented PHI-augmentation as outlined by
PHICON (Yue and Zhou, 2020). The augmentation
process was divided into two main strategies based
on the nature of the PHI labels.

• Systematically generated labels: For PHI la-
bels such as ID, ZIP, and DATE, which follow
specific patterns, we utilized regular expres-
sions to generate the data.

• Non-systematically generated labels: For la-
bels such as Organization, Hospital, Location,
Patient, and Doctor, which do not follow pre-
dictable patterns and thus cannot be system-
atically generated, lists of candidate PHI for
each category were gathered from Wikipedia.
Detailed information on sources can be found
at the paper (Yue and Zhou, 2020).

The PHI-scrubbed patient reports generated by
GPT-4 were then populated by replacing each PHI
label placeholder with the corresponding data listed
above (e.g., the placeholder [HOSPITAL] was re-
placed with ‘Cleveland Clinic’). This process is
illustrated on the left-hand side of Figure 2.
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Figure 5: Ratio distribution of PHI classes across datasets based on entity counts.

B Supplements for Dataset Statistics

We report statistics of train datasets after conduct-
ing preprocessing steps as outlined in subsection
4.1. Each dataset include sentences from patient
notes that include PHI entities. PHI classes include
ID, LOCATION, DATE, NAME, CONTACT.
After tokenizing sentences using spaCy, tokens are
labelled in BIO format. For instance, B-NAME in-
dicates beginning token of a NAME entity whereas
I-NAME indicates inside token. Tokens labelled
with O signifies non-PHI tokens.

In the following tables, statistics illuminate the
distribution and frequency of PHI classes within
the original and augmented datasets. "Tokens"
are counted as individual instances of PHI to-
kens, where each part of PHI like ‘B-NAME’ and
‘I-NAME’ is counted separately. "Entities" are
counted as unique instances of PHI, where mul-
tiple tokens forming a single information unit are
counted as one entity. Figure 5 shows ratio distri-
bution of PHI classes across datasets.

B.1 i2b2 2006 and One-shot Datasets

i2b2 2006 Original One-shot

#Notes 622 622
#Sentences 5,502 4,603

PHI Class Tokens Entities Tokens Entities

ID 4,872 3,372 4,461 2,428
LOCATION 4,040 1,813 6,629 1,798

DATE 5,930 4,884 6,009 3,885
NAME 7,580 3,230 5,833 3,383

CONTACT 756 153 611 227

Total (T) 23,178 13,452 23,543 11,721
T / sentence 4.21 2.44 5.11 2.55

Table 5: Statistics of the i2b2 2006 training set and the
one-shot augmented training set derived from it. "One-
shot" statistics represent the average values across five
datasets, augmented along the iteration α = 5.

B.2 i2b2 2014 and One-shot Datasets

i2b2 2014 Original One-shot

#Notes 912 912
#Sentences 8,419 6,522

PHI Class Token Entity Token Entity

ID 2,439 1,038 2,310 1,028
LOCATION 5,468 3,252 9,660 3,255

DATE 14,539 8,680 8,301 5,535
NAME 9,555 5,140 9,138 5,337

CONTACT 998 366 1,193 452

Total (T) 32,999 18,476 30,602 15,607
T / sentence 3.92 2.19 4.69 2.39

Table 6: Statistics of the i2b2 2014 training set and the
one-shot augmented training set derived from it. "One-
shot" statistics represent the average values across five
datasets, augmented along the iteration α = 5.

B.3 Zero-shot Augmented Datasets

Zero-shot

#Notes 912
#Sentences 9,432

PHI Class Tokens Entities

ID 3,848 1,761
LOCATION 16,101 5,262

DATE 4,940 3,201
NAME 15,895 8,815

CONTACT 3,815 1,391

Total (T) 44,599 20,430
T / sentence 4.73 2.17

Table 7: Statistics of the zero-shot augmented training
set. Statistics represent the average values across five
datasets, augmented along the iteration α = 5.
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C Hyperparameters for GPT-4

In our study, we use GPT-4 via its API, strictly
adhering to the default settings provided to gener-
ate augmented data, without making specific ad-
justments to the hyperparameters. Details are as
follows.

• Temperature: The default setting is used, typ-
ically aimed at fostering a balance between
creativity and relevance, thus facilitating the
generation of realistic yet diverse text outputs.

• Max Tokens: We adhere to the default limit to

ensure that the length of outputs was reason-
able and comparable to typical patient reports.

• Prompt: Although the content varied depend-
ing on the specific sample from the dataset be-
ing augmented, the structure of these prompts
remained consistent, following the default
guidelines for input.

• Stop Sequences: We employ the default set-
tings, allowing the model to naturally con-
clude its text generation based on its internal
algorithms and the content of the prompt.
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