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Abstract

Pre-trained language models have significantly
advanced natural language processing (NLP),
especially with the introduction of BERT and
its optimized version, RoBERTa. While initial
research focused on English, single-language
models can be advantageous compared to multi-
lingual ones in terms of pre-training effort, over-
all resource efficiency or downstream task per-
formance. Despite the growing popularity of
prompt-based LLMs, more compute-efficient
BERT-like models remain highly relevant. In
this work, we present the first German single-
language RoBERTa model, GottBERT, pre-
trained exclusively on the German portion of
the OSCAR dataset. Additionally, we investi-
gated the impact of filtering the OSCAR corpus.
GottBERT was pre-trained using fairseq and
standard hyperparameters. We evaluated its
performance on two Named Entity Recognition
(NER) tasks (Conll 2003 and GermEval 2014)
and three text classification tasks (GermEval
2018 fine and coarse, and 10kGNAD) against
existing German BERT models and two multi-
lingual models. Performance was measured us-
ing the F1 score and accuracy. The GottBERT
base and large models showed competitive per-
formance, with GottBERT leading among the
base models in 4 of 6 tasks. Contrary to our
expectation, the applied filtering did not signifi-
cantly affect the results. To support the German
NLP research community, we are releasing the
GottBERT models under the MIT license.

1 Introduction

The computation of contextual pre-trained word
representations is the foundation of neural lan-
guage modeling (LM) in natural language process-

ing (NLP). The field of NLP experienced remark-
able progress by the use of transformer-based ap-
proaches (Vaswani et al., 2017). Especially Bidi-
rectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019) impacted the
field which subsequently was robustly optimized
to RoBERTa (Liu et al., 2019). These transformer-
based approaches rely on large-scale pre-trained
language models, which are subsequently fine-
tuned through supervised training on specific down-
stream tasks, leveraging the context representations
learned from the generic domain to achieve supe-
rior performance compared to training from scratch,
a process known as transfer learning. On the other
hand, the computation of the language model is
performed self-supervised. Large text blobs are re-
quired for training and strong hardware such as hun-
dreds of Graphics Processing Units (GPU) (Mar-
tin et al., 2020) or Tensor Processing Units (TPU)
(You et al., 2020). Initially, most of the research
took place in English followed by multilingual
approaches (Conneau et al., 2019; Conneau and
Lample, 2019). Although, multilingual approaches
were trained on large texts of many languages, they
can be outperformed by single language models
(de Vries et al., 2019; Martin et al., 2020; Le et al.,
2020; Delobelle et al., 2020). Additionally, a sin-
gle language model requires fewer computational
resources and a smaller dataset compared to the
vast and varied data needed for multilingual mod-
els. Single language models trained with the Open
Super-large Crawled ALMAnaCH coRpus (OS-
CAR) (Ortiz Suárez et al., 2020) showed good per-
formance due to the size and variance of the OS-
CAR corpus (Martin et al., 2020; Delobelle et al.,
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2020). The focus of pre-training language models
has shifted towards scaling up transformer-based
large language models (LLMs) (Touvron et al.,
2023a,b; Liu et al., 2023; Jiang et al., 2023). These
models, like Llama 31, are vastly larger than the
aforementioned models (Touvron et al., 2023a,b).
Despite the advantages of LLMs, such as gradient-
free prompting, smaller models remain valuable for
their efficiency and practical deployment. For these
reasons, we pre-trained the first German RoBERTa
single language models with the German portion
of the first published deduplicated version of OS-
CAR - the German OSCAR text trained BERT
(GottBERT). Inspired by FlauBERT (Le et al.,
2020), we also trained models with a filtered ver-
sion of OSCAR. In an evaluation we compared the
performance of all models on the two named en-
tity recognition tasks Conll 2003 and GermEval
2014, NLI as well as on the text classification tasks
GermEval 2018 and GNAD with existing German
single language BERT and models and two multi-
lingual models.

Our contributions can be summarized as follows:

• We introduced a filtering method specifically
applicable to German texts which we applied
to the first version of the German portion of
the OSCAR corpus.

• We pre-trained single language RoBERTa
models specifically for the German language
based on the filtered and original OSCAR cor-
pus. These models are publicly available un-
der the MIT open-source license.

• We evaluated the models on five downstream
tasks (3 classification, 2 NER and NLI). Fur-
ther, we demonstrated the effects of training
the model with the filtered corpus.

2 Related Work

Most recently, transformer-based models widely
impacted the field of NLP. From neural transla-
tion (Ott et al., 2018; Ng et al., 2019) to genera-
tive language models starting with GPT-2 (Radford
et al., 2019), remarkable performance gains were
achieved. With BERT, an approach to facilitate
pre-trained transformer-based models was intro-
duced. Fine-tuned on downstream tasks, BERT-
based approaches improved the performance of
several NLP tasks (Devlin et al., 2019; Liu et al.,

1https://github.com/meta-llama/llama3

2019). However, BERT models were first released
as single-language models in English based on
16GB of raw text and as the multilingual model
mBERT based on Wikipedia in about 100 lan-
guages (Devlin, 2018). These models were fol-
lowed by single-language models for several lan-
guages: Bertje (de Vries et al., 2019) for Dutch,
FinBERT (Virtanen et al., 2019) for Finish, Ger-
manBERT 2 and a German BERT from the MDZ
Digital Library team at the Bavarian State Library
to which we refer to as dbmz BERT in this pa-
per3. GermanBERT was trained using 12GB of raw
text data basing on the German Wikipedia (6GB),
the OpenLegalData dump (2.4GB) and news ar-
ticles (3.6GB). dbmz BERT used as source data
a German Wikipedia dump, EU Bookshop cor-
pus, Open Subtitles, CommonCrawl, ParaCrawl
and News Crawl which sums up to a dataset of
16GB. With the release of RoBERTa a new stan-
dard for raw text size was set as it was trained on
160GB of raw English text. Further, RoBERTa
enhances the original BERT approach by remov-
ing segment embeddings, next sentence prediction
and improved hyperparameters. Additionally, in-
stead of using wordpiece (Schuster and Nakajima,
2012) tokenization, RoBERTa utilizes GPT2’s byte
pair encoding (BPE) (Radford et al., 2019) with
the benefit that language-specific tokenizers are
not required. Other than mBERT, the multilingual
XLM-RoBERTa (Conneau et al., 2019) was trained
on 2.5TB of filtered CommonCrawl data. Camem-
BERT is a French RoBERTa model that was trained
on the OSCAR and uses sentencepiece (Kudo and
Richardson, 2018) BPE. Further, they pre-trained a
model with 4GB of the French OSCAR portion and
another model with 4GB of the French Wikipedia.
The comparison of these models using downstream
tasks shows that high text variance leads to better
results. UmBERTo4 is an Italian RoBERTa model,
similarly designed as CamemBERT. RobBERT, the
Dutch single language RoBERTa, was trained on
39GB of the Dutch portion of the OSCAR and out-
performed Bertje. A more recent version of Rob-
Bert showed the performance gains of language
specific BPE compared to the English based GPT2
BPE in downstream tasks. Susequently, FlauBERT
(Le et al., 2020) for French was released trained
on 71GB data. They cleaned a 270GB corpus of
mixed sources by filtering out meaningless con-

2https://deepset.ai/german-bert
3https://github.com/dbmdz/berts#german-bert
4https://github.com/musixmatchresearch/umberto
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tent and Unicode-normalization. Data was pre-
tokenized by moses (Koehn et al., 2007) and en-
coded by fastBPE5 which is an implementation
of Sennrich et al. (2016). After the publication
of RoBERTa, Google released ELECTRA (Clark
et al., 2020) which denoted an improvement to
the BERT architecture. Based on these develop-
ments, further German language models were then
published: GBERT and GELECTRA (Chan et al.,
2020). These models were trained on the German
portion on OSCAR (145GB) besides three other
datasets (18.4GB) and outperformed previously re-
leased German single language models.

3 Methodology

Following the approach of utilizing the OSCAR,
we computed the German OSCAR text trained
BERT (GottBERT). However, the drawback of
BERT approaches is the computational power re-
quirement. Multiple GPUs or TPUs were used
for pre-training. All previously listed RoBERTa-
based models were computed on GPUs whereas
GottBERT is the first published RoBERTa model
pre-trained on TPUs.

Training Data

The GottBERT model is trained on the German
portion of the OSCAR, a large multilingual text
corpus extracted from Common Crawl. The Ger-
man data portion of the first published deduplicated
version of the OSCAR measures 145GB of text
containing approximately 21.5 billion words in ap-
proximately 459 million documents (one document
per line).

Filtering OSCAR
While screening the German OSCAR portion,
some issues attracted our attention:

1. erroneous umlauts

2. meaningless documents such as spam, e.g.
lists of words

3. non-German documents

We were able to trace back the cause of wrong
umlauts to decoding errors. According to our
findings, when an umlaut is considered to be a
non-UTF8 encoding, but actually is already UTF8,
wrong characters are generated (see Table 1). In

5https://github.com/glample/fastBPE

other cases, where the encoding wasn’t repro-
ducible, the sign ■? , is shown. Consequently, lines
with at least one ■? were removed. To the rest of
documents, we corrected the encoding by apply-
ing clean-text6. The tool was further configured
to remove phone numbers, email addresses, URLs
and emojis. Also only documents with a length of
at least 40 characters were considered. Secondly,
we applied a language detection algorithm which
especially filtered lines belonging to ASCII arts
(see Apendix A). Due to the corpus size, an effi-
cient Rust implementation7 of a language detection
based on n-gram based text categorization was used
(Cavnar and Trenkle, 1994).

Finally, also due to the corpus size, we trained
and applied a single-class SVM (Schölkopf et al.,
1999) which was trained to filter meaningless doc-
uments. In this respect, a special feature of the
German language is the capitalization of nouns.
In the 17th and 18th century there was a trend in
the English and Swedish languages to write nouns
with an initial capital (Crystal and Crystal, 2003;
Solling, 2009). Dutch had this rule until a spelling
reform in 1948. German kept this special rule, al-
though undergoing several orthography reforms in
the 20th century. However, Germans sometimes
tend to neglect this rule, especially in social media.
Therefore, social media platforms might not be a
good source for texts for research requiring good
quality of orthography, although these texts lead to
admirable results in the generative model GPT-2
(Radford et al., 2019). In the German OSCAR por-
tion, it was noticeable that documents with little
meaning were often written completely in capital
letters, had many punctuation marks in relation
to words, had a lot of nouns or no stop words at
all. Based on this knowledge, the following ratios
were computed for each document D consisting of
tokens t0, t1, ..., tn−1, tn:

• stopword ratio:

rs =

∑n
i

∑
ts∈S [ti = ts]

n
,

where S is the set of stop word tokens for
which we used nltk’s stopword list.

• punctuation ratio:

rp =
|{ ti | ti /∈ W (D) }|

n
,

6https://github.com/jfilter/clean-text
7https://github.com/greyblake/whatlang-rs
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where W (D) are the word tokens
w0, w1, .., wm−1, wm of D.

• unique words ratio:

ru =
|{wi | ∀wj ∈ W (D) : wi ̸= wj}|

n
,

• upper token ratio:

rup =

∑
wi∈W (D) c(wi)

n
,

where

c(w) =

{
1 if w is capital

0 otherwise

To train the single class SVM, 12k documents
were used for the unsupervised training. The per-
formance was measured based on 1750 documents
annotated documents consisting of two classes: 334
dirty (15.5%) and 1466 clean (81.5%). Documents
classified as dirty were content of weak meaning,
including lists of words, source code, documents
mainly using ASCII signs and documents lack-
ing of spaces or having wrong spacing between
words. The single hyperparameter nu was opti-
mized by a grid search. The best performing SVM
had a weighted F1-score of 0.8578 and 0.5663 as
Matthews correlation coefficient (Chicco and Jur-
man, 2020; Chicco et al., 2021). After filtering, the
corpus measured 121GB of text containing approx-
imately 18.1 billion words in approximately 382
million documents (one document per line).

Pre-processing

Originally, RoBERTa uses GPT-2 (Radford et al.,
2019) byte pair encoding to segment the input into
subword units. Therefore, no pre-tokenization is
required and thus no language-specific tokenizer
as e.g. moses (Koehn et al., 2007) must be used.
Its original vocabulary was computed on English
data. For GottBERT we computed a vocabulary
of 52k subword tokens based on 40 GB randomly
sampled documents of the German OSCAR portion.
Compared to the original GPT-2 tokenizer, which
was trained on English data, this leads to a 40%
smaller size of the binary data which are fed into
fairseq (Ott et al., 2019). Furthermore, according
to Delobelle et al. (2020), it leads to a performance
increase.

Pre-training

Using fairseq, we pre-trained the GottBERTbase

model using the unfiltered OSCAR on a 256 core
TPUv3 pod. The remaining GottBERT models
were computed on a 128 core TPUv4 (Jouppi et al.,
2023) pod. We trained the models with RoBERTa
base architecture in 100k update steps using a batch
size of 8k. A 10k iteration warmup of the learning
rate to a peak of 0.0004 was applied, from which
the learning rate polynomially decayed to zero.
The models with RoBERTa large architecture were
trained with the same properties but a peak learning
rate of 0.00015. After training on both the filtered
and unfiltered OSCAR datasets, we developed four
models: GottBERTbase and GottBERTlarge us-
ing the unfiltered as well as fGottBERTbase and
fGottBERTlarge using the filtered dataset. Fur-
ther, we evaluated each epoch and saved its check-
point, potentially leading to multiple checkpoints
per model setup, namely best and last. The latter
ones are indicated with a , e.g. GottBERTbase.
The base models took ca. 1.2 days computation
time, while the large ones computed ca. 5.7 days.

Downstream Tasks

Based on the pre-trained BERT models, several
downstream tasks were trained. The training was
conducted using the scripts provided by Hugging-
face (Wolf et al., 2019). Hyperparameter optimiza-
tion was performed through a grid search focusing
on batch size and learning rate. We trained the
downstream tasks NER and CLS with a maximum
of 30 epochs.

For natural language inference (NLI), we uti-
lized the hyperparameters specified by Facebook
(originally implemented in Fairseq), adopting them
to the extent they were available within the Hug-
gingface framework. These tasks were trained with
a maximum of 10 epochs.

In order to evaluate the performance, each down-
stream task ran 24 times using different batch sizes
and learning rates. To determine the best check-
point after training, we select the checkpoint that
yields the best F1 scores (accuracy for NLI) on the
evaluation set. The score is the best of 24 runs of
the respective experiment of each trained model.
The best score selection is based on the validation
set. In terms of performance, our models were
compared with six other models listed in Table 2.

NLI NLI entails predicting whether a hypothesis
sentence is entailed by, neutral towards or contra-
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Special Character ä ü ö ß Ä Ü Ö
ISO-8859-1 Ã¤ Ã¼ Ã¶ Ã[U+009F] Ã[U+0084] Ã[U+009C] Ã[U+0096]
ISO-8859-2 Ă¤ Ăź Ăś Ă[U+009F] Ă[U+0084] Ă[U+009C] Ă[U+0096]
ISO-8859-4 Ã¤ Ã[U+0167] Ãl, Ã[U+009F] Ã[U+0084] Ã[U+009C] Ã[U+0096]
ISO-8859-9 Ã¤ Ã¼ Ã¶ Ã[U+009F] Ã[U+0084] Ã[U+009C] Ã[U+0096]
ISO-8859-10 ÃĪ Ãž Ãk, Ã[U+009F] Ã[U+0084] Ã[U+009C] Ã[U+0096]
ISO-8859-16 ĂC ĂŒ Ă¶ Ă[U+009F] Ă[U+0084] Ă[U+009C] Ă[U+0096]
Windows-1250 Ă¤ ĂL’ Ă¶ Ăź Ă„ Ăś Ă–
Windows-1252 Ã¤ Ã¼ Ã¶ ÃŸ Ã„ Ãœ Ã–

Table 1: This table shows the result of wrong encoding of German umlauts. Artifacts occur whenever a file is
expected to be encoded by an appropriate encoding, but truly is UTF-8 encoded.

Model Type #lang Data Size Data Source
GottBERT RoBERTa 1 145GB OSCAR
fGottBERT RoBERTa 1 121GB filtered OSCAR

GBERT BERT 1 163.4
OSCAR, OPUS,
Wikipedia, OpenLegalData

GELECTRA ELECTRA 1 163.4
OSCAR, OPUS,
Wikipedia, OpenLegalData

dbmz BERT BERT 1 16GB
Wikipedia, EU Bookshop corpus8,
Open Subtitles,
Common-,Para-,NewsCrawl

mBERTcased BERT 104 unknown Wikipedia

GermanBERT BERT 1 12GB
news articles, Open Legal Data9,
Wikipedia

XLM RoBERTa RoBERTa 100
2.5TB

(66.6GB German)
CommonCrawl, Wikipedia

Table 2: This table shows the models, we used in our experiments. Additional information about the pre-training
and architecture is listed. #lang is the number of languages. Unfortunately, for mBERT we did not find any estimate
about the data size.

dicts a premise sentence. We assessed our model
on NLI using the German portion of the XNLI
dataset (Conneau et al., 2018). The XNLI dataset
is an extension of the Multi-Genre NLI (MultiNLI)
corpus Williams et al. (2018), expanded to 15 lan-
guages by manually translating the validation and
test sets into each language. For languages other
than English, the training set is machine translated.
The dataset includes 122k training examples, 2490
development examples, and 5010 test examples
for each language. Typically, NLI performance is
measured using accuracy.

Named Entity Recognition We evaluated
GottBERT on two NER tasks. One was the
German part of CoNLL 2003 shared task (Tjong
Kim Sang and De Meulder, 2003). It contains three
main entity classes and one for other miscellaneous
entities. As measurement we used the harmonic

mean of precision and recall F1. The second
NER task was GermEval 2014 (Benikova et al.,
2014). It extends the CoNLL 2003 shared task
by fine-grained labels and embedded markables.
Fine-grained labels allow the indication of NER
subtypes common in German, namely derivations
and parts: e.g. “Mann” → “männlich” and “Mann”
→ “mannhaft”. In order to recognize nested NEs
embedded markables are required. Specifically,
this was realized by annotating main classes as
well as two levels of subclasses. Performance was
measured by the use of an adapted F1 evaluation
metric Benikova et al. (2014), which considers the
equality of labels and spans (text passages) and
additionally levels in the class hierarchy.

Text Classification GermEval task 2018 (Risch
et al., 2018) is a text classification task that contains
two subtasks of different granularity: the coarse-
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grained binary classification of German tweets and
fine-grained classification of the same tweets into
four different classes. As this datasets does not
provide a pre-defined validation set, we used 54%
of the original training set for training, 6% for val-
idation and 40% for test. With this split decision,
we sticked to Chan et al. (2020). Based on the One
Million Posts Corpus (Schabus et al., 2017), the
10k German News Articles Dataset (10kGNAD)
topic classification benchmark10 was created. The
dataset contains approximately 10k news articles
from an Austrian newspaper which are to be clas-
sified into 9 categories. Usually, 10kGNAD does
not provide a pre-defined split. However, the ver-
sion we used provides a split, using 90% of the
original set for training and 10% for test. We split
10% from the training set for validation. For eval-
uation of both tasks we computed the mean of the
F1-scores of each class/category.

4 Results

As GottBERTlarge was the same checkpoint for
last and best, we ended up with 7 GottBERT
checkpoints. GottBERTbase was saved after
91848 training steps (12 epochs). The filtered mod-
els, both fGottBERTlarge and fGottBERTbase,
were saved also saved after they trained 94530 steps
(15 epochs). For these models, this was approxi-
mately 1 epoch earlier then the full training steps.
The dirty models trained up to 13.07 epochs and
the filtered ones up to 15.87 epochs. The results of
all the downstream tasks are listed in Table 3.

NLI Among the large models, GottBERTlarge

achieved an accuracy of 82.46%, while
fGottBERTlarge and fGottBERTlarge slightly
improved on this with accuracies of 83.31% and
82.79%, respectively. These results position the
GottBERT models as strong contenders, though
they were outperformed by GELECTRAlarge,
which achieved the highest accuracy of 86.33%.
GBERTlarge also performed well with an accuracy
of 84.21%, followed closely by XLM-Rlarge with
84.07%.

For the base models, GottBERTbase and
GottBERTbase achieved accuracies of 80.82%
and 81.04%, respectively, demonstrating com-
petitive performance. fGottBERTbase and
fGottBERTbase had similar accuracies of 80.56%
and 80.74%, respectively. Among the base models,

10https://huggingface.co/datasets/
community-datasets/gnad10

GELECTRAbase outperformed the others with an
accuracy of 81.70%. GBERTbase scored slightly
lower with 80.06. Other models like GermanBERT
and XLM-Rbase achieved 78.16% and 79.76%, re-
spectively, while dbmdzBERT and mBERT had the
lowest accuracies at 68.12% and 77.03%.

Overall, the results indicate that while the
GottBERT models exhibit strong performance
in the NLI task, GELECTRA models generally
achieved the highest accuracies in both the base
and large categories.

Named Entity Recognition For the NER tasks,
the base versions of the GottBERT models
showed competitive performance with F1 scores
around 87.50% on the GermEval 2014 dataset
and around 86.10% on the CoNLL dataset. The
large versions of these models improved upon these
scores, with fGottBERTlast achieving an F1 score
of 88.27% on GermEval 2014 and 86.78% on
CoNLL. However, among the large models, XLM-
R achieved the highest F1 score of 88.83 on the
GermEval 2014 dataset, whereas GBERTlarge per-
formed the best on the CoNLL dataset with an F1
score of 87.19%. Overall, the large GottBERT
models demonstrated robust performance across
both datasets, validating their effectiveness for the
tasks at hand. Among the base architecture the
GottBERT models took the lead.

Text Classification For GermEval 2018, the
large GottBERT models showed again compet-
itive performance. The GottBERTlarge and
fGottBERTlarge models achieved overall F1
scores of around 79.3 for coarse-grained predic-
tions, with minimal differences in fine-grained
scores around 54.7. fGottBERTlarge had slightly
lower performance in coarse predictions but was
consistent in fine-grained predictions. In compari-
son, GELECTRAlarge outperformed all large mod-
els in coarse-grained predictions with an F1 score
of 81.28, and also showed strong fine-grained per-
formance with an F1 score of 56.17. GBERTlarge
followed closely with 80.84 in coarse-grained pre-
dictions and led in fine-grained predictions with
57.37. XLM-Rlarge scored slightly lower than
the GottBERT models, with 79.05 and 55.06 in
coarse and fine-grained predictions, respectively.

Among the base models, GottBERTbase scored
78.17 for coarse-grained predictions and 53.30 for
fine-grained predictions. GottBERTbase showed
similar performance in coarse-grained prediction
with an F1 score of 78.18 and a fine-grained F1
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Model XNLI GermEval 2014 CoNLL 03 GermEval 2018 10kGNADcoarse fine
GottBERTbase 80.82 87.55 85.93 78.17 53.30 89.64
GottBERTbase 81.04 87.48 85.61 78.18 53.92 90.27
fGottBERTbase 80.56 87.57 86.14 78.65 52.82 89.79
fGottBERTbase 80.74 87.59 85.66 78.08 52.39 89.92
GELECTRAbase 81.70 86.91 85.37 77.26 50.07 89.02
GBERTbase 80.06 87.24 85.16 77.37 51.51 90.30
dbmdzBERT 68.12 86.82 85.15 77.46 52.07 90.34
GermanBERT 78.16 86.53 83.87 74.81 47.78 90.18
XLM-Rbase 79.76 86.14 84.46 77.13 50.54 89.81
mBERT 77.03 86.67 83.18 73.54 48.32 88.90
GottBERTlarge 82.46 88.20 86.78 79.40 54.61 90.24
fGottBERTlarge 83.31 88.13 86.30 79.32 54.70 90.31
fGottBERTlarge 82.79 88.27 86.28 78.96 54.72 90.17
GELECTRAlarge 86.33 88.72 86.78 81.28 56.17 90.97
GBERTlarge 84.21 88.72 87.19 80.84 57.37 90.74
XLM-Rlarge 84.07 88.83 86.54 79.05 55.06 90.17

Table 3: All the results of the experiments are shown in percent. They are all based on the test set and the best score
out of 24 runs (selection based on validation set). While NLI is measured by accuracy, all the other metrics are F1

measures. Best score in bold and second underlined, for large and base models respectively.

score of 53.92. fGottBERTbase achieved the high-
est coarse-grained F1 score of 78.65 but had a
lower fine-grained score of 52.82. GELECTRAbase
scored 77.26 and 50.07 for coarse and fine-grained
predictions and therefore scored close to XLM-
Rbase. GBERTbase and dbmdzBERT demonstrated
moderate performance, while GermanBERT and
mBERT had the lowest scores.

The evaluation of GottBERT models on the
10kGNAD dataset demonstrated their strong per-
formance in German news classification tasks.
For the large models, GottBERTlarge achieved
an accuracy of 90.24, while fGottBERTlarge

and fGottBERTlarge scored 90.31 and 90.17,
respectively. Among the competing models,
GELECTRAlarge outperformed all with an accuracy
of 90.97, followed by GBERTlarge at 90.74, and
XLM-Rlarge matching fGottBERTlarge at 90.17.

For the base models, GottBERTbase excelled
with an accuracy of 90.27, while GottBERTbase

and fGottBERTbase achieved 89.64 and 89.79, re-
spectively. fGottBERTbase performed well with
an accuracy of 89.92. Notably, dbmdzBERT scored
the highest among the base models with 90.34, fol-
lowed closely by GBERTbase at 90.30. German-
BERT, XLM-Rbase, and mBERT also showed com-
petitive accuracies ranging from 88.90 to 90.18.

Overall, GottBERT models demonstrate strong

and consistent performance across the classification
tasks, highlighting their robustness and effective-
ness.

5 Discussion

In this study, we successfully trained and evaluated
GottBERT models on two versions of the OSCAR
corpus. Noteworthily, Scheible et al. (2020) pub-
lished GottBERTbase as preliminary work. Since
its release, the model has been utilized for var-
ious purposes in several related works showing
its relevance. It has served as a baseline model
in research studies (Scherrmann, 2023; Bressem
et al., 2024; Lentzen et al., 2022). Beyond that,
in the field of neural machine translation (NMT),
researchers have used contextualized embeddings
from pre-trained models including GottBERT(Xu
et al., 2021). Additionally, the model has been
applied to named entity recognition (NER) tasks
in the medical field, using both translated (Frei
et al., 2022) and synthetic (Frei and Kramer, 2023)
NER data annotated with medical entities through
a fine-tuned version of GottBERT. Furthermore,
a specialized version of the model known as Bio-
GottBERT has been developed specifically for the
medical domain (Lentzen et al., 2022).

TPU training generally does not permit dynamic
memory allocation, as TPUs are designed for ef-

21243



ficient, high-throughput computation with fixed
memory allocation. As a result, the corpus was
processed as a single stream rather without consid-
ering document boundaries, unlike RoBERTa train-
ing on GPUs. Additionally, due to limitations in
the fairseq implementation we used, we conducted
the computations in 32-bit mode since 16-bit was
neither properly implemented nor tested, leading to
increased memory usage and hence more computa-
tion time required. Also, we used more conserva-
tive learning rates than the ones recommended by
the fairseq documentation for pre-training on GPU.

Dataset annotation is expensive, as it is usually
performed by multiple annotators. As the one-class
SVD is trained unsupervised and annotations were
only used to estimate its performance and to find
a good nu, the dataset was only annotated by one
person of our team. The MCC of 0.5663 suggests
the model has a moderate ability to make accurate
binary predictions overall, balancing true and false
positives and negatives. The F1-score of 0.8578
indicates the model is performing well in terms of
precision and recall for the positive class. These
metrics together imply that while the model is quite
good at correctly identifying positive cases and
maintaining a balance between precision and re-
call, there is still room for improvement in making
more accurate overall predictions as reflected in the
moderate MCC score. Possibly a better approach
would have been possible with a more complex
model, the computational cost as well as the anno-
tation efforts would have been much more expen-
sive. However, the use of language properties on a
syntactical level denoted an efficient and creative
approach that could be carried out with fair effort,
including in terms of computational costs.

Our results do not provide a clear conclusion
regarding the impact of data cleaning on the re-
sulting model. A ranking of all base models by
their position, taking into account only the num-
ber of first and second place models, shows that
fGottBERTbase is on top. However, when consid-
ering the GottBERT models in isolation as a sub-
group, the GottBERTbase model stands out as the
top performer among the base models. Conversely,
when evaluating the large models all GottBERT
models were outperformed by the competitors.
In this global comparison, the unfiltered model
GottBERTlarge emerges as the best performer
of all the GottBERT models winning one sec-
ond place in CoNLL03, while fGottBERTlarge

emerges as the superior performer in the iso-

lated comparison. We anticipated a more defini-
tive outcome, particularly since the filtered mod-
els were pre-trained for an additional epoch due
to the smaller corpus size. The importance of
hyperparameters in model performance is well-
documented, even considering random seeds as
shown by Dodge et al. (2020). This suggests that
our chosen hyperparameters could be extended
even more to find better ones. Nevertheless, clear
differences should have been already pointed out
within our experimental setup. However, we did
not see any great benefit, especially considering the
high cost of cleaning a data set in this way.

Potentially, the data cleaning process might have
inadvertently removed important variance from the
corpus. According to the Martin et al. (2020), a
corpus with greater variance generally leads to bet-
ter performance compared to a homogeneous one.
Therefore, we suggest creating a corpus with more
variance. In our case, incorporating additional cor-
pora such as OPUS, Wikipedia, and OpenLegal-
Data could have been beneficial. Moreover, whole
word masking (WWM) leads to better models (Mar-
tin et al., 2020; Chan et al., 2020). Finally, for
RoBERTa models, the size of the vocabulary also
impacts performance, as investigated by Toraman
et al. (2023). According to their findings, our vo-
cabulary size wasn’t a bad choice.

Finally, potential risks include bias and fairness
issues, leading to unfair outcomes. Data privacy
concerns exist, with the model potentially reveal-
ing sensitive information. This affects especially
the corpus used and the filtered version of it, as
the filtering did not operate on a semantical but on
a syntactical level. Misuse could result in harm-
ful content, like misinformation or spam. Over-
reliance without human oversight might cause crit-
ical errors, especially in healthcare or finance. The
environmental impact of training such models is
considerable due to high energy consumption. It is
also vulnerable to adversarial attacks.

6 Conclusion

In this work we present the German single lan-
guage RoBERTa based model GottBERT in two
versions computed on a corpus with 145GB and a
filtered version with 121GB plain text with both
base and large RoBERTa architecture. GottBERT
is the first German single language RoBERTa based
model. In our experiments, we were able to show
that the base models lead 4 of 6 tasks. However,
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this did not apply to the large models. The compari-
son of the pre-training with filtered and raw corpus
did not show a clear result as anticipated. We there-
fore suggest considering other measures, such as
increasing variance by using many corpora and us-
ing WWM. We release all GottBERT models in
Huggingface and fairseq format to the community
under the MIT license.
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A Filtering OSCAR

Inside OSCAR interesting artefacts were found.
Besides encoding errors, mainly affecting Umlauts,
there were occurrences of ASCII arts (see Figures
1) and source code.

(a) B4PMX written in ASCII.

(b) Freemasonry sign.

(c) A turtle.

Figure 1: ASCII arts found in OSCAR.

B Model Properties

The number of parameters in BERT-like models
varies significantly based on their architecture (see
4). The base version of BERT has approximately
110 million parameters, while the large version has
about 340 million. RoBERTa, an optimized version
of BERT, has 125 million parameters in its base
model and 355 million in the large model, benefit-
ing from extended training and larger datasets. The
multilingual XLM-RoBERTa comes in two main
versions: the base model with around 270 million
parameters and the large model with about 550
million, which helps handle multiple languages ef-
fectively. Electra, using a generator-discriminator
framework, achieves high performance with fewer
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parameters, with the base model having about 110
million parameters and the large model around 335
million.

Model Vocab Size #Params
XLM-Rlarge 250002 559890432
fGottBERTlarge 52009 357145600
GBERTlarge 31102 335735808
GELECTRAlarge 31102 334686208
XLM-Rbase 250002 278043648
mBERT 119547 177853440
fGottBERTbase 52009 125985024
GBERTbase 31102 109927680
dbmdzBERT 31102 109927680
GELECTRAbase 31102 109337088
GermanBERT 30000 109081344

Table 4: The size of the vocabulary and the size of the
parameters are shown for the model types used in this
study. This table does not show other design differences
of the models. Values were extracted using Hugging-
face’s transformers library.

C Perplexity

During the model pre-training the perplexity of the
model is computed based on a test set for each opti-
mization cycle and based on a validation set at each
checkpoint (see Figure 2). Within the training all
the curves show a plateau: the base models only a
short one, while the large models have a relatively
long one. Some models even have upward spikes,
which could be interpreted locally as divergence
when observing the training process if they are not
known. Furthermore, we see a very flat conver-
gence of the models after 40k steps at the latest.
This convergence can also be seen within the vali-
dation set based perplexity which was computed at
each epoch.

Figure 2: Perplexity of the GottBERT models. Top
based on a validation at the checkpoints. Bottom based
on the validation of each optimization cycle during the
training.

D Parameters

The parameter space for our grid search is listed in
Table 5. In addition, Table 6 shows the parameters
of the best models (selection based on validation
set) of the respective tasks. The time required for
the evaluation is shown in Table 3. The tasks were
computed on Nvidia Titan RTX and Nvidia A40
graphics devices and we relied on Huggingface’s
transformers library in version v4.34.1.

Parameter Values
Learning Rate 5e-5, 2e-5, 1e-5, 7e-6, 5e-6, 1e-6
Batch Size 16, 32, 48, 64
Epochs 30

Table 5: Hyperparameters used in the grid search of the
downstream tasks.
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Model GermEval 2014 CoNLL 03 GermEval 2018 10kGNADcoarse fine
BF LR BF LR BF LR BF LR BF LR

GottBERTbase 16 1 E-05 32 2 E-05 48 7 E-06 32 5 E-06 32 5 E-06
GottBERTbase 48 2 E-05 32 5 E-05 48 1 E-05 64 7 E-06 32 5 E-06
fGottBERTbase 16 7 E-06 16 1 E-05 16 1 E-05 48 2 E-05 16 5 E-06
fGottBERTbase 16 1 E-05 64 5 E-05 16 1 E-05 16 2 E-05 16 1 E-05
GELECTRAbase 32 5 E-05 64 5 E-05 16 2 E-05 48 5 E-05 48 5 E-05
GBERTbase 16 2 E-05 64 2 E-05 32 1 E-05 16 5 E-05 16 2 E-05
dbmdzBERT 48 2 E-05 48 5 E-05 16 5 E-06 64 2 E-05 16 2 E-05
GermanBERT 32 2 E-05 16 1 E-05 16 1 E-05 32 1 E-05 32 5 E-05
XLM-Rbase 64 2 E-05 16 1 E-05 48 5 E-05 64 5 E-05 48 2 E-05
mBERT 48 1 E-05 16 2 E-05 16 2 E-05 64 5 E-05 64 2 E-05
GottBERTlarge 64 5 E-06 16 5 E-06 64 5 E-06 32 7 E-06 64 1 E-06
fGottBERTlarge 32 5 E-06 48 2 E-05 32 5 E-06 32 7 E-06 16 5 E-06
fGottBERTlarge 16 5 E-06 48 1 E-05 48 1 E-05 32 5 E-06 64 2 E-05
GELECTRAlarge 16 7 E-06 16 5 E-06 64 1 E-05 32 2 E-05 32 2 E-05
GBERTlarge 16 7 E-06 32 5 E-06 16 2 E-05 64 2 E-05 64 5 E-05
XLM-Rlarge 16 7 E-06 48 1 E-05 32 1 E-05 32 1 E-05 16 5 E-06

Table 6: Hyperparameters of the best downstream task model of the respective tasks and pre-trained models. BF is
the batch size and LR the learning rate.

Task Computation Time
XNLI 672:59
GermEval 2014 284:20
CoNLL03 169:26

GermEval 2018
coarse 113:36
fine 113:47

10kGNAD 195:21

Table 7: Computation time in hours and minutes for the
downstream tasks summing up to 1549 hours and 29
minutes which are approximately 64.6 days.
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