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Abstract

In-context learning (ICL) adapts Large Lan-
guage Models (LLMs) to new tasks, without
requiring any parameter updates, but few an-
notated examples as input. In this work, we
investigate selective annotation for ICL, where
there is a limited budget for annotating ex-
amples, similar to low-budget active learning
(AL). Although uncertainty-based selection is
unreliable with few annotated data, we present
COVERICL, an adaptive graph-based selec-
tion algorithm, that effectively incorporates
uncertainty sampling into selective annotation
for ICL. First, COVERICL builds a nearest-
neighbor graph based on the semantic similar-
ity between candidate ICL examples. Then,
COVERICL employs uncertainty estimation by
the LLM to identify hard examples for the task.
Selective annotation is performed over the ac-
tive graph of the hard examples, adapting the
process to the particular LLM used and the
task tackled. COVERICL selects the most rep-
resentative examples by solving a Maximum
Coverage problem, approximating diversity-
based sampling. Extensive experiments on ten
datasets and seven LLMs show that, by incor-
porating uncertainty via coverage on the ac-
tive graph, COVERICL (1) outperforms exist-
ing AL methods for ICL by 2–4.6% accuracy
points, (2) is up to 2× more budget-efficient
than SOTA methods for low-budget AL, and
(3) generalizes better across tasks compared to
non-graph alternatives.

1 Introduction

Large Language Models (LLMs) have shown re-
markable performance in various natural language
tasks. One of the LLMs’ advantages is their ability
to perform few-shot learning (Brown et al., 2020),
where they can adapt to new tasks, e.g., topic clas-
sification or sentiment prediction, via in-context
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Figure 1: COVERICL effectively combines diversity
and uncertainty sampling for low-budgeted ICL, outper-
forming their counterparts. Results are averaged over
seven tasks for GPT-J (6B) and GPT-Neo (1.3B) models
with budget B = 20 and 5-shot ICL inference.

learning (ICL). ICL uses few-shot labeled exam-
ples in the form (input, label), e.g., (“Amazing
movie!”, positive), to construct a prompt P .
Prompt P is used as a new input to the LLM, e.g.,
“Amazing movie!: positive \n Awful acting:
negative \n Terrible movie:”, before mak-
ing predictions for the query (“Terrible movie”,
?). The new input enables the LLM to infer the
missing label by conditioning the generation on the
few-shot examples.

ICL is efficient as it does not require any param-
eter updates or fine-tuning, wherein users can lever-
age ICL to generate task-adaptive responses from
black-box LLMs. However, ICL is sensitive to the
input prompt (Lu et al., 2022) as careful prompt en-
gineering and ground-truth labeling are crucial for
good ICL performance (Yoo et al., 2022). Ground-
truth labeling requires expert annotators and can
be costly, especially for tasks in which the annota-
tors need to provide elaborate responses (Wei et al.,
2022). Apart from lowering the labeling cost, care-
fully reducing the number of the ICL examples can
benefit inference costs and the LLM’s input context
length requirements. Consequently, we study the
following active learning (AL) problem: Given a
budget B, which examples do we select to annotate
and include in the prompt of ICL?

Selecting examples via semantic diver-
sity (Zhang et al., 2023) offers better generalization
while uncertainty sampling (Lewis and Gale,
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1994) captures how well the LLM understands the
task. However, in ICL, the LLM is not fine-tuned
and the annotated data are used as few-shot
input examples. Having few labeled examples
at inference (as in few-shot ICL) results in a
low-budget AL setting. It has been shown (Zhu
et al., 2019; Hacohen et al., 2022; Yehuda et al.,
2022; Rittler and Chaudhuri, 2023) that semantic
diversity is is crucial in the low-budget AL as
uncertainty estimation with few annotated data is
unreliable. As a result, current selective annotation
methods for ICL rely on semantic diversity (Zhang
et al., 2023; Su et al., 2023; Zhang et al., 2024).

To effectively utilize uncertainty sampling for
ICL, we propose an adaptive graph-based algo-
rithm, termed COVERICL (Section 4). Motivated
by recent theoretical works (Han et al., 2023; Bai
et al., 2023) that relate ICL with nearest-neighbor
classifiers, COVERICL builds a nearest-neighbor
graph that captures the semantic similarities be-
tween candidate examples. Then, COVERICL iden-
tifies the examples that the LLM is uncertain about
(hard examples) and creates the active subgraph,
which consists of the hard examples of interest.
The active graph is task and model-aware, as un-
certainty estimation depends on the LLM used and
how well it understands the task. Having the ac-
tive graph, COVERICL performs diversity-based
sampling by formulating the well-studied Maxi-
mum Coverage problem (MAXCOVER) over the
graph. MAXCOVER selects the examples that best
represent the task’s difficulty, captures interactions
between hard examples, and can be approximately
solved via greedy algorithms. Furthermore, (i) we
extend COVERICL to an iterative approach that
gradually selects harder examples, (ii) we prove
that COVERICL approximates diversity sampling,
and (iii) we propose a heuristic rule to initialize
COVERICL’s hyperparameters.

We conduct experiments on ten datasets across
five NLP tasks (topic classification, sentiment anal-
ysis, natural language inference, summarization,
and math reasoning) with seven LLMs of vary-
ing sizes (1.3B to 65B parameters). As shown in
Figure 1, COVERICL boosts ICL performance, im-
proving performance by up to 4.4% accuracy points
over diversity and uncertainty sampling. Our key
contributions are the following:

• COVERICL incorporates the LLM’s uncer-
tainty by constructing the active graph of hard
examples. The most representative and di-

verse examples are selected via MAXCOVER

to be annotated for ICL.

• COVERICL is extended to an iterative ap-
proach that gradually selects harder examples
(COVERICL+). Moreover, COVERICL has
theoretical guarantees that it approximates di-
versity sampling, while COVERICL’s hyper-
parameters can be determined via a heuristic
rule.

• COVERICL outperforms competing ICL
methods for selective annotation by up to 4.4%
points. By incorporating uncertainty via the
active graph, COVERICL is up to 2× more
budget-efficient than SOTA methods for low-
budget AL.

2 Related Work

Active Learning for NLP. Active learning (Set-
tles, 2009) for NLP has been well-studied (Zhang
et al., 2022b) with applications to text classifica-
tion (Schröder and Niekler, 2020), machine transla-
tion (Haffari et al., 2009), and name entity recogni-
tion Erdmann et al. (2019), among others. Ein-Dor
et al. (2020) studied the application of traditional
active learning techniques (Lewis and Gale, 1994;
Sener and Savarese, 2018) for BERT pretrained
models (Devlin et al., 2019), with many works
following up (Margatina et al., 2021; Schröder
et al., 2022) and (Yu et al., 2022, 2023). These
approaches fine-tune the model during different
active learning rounds, which allows the model to
incorporate information from the newly labeled ex-
amples into its parameters to gradually improve
its predictions. However, LLMs with billions of
parameters are used for ICL. In this case, comput-
ing gradient updates is costly and requires addi-
tional fine-tuning for every new task. Furthermore,
ICL acts as a nonparametric kernel regression (Han
et al., 2023; Bai et al., 2023). Designing active
learning for non-parametric classifiers has been re-
cently highlighted to be challenging (Rittler and
Chaudhuri, 2023), as the assumption that new infor-
mation is incorporated into the model’s parameters
does not hold.

Selective Annotation for ICL. In this work, we
focus on the low-budget setting, similar to (Su et al.,
2023; Zhang et al., 2024), where we are given an
unlabeled set to select examples from. As there
are no to few annotated examples, it is challeng-
ing for the LLM to understand the ICL task. Most
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Figure 2: Our studied problem setting: How to select L
for ICL inference? Given an unlabeled set U and a fixed
budget B, the goal is to select the B most informative
examples for annotation (set L) by an oracle. Examples
in L are used to for k-shot ICL inference with an LLM
M .

of the current approaches of annotating new ex-
amples for ICL (Zhang et al., 2022a; Li and Qiu,
2023; Nguyen and Wong, 2023; Shum et al., 2023;
Ma et al., 2023) assume a high-resource setting,
where a large set of ICL examples is already anno-
tated (validation set). The validation set is lever-
aged for measuring the informativeness of each
individual example as well as for hyperparameter
tuning. For example, Zhang et al. (2022a) employ
reinforcement learning, which requires one set of
labeled examples for policy training and another
set of labeled examples for reward estimation. This
limits the applicability in practical low-resource
scenarios (Perez et al., 2021), where annotations
are costly to obtain.

3 Problem Statement & Background

We illustrate the overall problem setting in Fig-
ure 2. Given an unlabeled set U = {xi}Ni=1 and
a fixed budget B ∈ Z+, the goal is to select a
subset that contains B selected examples. The
B selected examples {xi}Bi=1 are queried to an
oracle (i.e., human annotators) for their ground-
truth annotations {yi}Bi=1, forming the annotated
set L = {(xi, yi)}Bi=1. During inference with a
target LLM M , set L provides ICL examples to
construct a new prompt P for the LLM. Due to
context-length limits or inference cost considera-
tions, we consider a k-shot ICL inference, where
k < B. The k-shot examples are used to construct
a new prompt P as input to the LLM by

P = π(x1, y1)⊕· · ·⊕π(xk, yk)⊕π(xtest, ∗). (1)

Template π denotes a natural language verbaliza-
tion for each demonstration (x, y) and it also ex-
presses how the labels y map to the target tokens.

We elaborate on selective annotation in practice:

1. Selective annotation methods identify the B
examples to be annotated.

2. Human experts (oracle) are employed to
annotate the examples; this can be a time-
consuming process depending on the task
(e.g., math tasks require writing elaborate
arithmetic steps).

3. LLMs performs ICL inference using the an-
notated examples. Inference is the same re-
gardless of the selective annotation method
used.

Selective Annotation. Selection algorithms dif-
fer at the way to choose the examples to be anno-
tated in L. For instance, random selection selects
B random examples to be annotated in L, while
diversity-based sampling, such as kmeans (Mac-
Queen et al., 1967), select the B most representa-
tive examples in the embedding space. Uncertainty-
based sampling (Lewis and Gale, 1994) selects B
examples the LLM is the most uncertain about to be
annotated by the oracle. While uncertainty-based
methods require more resources for Step (1) above,
it is a one-time cost before human annotation and
inference.

Inference. After the B selected ICL examples
are annotated by the oracle, inference is the same
for all selection algorithms (random, diversity-
based, etc.), using the target LLM. To determine
which k-shot ICL examples to use for a test in-
stance xtest, most approaches (Liu et al., 2021; Ru-
bin et al., 2022; Margatina et al., 2023) employ a
k-NN retriever that selects the top-k examples from
L, e.g., (xk, yk), for xtest based on their semantic
similarity using models such as SBERT (Reimers
and Gurevych, 2019).

3.1 ICL as Low-Budget AL
To understand the impact of the ICL examples on
model predictions, we express ICL inference as
a non-parametric kernel regression, following the
theoretical works from Han et al. (2023); Bai et al.
(2023). The prediction for the test instance xtest is
related to

ỹtest =

∑k
i=1 yiKD(xtest, xi)∑k
i=1KD(xtest, xi)

, (2)
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Figure 3: COVERICL algorithm for selective ICL annotation. CoverICL leverages the LLM’s uncertainty to
construct the active nearest-neighbor graph, which is model and task-aware. Then, COVERICL performs diversity-
based sampling over the active graph by solving a MAXCOVER problem. COVERICL+ performs the selection
process iteratively, where the LLM’s uncertainty is re-estimated.

where KD(xtest, xi) is a kernel that measures the
similarity between xtest with each of the k-shot
retrieved instance xi, which depends on the pre-
training data distribution D.

ICL acts similar to non-parametric kNN classi-
fiers (Equation 2) and designing active learning
strategies for such classifiers has been recently
highlighted to be challenging (Rittler and Chaud-
huri, 2023). New information cannot be directly
incorporated into the model’s parameters, but can
only be provided as few-shot input examples, re-
sulting in a low-budget AL setting. It has been
shown (Zhu et al., 2019; Hacohen et al., 2022;
Yehuda et al., 2022; Rittler and Chaudhuri, 2023)
that diversity-based sampling is crucial in the low-
budget AL as uncertainty estimation with few an-
notated data is unreliable.

4 COVERICL: Improving Selective
Annotation for ICL

Using the LLM’s feedback, e.g., via uncertainty
sampling, adapts the selective annotation process
to the underlying model and task. However, uncer-
tainty estimation with few annotated examples, as
in the low-budget AL setting, is unreliable.

To effectively utilize uncertainty sampling for
ICL, we propose an adaptive graph-based algo-
rithm, termed COVERICL. The overall framework
is presented in Figure 3. Motivated by recent
works that relate ICL with nearest-neighbor clas-
sifiers (Section 3.1), COVERICL builds a nearest-
neighbor graph that captures the semantic similar-

"Amazing movie!" : positive
"Awful acting": negative
"Terrible plot": negative -5.73

positive 1.15

"Amazing movie!" : positive
"Awful acting": negative
"Special acting": negative  3.35

positive 2.45

Easier 
Example

Harder 
Example

LLM 
(frozen)

0-shot / k-shot ICL

NLL

NLL

higher values -> higher uncertainty

NLL: Negative Log-Likelihood

Figure 4: Uncertainty estimation by LLM M with ICL.

ities between candidate examples. Then, COVER-
ICL identifies the examples that the LLM is uncer-
tain about (hard examples) and creates the active
subgraph, which consists of the hard examples of
interest. The active graph is task and model-aware,
as uncertainty estimation depends on the LLM used
and how well it understands the task. Having the
active graph, COVERICL performs diversity-based
sampling by formulating the well-studied Maxi-
mum Coverage problem (MAXCOVER). Addition-
ally, our COVERICL+ variant (Section 4.4) seeks
to further improve the LLM’s uncertainty estima-
tions and predictions via an iterative framework,
similar to having multiple AL iterations.

4.1 Graph Construction

We build the m-nearest neighbors graph Gm, where
the nearest neighbors are determined based on a
semantic similarity, e.g., via SBERT embeddings.
We compute the embedding of each example xi and
determine its m closest neighbors based on cosine
similarity of the embeddings. Graph Gm does not
depend on the LLM used for ICL.
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4.2 Active Graph via Uncertainty

Hard Examples. First, we describe how we use
uncertainty estimation from the LLM to identify
the hard examples, providing an example in Fig-
ure 4. We assume we are given an initially small
annotated pool L0 to construct k-shot ICL prompts
(if L0 = ∅, it is zero-shot ICL) for each xi ∈ U .
The k-shot input is given to the LLM along with a
query xi and the LLM makes predictions or gener-
ates outputs. Based on the negative loglikehood of
the predicted label (for classification tasks) or the
average logprobabilites of the generated tokens (for
generation tasks), we compute an uncertainty score
ui for each unlabeled example xi ∈ U . We sort
the examples xi ∈ U based on their uncertainty
scores ui, and mark the top-Nθ out of N total ex-
amples as hard examples, which are collected in Uh.
Here, Nθ = ⌊θN⌋ and θ ∈ [0, 1] is a hyperparame-
ter with default value θ = 0.5, which denotes the
portion of the examples that we consider as hard
ones.
Active Graph. We are interested in hard examples
for the LLM, which are collected in set Uh, as ex-
plained above. For each xi ∈ U , we construct its
egonet Si (1-hop or 2-hop neighbors), where we
consider edges of Gm that direct towards xi from
other hard examples xj ∈ Uh. This captures the
dependence of other hard examples on xi. As a
result, the active graph is the subgraph that consists
of hard examples and their semantic dependencies.
Because the active graph is constructed via uncer-
tainty, it captures how well the LLM understands
the task (model-aware) as well as the task’s diffi-
culty (task-aware).

4.3 Selection via Active Graph MAXCOVER

Having employed uncertainty for the construction
of the active graph, COVERICL performs diversity-
based sampling over the active graph. COVER-
ICL solves the Maximum Coverage (MAXCOVER)
problem (Khuller et al., 1999) over the constructed
graph, which selects the most representative and
diverse examples.

Formally, MAXCOVER takes N sets
{S1, . . . , SN} and a number B as input.
Each set includes some examples, e.g.,
Si = {x1, x2, . . . , xn} and the intersection
of two sets is not necessarily empty, while
the goal is to select the B most representative
sets that include (cover) as many examples as
possible. We assume that if an example is marked

Algorithm 1 Greedy approximation for MAX-
COVER.

1: Input: Examples Uh, Sets {S1, . . . , SN}, Bud-
get B, L = ∅.

2: while B not exhausted do
3: Pick the set Si that covers the most uncov-

ered examples in Uh. Example xi is selected
for annotation, L = L ∪ {xi}.

4: Mark examples in Uh of the chosen set Si

as covered.
5: end while
6: Output: Return L.

as covered by another selected set, it conveys
little new information to the LLM. Given the
hard examples of Uh and the egonet Si of each
example (Section 4.2), the MAXCOVER problem
is expressed as

maximize
∑

xj∈Uh

cj , (3)

where cj ∈ {0, 1}, si ∈ {0, 1}, (4)
N∑

i=1

si ≤ B,
∑

xj∈Si

si ≥ cj . (5)

Equation 3 performs diversity-based selection by
maximizing the coverage of the examples in Uh.
The indicator variable cj ∈ {0, 1} denotes if exam-
ple xj is covered or not. Variable si denotes if set
Si is selected. Selecting set Si, i.e., MAXCOVER

marks si = 1, means that we select example xi
to be annotated in L. Then, all examples in the
egonet of xi are marked as covered, assuming they
convey little new information to the model for the
task. Equation 5 ensures that we select at most B
sets (first part) and covered examples belong to at
least one selected set (second part).

Greedy Solution. The MAXCOVER problem
is known to be NP-hard (Vazirani, 2001). A nat-
ural greedy solution for the MAXCOVER chooses
sets according to one rule: at each stage, choose
a set that contains the largest number of uncov-
ered elements. This approximation algorithm is
summarized in Algorithm 1, and is well-known
to approximately solve MAXCOVER and can be
further improved due to its submodularity (Krause
and Guestrin, 2005).
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Table 1: Performance comparison (accuracy in %) of different selective annotation methods for ICL. The budget is
B = 20 and we perform 5-shot ICL inference with GPT-J (6B) and GPT-Neo (1.3B), averaging the results.

Type Method Topic Classification Sentiment Analysis Natural Language Inference Avg.
AGNews TREC SST2 Amazon RTE MRPC MNLI

Random Random 64.17 52.01 75.06 80.92 50.58 66.75 40.29 61.40

Uncertainty ∗Hardest (Lewis and Gale, 1994) 68.62 42.64 77.08 81.18 54.10 64.30 38.15 60.87

Diversity
Fast-Votek (Su et al., 2023) 67.96 48.05 74.39 79.48 51.82 66.21 39.19 61.01
IDEAL (Zhang et al., 2024) 71.78 42.12 75.78 78.01 54.62 64.77 38.47 60.79

∗Votek (Su et al., 2023) 67.52 49.48 77.07 80.47 52.08 67.77 39.45 61.98

Diversity+Uncertainty

∗Patron (Yu et al., 2023) 72.65 46.74 76.69 83.33 54.03 64.12 38.01 62.22
∗Active-Kmeans 72.26 49.44 80.99 83.39 53.25 65.62 39.19 63.45
∗COVERICL (Ours) 73.92 53.64 81.23 84.11 55.01 68.61 41.66 65.45

*Denotes model-aware methods that consider the target LLM.
Full results are provided in Appendix D.1 and show that COVERICL is significantly better (Wilcoxon signed-rank test) than Patron at p-value
< 0.05.

4.4 Further Discussions

COVERICL+. COVERICL performs uncertainty-
guided diversity sampling over the active graph.
Our variant COVERICL+ considers uncertainty es-
timation more important for the task and encour-
ages the LLM to give new predictions when a cer-
tain number of hard examples are covered. We
introduce a new hyperparameter T , which denotes
the desired number of iterations until we exhaust
the budget. At each iteration, we select ⌊B/T ⌋ new
examples that are annotated by the oracle and that
are used by the LLM to gradually identify harder
examples. We present COVERICL+ in detail in
Appendix A.1.

Theoretical Analysis. We provide a theoretical
analysis that COVERICL approximates diversity-
based sampling over a subsampled graph (the active
graph). Our theorem and its proof are provided in
Appendix A.2. The theorem suggests that COV-
ERICL can approximate diversity-based selection
when the most representative examples are well-
separated, even when uncertainty sampling is not
helpful.

Heuristic Rule. As there is no validation set
for hyperparameter tuning, we propose a heuristic
rule to automatically adjust the hyperparameter m,
that is used to create the m-nn graph Gm. The
heuristic rule (see Appendix A.3) takes advantage
of the active graph and the minimum number of
hard examples that need to be covered. The number
of neighbors m is adjusted so that MAXCOVER

covers at least N̂θ hard examples, N̂θ < Nθ, before
we exhaust the budget B. This ensures that the
selected examples are representative enough of the
hard examples.

5 Experimental Setting

With our experimental analysis, we address the
following research questions (RQs):

RQ1. How does COVERICL compare with other
ICL selective annotation methods across diverse
tasks?

RQ2. How effective is COVERICL’s active
graph coverage for low-budget AL?

RQ3. How sensitive is COVERICL to the graph
construction?

Datasets. We perform empirical evaluation with
nine NLP datasets that cover well-studied tasks,
such as topic classification (Zhang et al., 2015;
Hovy et al., 2001), sentiment analysis (Socher et al.,
2013; McAuley and Leskovec, 2013), natural lan-
guage inference (Bentivogli et al., 2009; Dolan
et al., 2004; Williams et al., 2018), text summariza-
tion (Narayan et al.), math reasoning (Cobbe et al.,
2021), and college exam questions (Hendrycks
et al., 2020). We provide additional details of these
datasets in Appendix C.

Competing Methods. All compared methods
differ only on the “Selective Annotation” phase
(Figure 2), while inference is the same for all
(see also Appendix B). We use the following ap-
proaches as baselines for comparison: (i) Random
performs random example selection for annotation.
(ii) Pseudo-labeling uses the LLM to generate
pseudo-labels for the unlabeled instances as ad-
ditional annotated data. (iii) IDEAL (Zhang et al.,
2024) is a diversity-based sampling strategy that
selects representative examples in the similarity
space. (iv) Votek (Su et al., 2023) accounts for the
model’s feedback. It sorts the examples based on
the model’s confidence scores and stratifies them
into B equally-sized buckets. It selects the most
representative example from each bucket. (v) Fast-
Votek (Su et al., 2023) is Votek but without ac-

21273



5 10 15 20
60
65
70
75
80
85

Budget B

A
cc

ur
ac

y
(%

)
GPT-J (6B)

5 10 15 20
60
65
70
75
80
85

Budget B

Mosaic-7B
COVERICL+ Votek Patron Random

5 10 15 20
60
65
70
75
80
85

Budget B

Falcon-7B

Figure 5: Average results at AGNews, TREC, SST2,
and Amazon datasets with three LLMs of similar size.

counting for the target LLM. (vi) Hardest (Lewis
and Gale, 1994) resembles the uncertainty sam-
pling strategy, where the examples that the model
is the most uncertain about are selected. (vii) Pa-
tron (Yu et al., 2023) is the SOTA method that
combines uncertainty and diversity sampling, but
is designed for finetuned-based NLP. Additionally,
we include (viii) Active-Kmeans method (Ap-
pendix A.4) as further ablations, which employs
Kmeans instead of COVERICL’s graph.

Implementation. We experiment with seven
LLMs of varying sizes (1.3B to 65B parame-
ters), including GPT-J (Wang and Komatsuzaki,
2021), Mosaic (MosaicML, 2023), Falcon (Penedo
et al., 2023), phi-2 (Gunasekar et al., 2023) and
LLaMa (Touvron et al., 2023) models, all of which
are open-source and allow the reproducibility of
our research. Unless otherwise stated, we set k = 5,
B = 20 and we obtain embeddings for seman-
tic similarity via SBERT (Reimers and Gurevych,
2019). Please refer to Appendix C.2 for more
specifics.
Regarding COVERICL’s implementation, we con-
struct m = 5 nearest-neighbor graphs for COVER-
ICL, and m = 15 for COVERICL+. The egonet
Si of each candidate example xi, which is used as
input to the MAXCOVER problem, includes 1-hop
neighbors for COVERICL+ and 2-hop COVERICL.
The default number of iterations T for COVER-
ICL+ is T = 2. As the threshold hyper-parameter
θ, we have θ = 0.5, i.e., 50% of the examples are
considered as hard.

6 Results & Studies

6.1 RQ1: COVERICL’s Performance across
Tasks

Table 1 presents performance results of different se-
lective annotation methods for classification tasks.
We include tasks ranging from topic classification,
sentiment analysis, and natural language inference.
We average the results over two LLMs of 1.3B and

Table 2: Generation tasks (XSUM, GSM8K).

Falcon-40B LLaMa-65B

Summarization (RougeL)
Zero-shot 18.50±0.61 15.26±0.69

Votek 20.83±0.05 23.38±0.84

COVERICL 21.42±0.68 24.67±0.45

Math Reasoning (Accuracy)
Zero-shot 36.58±3.14 32.54±1.86

Votek 37.23±1.75 45.04±1.47

COVERICL 39.58±3.01 49.08±2.89

Table 3: Performance comparison with LLMs of differ-
ent sizes in MMLU tasks.

MMLU-Bio MMLU-Math
phi-2 (2.7B) Falcon-40B phi-2 (2.7B) Falcon-40B

IDEAL 64.58 63.88 42.00 43.00
COVERICL 65.28 68.05 47.00 44.00

6B sizes. As Table 1 shows, COVERICL is the
method that achieves the best performance, with
an improvement of 2.00–4.66% accuracy points
over competing methods. Methods that give more
importance to uncertainty sampling (Patron, Active-
Kmeans, COVERICL) perform better on topic clas-
sification and sentiment analysis tasks, showing the
importance of combining diversity and uncertainty-
based selection for ICL. For natural language in-
ference tasks, diversity-based selection is more
important, where methods such as Votek outper-
form other uncertainty-based baselines. Overall,
COVERICL and Active-Kmeans are the best per-
forming methods, but selection via graph coverage
(COVERICL) instead of kmeans (COVERICL) im-
proves accuracy by 0.24–4.20% in all tasks.

Figure 5 compares selective annotation methods
across different LLMs and tasks. Figure 5 shows
that COVERICL+ generalizes well across different
target LLMs. The best performance is achieved
for the Mosaic and GPT-J models, where COV-
ERICL+ outperforms Votek by 4.09% accuracy
points, when B = 20. In addition, COVERICL+
can considerably reduce the annotation and infer-
ence costs. In all cases, COVERICL+ needs only
B = 10 annotated examples to outperform Patron
and Random, which use B = 20 annotated exam-
ples.

Figure 2 provides results for generation tasks
with larger LMs (40B and 65B parameters). On
the challenging reasoning tasks, COVERICL out-
performs Votek and zero-shot ICL by 4.04% and
16.54% in accuracy, respectively. Votek selects ex-
amples that are both easy and hard for the model,
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Table 4: Performance comparison across different semantic similarity embedding models. Semantic similarity
facilitates diversity sampling as well as retrieval-based ICL inference.

Semantic Similarity −→ SBERT-all-mpnet-base RoBERTa-nli-large-mean-tokens BERT-nli-large-cls-pool Avg.
TREC SST2 Amazon TREC SST2 Amazon TREC SST2 Amazon

Pseudo-labeling 48.56±6.33 69.13±3.87 70.96±3.35 33.98±3.68 74.08±4.40 81.11±4.14 41.27±4.24 77.47±1.60 81.63±2.49 64.24
Random 54.68±1.68 68.48±1.87 73.95±2.03 37.23±2.30 74.21±3.50 84.46±3.21 34.75±2.41 72.65±5.82 80.20±3.34 64.51
Votek 54.81±0.49 73.69±9.05 75.13±0.98 37.77±4.65 76.16±2.23 84.11±1.28 42.43±3.34 80.85±2.09 83.59±1.77 67.61
Active-Kmeans 48.24±0.98 77.86±1.02 75.77±3.63 38.12±5.74 78.12±5.30 85.93±2.30 38.15±3.10 78.64±2.78 85.80±1.75 67.40
COVERICL 55.33±2.57 79.68±2.47 77.73±2.23 39.06±3.37 81.11±1.50 85.15±0.55 44.06±2.49 80.85±2.83 84.65±3.52 69.74
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Figure 6: ICL inference results (GPT-Neo) with dif-
ferent uncertainty-based selective annotation methods.
COVERICL+ performs the best over all tasks.

Table 5: Graph ablation study on hyper-parameter m,
which controls the number of graph neighbors, consid-
ering 1-hop or 2-hop sets. The values of m are adjusted
via our heuristic rule (Appendix A.3).

AGNews SST2 Amazon

Votek 62.77±4.82 73.69±9.05 75.13±0.98

COVERICL
m = 15 (1-hop) 68.61±1.02 79.42±1.28 77.34±2.73

*m = 5 (2-hop) 70.95±1.87 79.68±1.77 77.73±2.23

COVERICL+ (T = 2)
*m = 15 (1-hop) 69.39±1.35 79.03±2.47 77.08±1.50

m = 5 (2-hop) 70.43±1.60 77.73±1.15 76.43±2.55

*Denotes the default value.

which do not always provide new information to
the model. On the other hand, COVERICL selects
representative examples of difficult cases, which
help the LLM to better understand the task.

Moreover, we use Falcon-40B and phi-2 (2.7B)
on college exam questions (MMLU Bio/Math) to
assess COVERICL’s performance. Falcon-40B has
a capacity of 40B parameters and thus broader
knowledge to understand the task. Phi-2 has been
pretrained on textbooks and science texts, having
task-specific knowledge. Table 3 shows that COV-
ERICL improves both of these LLMs of compared
to IDEAL. The results show COVERICL’s ability
to leverage how well the LLM understands the task,
regardless its size.

6.2 RQ2: Active Graph’s Impact on
Low-Budget AL

In this section, we experiment with different
uncertainty-based methods on the low-budget AL.

We employ a small GPT-Neo (1.3B) model, which
is sensitive to the number of ICL examples an-
notated. We range the budget size from 5 to 45,
incrementing the budget with 10 more annotations
for 4 steps. During inference, we use as many
ICL annotated examples as the context-length limit
of GPT-Neo allows. Figure 6 presents the results.
COVERICL+ performs the best in all cases, where
the average accuracy improvement over the best
baseline is 7.09% for topic classification, 1.86% for
sentiment analysis, and 2.36% for natural language
inference. It is noteworthy that Active-Kmeans
is the best-performing baseline when B = 45,
showing the benefits of combining diversity and
uncertainty-based selection. When the budget is
limited, e.g., B = 15, COVERICL+ outperforms
Active-Kmeans significantly, which shows the ben-
efit of COVERICL’s active graph over non-graph
baselines, such as kmeans.

6.3 RQ3: Ablation Studies on Graph
Sensitivity

In the previous experiments, we use SBERT embed-
ding to calculate semantic similarity between exam-
ples during the graph construction. In the following
experiment, we use different models for calculating
semantic embeddings. Table 4 shows results when
we experiment with SBERT, BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) encoders.
The target LLM is the GPT-Neo (1.3B) model. Us-
ing different encoder models affects the prompt for
each test query and thus, ICL performance varies.
For instance, SBERT achieves a maximum aver-
age performance of 55.33% and 77.73% for TREC
and Amazon, respectively, while BERT achieves
44.06% and 85.80%. Despite the encoder choice,
COVERICL performs overall the best, outperform-
ing Votek, the second-best method, by 2.13% accu-
racy points.

Table 5 shows an ablation study on the hy-
perparameters that control the nearest-neighbor
graph construction. We experiment with the val-
ues obtained by our proposed heuristic rule (Ap-
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Table 6: Time complexity analysis with 5-shot ICL for
different selection processes over 300 examples on a
GeForce RTX 3090 (24GB GPU).

Embedding (SBERT) Uncertainty (GPT-Neo)

Amazon
Random 0 secs 0 secs
Votek ≈1 secs 1 min & 51 secs
COVERICL (T = 1) ≈1 secs 1 min & 51 secs
COVERICL (T = 2) ≈1 secs ≈ 3 mins & 42 secs
AGNews
Random 0 secs 0 secs
Votek ≈0.5 secs 3 mins & 48 secs
COVERICL (T = 1) ≈0.5 secs 3 mins & 48 secs
COVERICL (T = 2) ≈0.5 secs ≈ 7 mins & 36 secs

pendix A.3). As Table 5 shows, different hyperpa-
rameter values achieve overall good performance
for both COVERICL and COVERICL+. In some
cases, there is no performance drop, while COVER-
ICL+ works better with 1-hop egonets.
Further graph ablations are provided in Appen-
dices D.2, D.3.

7 Time Cost & Visualization

In Table 6, we compare competing approaches
based on their computation time during their selec-
tion process (during downstream inference, their
time cost is the same). Random selection has zero
cost. Votek and COVERICL (T = 1) have the
same cost, while the cost doubles for COVERICL
(T = 2). Nevertheless, hyper-parameter T for
COVERICL can be tuned depending on the desired
runtime of the selection process.

We illustrate the selection process of COVER-
ICL+ in Figure 7. Initially, the LLMs perform 0-
shot ICL but do not make confident predictions (as
the hue color indicates, that represents the model’s
uncertainty for each example). Note that different
LLMs may consider different examples as hard or
easy ones. Then, COVERICL+ selects 5 represen-
tative examples for 5-shot ICL, which improves the
LLMs’ understanding of the task and reduces its
uncertainty (we observe fewer red nodes and more
nodes with greener color).

8 Conclusions

In this work, we investigate selective annotation for
ICL and we introduce COVERICL that combines
diversity and uncertainty-based selection. Our
key contributions are highlighted as follows: (1)
COVERICL incorporates the LLM’s uncertainty
by constructing the active graph of hard exam-
ples. The most representative and diverse examples
are selected via MAXCOVER to be annotated for
ICL. (2) COVERICL is extended to an iterative

Figure 7: Visualization of COVERICL+’s selection pro-
cess for AGNews. The plots visualize the SBERT em-
beddings (after PCA), where the hue color (green to
red) represents the model’s uncertainty (confident to
uncertain) for each example. The selected examples by
COVERICL+ are marked with the ‘⋆’ symbol.

approach that gradually selects harder examples
(COVERICL+). Moreover, COVERICL has theoret-
ical guarantees that it approximates diversity sam-
pling, while COVERICL’s hyperparameters can be
determined via a heuristic rule. (3) COVERICL
outperforms competing ICL methods for selective
annotation by up to 4.4% points. Incorporating un-
certainty via COVERICL’s active graph is shown
to is up to 2× more budget-efficient than SOTA
methods for low-budget AL.

9 COVERICL Limitations

We list some of our assumptions that may limit
COVERICL if they are not satisfied. COVERICL
relies on embedding methods to determine seman-
tic diversity, similar to many competing methods
(except for Random and Hardest). While COVER-
ICL is shown to be robust to different embedding
models (Section 6.3), it can still suffer if the se-
mantic space of the test is wildly different from
the annotation pool space. Moreover, the graph/set
construction is a heuristic approach and does not
account for cases where adversarial examples are
injected into the pool in order to degrade perfor-
mance.

21276



References
Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and

Song Mei. 2023. Transformers as statisticians: Prov-
able in-context learning with in-context algorithm
selection. arXiv preprint arXiv:2306.04637.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. TAC.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. NeurIPS.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Janez Demšar. 2006. Statistical comparisons of classi-
fiers over multiple data sets. The Journal of Machine
learning research, 7:1–30.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In COL-
ING 2004: Proceedings of the 20th International
Conference on Computational Linguistics.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch,
Lena Dankin, Leshem Choshen, Marina Danilevsky,
Ranit Aharonov, Yoav Katz, and Noam Slonim. 2020.
Active Learning for BERT: An Empirical Study. In
EMNLP.

Alexander Erdmann, David Joseph Wrisley, Benjamin
Allen, Christopher Brown, Sophie Cohen-Bodénès,
Micha Elsner, Yukun Feng, Brian Joseph, Béatrice
Joyeux-Prunel, and Marie-Catherine de Marneffe.
2019. Practical, efficient, and customizable active
learning for named entity recognition in the digital
humanities. In EMNLP.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In ACL.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

Guy Hacohen, Avihu Dekel, and Daphna Weinshall.
2022. Active learning on a budget: Opposite strate-
gies suit high and low budgets. In ICML.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar.
2009. Active learning for statistical phrase-based
machine translation. In NAACL.

Chi Han, Ziqi Wang, Han Zhao, and Heng Ji.
2023. In-context learning of large language mod-
els explained as kernel regression. arXiv preprint
arXiv:2305.12766.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
semantics-based answer pinpointing. In Proceedings
of the First International Conference on Human Lan-
guage Technology Research.

Samir Khuller, Anna Moss, and Joseph Seffi Naor. 1999.
The budgeted maximum coverage problem. Informa-
tion processing letters, 70(1):39–45.

Andreas Krause and Carlos Guestrin. 2005. A note on
the budgeted maximization of submodular functions.
Citeseer.

David D. Lewis and William A. Gale. 1994. A sequen-
tial algorithm for training text classifiers. In SIGIR.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations.

Xiaonan Li and Xipeng Qiu. 2023. Finding support-
ing examples for in-context learning. arXiv preprint
arXiv:2302.13539.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In ACL.

21277

https://aclanthology.org/C04-1051
https://aclanthology.org/C04-1051
https://aclanthology.org/C04-1051
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069


Huan Ma, Changqing Zhang, Yatao Bian, Lemao Liu,
Zhirui Zhang, Peilin Zhao, Shu Zhang, Huazhu Fu,
Qinghua Hu, and Bingzhe Wu. 2023. Fairness-
guided few-shot prompting for large language mod-
els. arXiv preprint arXiv:2303.13217.

James MacQueen et al. 1967. Some methods for clas-
sification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Katerina Margatina, Timo Schick, Nikolaos Aletras, and
Jane Dwivedi-Yu. 2023. Active learning principles
for in-context learning with large language models.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault,
and Nikolaos Aletras. 2021. Active learning by ac-
quiring contrastive examples. In EMNLP.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: Understanding rating dimen-
sions with review text. In Proceedings of the 7th
ACM Conference on Recommender Systems (RecSys).

MosaicML. 2023. Introducing mpt-7b: A new standard
for open-source, commercially usable llms.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
Don’t give me the details, just the summary! topic-
aware convolutional neural networks for extreme
summarization. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing.

Tai Nguyen and Eric Wong. 2023. In-context ex-
ample selection with influences. arXiv preprint
arXiv:2302.11042.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The RefinedWeb dataset
for Falcon LLM: outperforming curated corpora
with web data, and web data only. arXiv preprint
arXiv:2306.01116.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. In
NeurIPS.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In EMNLP.

Nicholas Rittler and Kamalika Chaudhuri. 2023. A two-
stage active learning algorithm for k-nearest neigh-
bors. In International Conference on Machine Learn-
ing, pages 29103–29129. PMLR.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In NAACL.

Christopher Schröder, Andreas Niekler, and Martin
Potthast. 2022. Revisiting uncertainty-based query
strategies for active learning with transformers. In
ACL Findings.

Christopher Schröder and Andreas Niekler. 2020. A
survey of active learning for text classification using
deep neural networks.

Ozan Sener and Silvio Savarese. 2018. Active learn-
ing for convolutional neural networks: A core-set
approach. In ICLR.

Burr Settles. 2009. Active learning literature survey.

KaShun Shum, Shizhe Diao, and Tong Zhang. 2023.
Automatic prompt augmentation and selection with
chain-of-thought from labeled data. arXiv preprint
arXiv:2302.12822.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2023. Selec-
tive annotation makes language models better few-
shot learners. In ICLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Vijay V Vazirani. 2001. Approximation algorithms,
volume 1. Springer.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. In Advances in
Neural Information Processing Systems (NeurIPS).

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:

21278

https://aclanthology.org/D18-1206
https://aclanthology.org/D18-1206
https://aclanthology.org/D18-1206
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101


State-of-the-art natural language processing. In ACL
(Demos).

Ofer Yehuda, Avihu Dekel, Guy Hacohen, and Daphna
Weinshall. 2022. Active learning through a covering
lens. Advances in Neural Information Processing
Systems, 35:22354–22367.

Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyun-
soo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-goo Lee,
and Taeuk Kim. 2022. Ground-truth labels matter:
A deeper look into input-label demonstrations. In
EMNLP.

Yue Yu, Lingkai Kong, Jieyu Zhang, Rongzhi Zhang,
and Chao Zhang. 2022. Actune: Uncertainty-based
active self-training for active fine-tuning of pretrained
language models. In NAACL.

Yue Yu, Rongzhi Zhang, Ran Xu, Jieyu Zhang, Jiaming
Shen, and Chao Zhang. 2023. Cold-start data se-
lection for few-shot language model fine-tuning: A
prompt-based uncertainty propagation approach. In
ACL.

Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-
Hao Chen, Jiale Liu, Qingyun Wu, and Tongliang
Liu. 2024. Ideal: Influence-driven selective annota-
tions empower in-context learners in large language
models. In ICLR.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems (NeurIPS), volume 28.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022a. Ac-
tive example selection for in-context learning. In
EMNLP.

Zhisong Zhang, Emma Strubell, and Eduard Hovy.
2022b. A survey of active learning for natural lan-
guage processing. In EMNLP.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In ICLR.

Yu Zhu, Jinghao Lin, Shibi He, Beidou Wang, Ziyu
Guan, Haifeng Liu, and Deng Cai. 2019. Addressing
the item cold-start problem by attribute-driven active
learning. IEEE Transactions on Knowledge and Data
Engineering, 32(4):631–644.

A COVERICL

Algorithm 2 summarizes the overall COVERICL al-
gorithm. The greedy solution for MAXCOVER may
be terminated when every hard example is covered,
regardless of whether the budget B is exhausted.
In this case, diversity selection captures the diffi-
culty of the task, and not all hard examples are
equally useful. Thus, we add the selected examples
to the current annotation set L′, and re-evaluate the
model’s feedback to define the new hard set U ′

h.
Algorithm 2 is terminated when the total budget B
is exhausted.

A.1 COVERICL+: Iterative Selection
COVERICL performs uncertainty-guided diversity
sampling over the active graph. Our variant COV-
ERICL+ considers uncertainty estimation more im-
portant for the task and encourages the LLM to
give new predictions when a certain number of
hard examples are covered. We introduce a new
hyperparameter T , which denotes the desired num-
ber of iterations until we exhaust the budget. At
each iteration, we select ⌊B/T ⌋ new examples that
are annotated by the oracle and that are used by the
LLM to gradually identify harder examples. Fur-
thermore, COVERICL+ avoids selecting examples
from sets that contain few hard examples, e.g., out-
liers, or sets that belong to isolated sparse regions
by a re-weighting schema for its MAXCOVER prob-
lem. Whenever a hard example is covered, instead
of being marked as covered, COVERICL+ reduces
its weight.

Dynamically updating the weights of each exam-
ple does not satisfy the submodularity property of
MAXCOVER, which is satisfied for fixed weights.
Nevertheless, such that we can use the greedy al-
gorithm to approximate the optimal solution, we
propose a re-weighting trick by reusing Uh multi-
ple times. Specifically, we copy the set Uh multiple
times, i.e., to U0

h ,U1
h , . . . ,U t

h, etc., where different
sets have different weights for their elements. If
hard example xtj is covered in U t

h, then we use its
weights from the other sets. Formally, we optimize

maximize
∑

t

∑

xt
j∈Ut

h

wtctj , (6)

where we set the weights wt = 10−t, so that wt ≈
wt + wt+1 + · · · . In the beginning, every hard
example of Uh has weight w0 = 1 . If one example
is covered in Uh, i.e., cj = 1, then its new weight is
set to w1 = 0.1. The constraint at each iteration for
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solving Equation 6 is
∑Nθ

j=1 sj ≤ ⌊B/T ⌋. Then,
we perform uncertainty estimation with the model
M based on the newly annotated examples, before
we solve MAXCOVER with the remaining budget.

Algorithm 2 COVERICL Algorithm.

1: Input: Model M , Unlabeled Set U , Budget B,
Similarity Space S for k-NN Retriever.

2: Optional: Initial set L0, else L0 = ∅.
3: Hyperparameters: threshold θ, number of

neighbors m.
4: Output: Annotated Set L.

5: Bcur = 0,L = L0.
6: Create global graph Gm.
7: while Bcur < B do
8: for xi ∈ U do
9: Retrieve (at most) k examples from L

based on similarity S.
10: Use model M to obtain an uncertainty

score ui for xi with k-shot ICL.
11: end for
12: Determine hard set Uh given scores {ui}Ni=1

and threshold θ.
13: Create sets Si given Uh and Gm.
14: {x∗i }B

∗
i=1 = Greedy-MAXCOVER(

U , {Si}, B −Bcur

)
.

15: Add the selected {x∗i }B
∗

i=1 to L = L ∪
{x∗i }B

∗
i=1 (querying the oracle) and remove

them from U = U \ {x∗i }B
∗

i=1.
16: Bcur = Bcur +B∗.
17: end while

A.2 Theoretical Analysis
COVERICL constructs a m-nearest neighbor graph
Gm. Let Ri denote the set of neighbors of each
node i ∈ N . COVERICL creates sets Si by
excluding the neighbors nodes v /∈ Uh that do
not correspond to hard examples. The coverage
of sets {S1, . . . , SN} is optimized by the MAX-
COVER problem in Algorithm 1. Let a vanilla
MAXCOVER solve the coverage of the original sets
{R1, . . . ,RN} with Uh = U .

Theorem 1. If the B selected sets by solving a
vanilla MAXCOVER on sets {Ri}Ni=1 are non-
overlapping i.e., Ri ∩ Rj = ∅ with i ̸= j, then
there ∃ Uh such that COVERICL’s MAXCOVER

problem has the same solution.

Proof. If the vanilla MAXCOVER problem and
COVERICL’s MAXCOVER have the same solu-

tion, it means that they select the same examples
{x(b)}Bb=1 for annotation. We prove the theorem by
induction.

Base Case: At the first iteration of the MAX-
COVER, we have budget B = 1. As there are no
covered elements, the vanilla MAXCOVER selects
the set Ri with the most elements, i.e.,

x(1) := xi = argmax
i∈N

|Ri|.

Now, solving MAXCOVER over the sets Si requires

xi = argmax
i∈N

|Ri| = argmax
i∈N

|Si|

in order to have the same selected example x(1).
This holds, for instance, if Uh removes a portion of
node neighbors from Ri (randomly or selectively)
such that the ordering of sets by their number of
elements remains the same. In that case since the
relative order by number of elements is preserved,
we have

argmax
i∈N

|Ri| = argmax
i∈N

|Si|.

Thus, ∃ Uh that satisfies the condition of Theorem 1
when B = 1.

Induction Hypothesis: When the budget is B −
1, we assume that solving MAXCOVER over sets
{Ri}Ni=1 and sets {Si}Ni=1 have the same solution
{x(b)}B−1

b=1 .
Induction Step: After selecting B − 1 sets

{R(b)}B−1
b=1 , the vanilla MAXCOVER optimization

chooses the B-the set R(B). As the B selected
sets are non-overlapping (condition in Theorem 1),
it means that the B-th selected set R(B) does not
contain any elements that are covered by the pre-
viously selected sets {R(b)}B−1

b=1 . Similarly, due
to the induction hypothesis, COVERICL selects
the same examples and because Si ⊂ Ri ∀i, the
selected sets {S(b)}Bb=1 by COVERICL are also
non-overlapping. As the B-th selected example is
the solution to the B-th MAXCOVER iteration, it
must have the largest number of elements, i.e.,

x(B) := xi = argmax |Ri|

and
x̂(B) := x̂k = argmax |Sk|,

where x̂(B) is the example selected by COVERICL.
If x̂(B) ̸= x(B), that means that there is a set Sk that
has more elements |Sk| than |Si| that corresponds
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Table 7: Ablation study using (i) the estimated uncer-
tainty scores by the LLM and (ii) random uncertainty
scores for uncertainty-based methods at AGNews and
SST2 datasets.

AGNews SST2
uncertainty → LLM random LLM random
estimation scores scores scores scores

Patron 69.39±1.76 64.18±1.47 78.64±4.16 74.86±4.58

COVERICL 70.95±1.87 67.70±1.80 79.03±2.47 78.77±5.11

to vanilla MAXCOVER selection xi, i.e., |Sk| >
|Si|.

However, since Uh preserves the order by num-
ber of elements (Base Case) and the selected sets
by COVERICL do not overlap (Induction Hypothe-
sis), |Sk| ≯ |Si| and leads to a contradiction. Thus,
x̂(B) = x(B), and we have the same solution for
the vanilla MAXCOVER and COVERICL’s MAX-
COVER problems.

Theorem 1 suggests that COVERICL can ap-
proximate diversity-based selection when the most
representative examples are well-separated. This
benefits cases where the LLM’s uncertainty scores
are not indicative for the task (similarly to consid-
ering all examples in U as hard ones) and cases
where diversity sampling is crucial for good ICL
performance.

To empirically verify Theorem 1, we experiment
with a target GPT-Neo (1.3B) LLM where uncer-
tainty scores are generated (i) by the LLM itself
and (ii) randomly. As a baseline, we use Patron (Yu
et al., 2023), which is designed for fine-tuned based
NLP and assumes the uncertainty scores are indica-
tive for the task. As Table 7 shows, COVERICL is
robust due to its core diversity-based selection and
shows minor performance degradation when using
random uncertainty scores. On the other hand, Pa-
tron underperforms COVERICL by up to 3.91%
accuracy points as it does not adapt its selection
process when diversity sampling is more important.

A.3 Heuristic Rule

As there is no validation set for hyperparameter
tuning, we propose a heuristic rule to automati-
cally adjust the hyperparameter m, that is used to
create the m-nn graph Gm. Given the number of
hard examples Nθ = ⌊θN⌋ (Section 4.2), where
θ ∈ [0, 1], the number of neighbors m is adjusted
so that MAXCOVER covers at least N̂θ hard ex-
amples, N̂θ < Nθ, before we exhaust the budget
B. This ensures that the selected examples are
representative enough of the hard examples.

Assuming the graph has reciprocal edges, each
node has approximately ⌈θm⌉ and ⌈θ2m2⌉ hard
examples as neighbors for 1-hop and 2-hop sets,
respectively. Thus, we can cover approximately
⌈Bθm⌉ and ⌈Bθ2m2⌉ hard examples if MAX-
COVER has budget B. If MAXCOVER needs to
cover at least N̂θ hard examples before terminated,
we need to satisfy N̂θ ≈ ⌈Bθm⌉ (for 1-hop sets)
and N̂θ ≈ ⌈Bθ2m2⌉ (for 2-hop sets). Thus, the
heuristic-based rule is given by



m =

⌈
N̂θ
θB

⌉
for 1-hop sets (COVERICL+),

m2 =
⌈

N̂θ
θ2B

⌉
for 2-hop sets (COVERICL).

(7)
For COVERICL, we consider 2-hop neighbor sets,
which are dense, and can improve its density-based
selection. For COVERICL+, we consider 1-hop
sets as the model re-evaluates its predictions to
gradually identify harder examples. The heuristic
rule is adjusted to the number of the examples Nθ

that we account as hard ones, and we find that
N̂θ = Nθ/2 works well across datasets. When
we have iterations T > 1 for COVERICL+, the
budget for the MAXCOVER becomes B := B/T
in Equation 7.

A.4 Active-Kmeans: A kmeans Approach

COVERICL performs diversity sampling over the
active graph. Another solution to combine uncer-
tainty and diversity sampling is to perform kmeans
clustering (MacQueen et al., 1967) over the set of
hard examples Uh. Then, we can select represen-
tative examples for each cluster by sampling the
example closest to its centroid. Here, the number
of clusters for kmeans is B, so that we sample as
many examples as the budget B allows. We refer
to that approach as Active-Kmeans.

Yet, Active-Kmeans suffers from certain lim-
itations: It is sensitive to outlier examples, such
as out-of-distribution examples or examples with
mispredicted uncertainty scores. In addition, it
assumes that the B formed clusters are equally im-
portant, which may not always be the case.

COVERICL constructs the active graph and
is a more dynamic approach than the Active-
Kmeans baseline due to the MAXCOVER problem
it solves. MAXCOVER computes an “influence re-
gion” around each example. Outliers have small
influence regions, while examples that have the
same influence regions are not evenly helpful. That
way, MAXCOVER selects examples that interact

21281



with the most of the hard examples, but also cap-
ture distinct influence patterns, utilizing the limited
budget better.

B Pipeline of Selective Annotation
Methods

Table 8: Pipeline and time cost of compared methods.

Method Selective Annotation Inference
Method Time Cost (same for all)

Random Random Zero-cost k-shot (k ≪ B)
Kmeans Clustering Independent of the LLM k-shot (k ≪ B)
Hardest Uncertainty Depends on LLM k-shot (k ≪ B)
Votek Votek Depends on LLM k-shot (k ≪ B)

COVERICL COVERICL Depends on LLM k-shot (k ≪ B)

We elaborate on selective annotation in practice:

1. Selective annotation methods, such as COV-
ERICL, identify the examples to be annotated.

2. Human experts are employed to annotate the
examples; this can be a time-consuming pro-
cess depending on the task (e.g., GSM8K re-
quires writing elaborate arithmetic steps).

3. LLMs performs ICL inference with the an-
notated examples. Inference is the same re-
gardless of the selective annotation method
used.

While LLM-based methods, such as COVERICL,
Votek, and Patron, require more resources for Step
1, it is a one-time cost before human annotation
and inference. Thus, we believe that COVERICL
is suitable for practical settings. We will add this
discussion in the final version.

We provide the comparison Table 8, where com-
pared methods differ during the “Selection Phase”.
As it is shown, all methods have the same com-
putation cost during inference. During selection,
model-based methods (Votek, COVERICL) have
a higher cost, but this cost is only needed before
inference/deployment.

C Experimental Setting Details

C.1 Datasets
We performed empirical evaluation with nine NLP
datasets that cover well-studied tasks, such as
topic classification (AGNews (Zhang et al., 2015),
TREC (Hovy et al., 2001)), sentiment analysis
(SST2 (Socher et al., 2013), Amazon (McAuley
and Leskovec, 2013)), natural language inference
(RTE (Bentivogli et al., 2009), MRPC (Dolan et al.,

2004), MNLI (Williams et al., 2018)), text sum-
marization (XSUM (Narayan et al.)) and math
reasoning (GSM8K (Cobbe et al., 2021)).

Each dataset contains official train/dev/test splits.
We follow Votek and sample 256 examples ran-
domly from the test set (if it is publicly available,
otherwise from the dev set) as test data. For the
train data, we remove the annotations before our
setup. As it is infeasible to evaluate the LLM’s
feedback on all instances due to computational
constraints, e.g., Amazon dataset has more than
1 million instances, we randomly subsample 3,000
instances, which we cluster into 310 groups, and
we select the 310 examples closest to the centroids
as candidate examples for annotation. We repeat
the above processes for both the train and test sets
three times with different seeds and report mean
and standard deviation results. In transductive set-
tings, we evaluate performance on the unlabeled
examples, but we also exclude retrieving examples
that lead to self-label leakage issues.

C.2 Configurations

As summarized in Figure 2, the design space in-
cludes the unlabeled set U , the number of ICL ex-
amples k, the similarity space, the budget B, and
the LLM M . We experiment with six LLMs of
varying sizes (1.3B to 65B parameters), includ-
ing GPT-J (Wang and Komatsuzaki, 2021), Mo-
saic (MosaicML, 2023), Falcon (Penedo et al.,
2023), and LLaMa (Touvron et al., 2023) mod-
els, all of which are open-source and allow the
reproducibility of our research. We use the default
hyper-parameters of the Transformers library (Wolf
et al., 2020) for each LLM. We experiment with in-
ductive settings, where test instances come from an
unseen set Utest, but also for transductive settings,
where test instances come from U . We obtain the
initial pool of annotated examples L0 via kmeans
so that we reduce randomness. We summarize the
experimental configurations in Table 9.

D Further Experiments

D.1 Full Results & Significance Test

We present the full results of Table 1 in Table 10
(GPT-J-6B) and in Table 11 (GPT-Neo-1.3B).

We also run a significance test based on the
Wilcoxon Signed-Rank (Demšar, 2006), which
is a ranking-based metric that accounts for perfor-
mance differences. We provide the results compar-
ing COVERICL with Patron, the SOTA method
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Table 9: Experimental setting configurations.

Setting Models M Train/Test U Budget B k-shot Retriever, S Init.

Table 10 GPTJ Inductive 20 5 SBERT |L0| = 10
Tables 5, 12 GPT-Neo Inductive 20 5 SBERT |L0| = 10
XSUM Falcon-40B, LLaMa-65B Transductive 10 Context-limit SBERT Zero-shot
GSM8K Falcon-40B, LLaMa-65B Transductive 20 5 BERT,SBERT Zero-shot
Table 4 GPT-Neo Inductive 20 5 SBERT, RoBERTa, BERT |L0| = 10
Figure 6 GPT-Neo Transductive 0-45 Context-limit SBERT Zero-shot
Figure 5 GPT-J, MPT, Falcon, LLaMa (6-7B) Transductive 0-20 Context-limit SBERT Zero-shot

Appendix D GPT-J, GPT-Neo Inductive 20 5 SBERT |L0| = 10

Context-limit means that we retrieve as many few-shot examples as the input token-length limit allows. For example, XSUM has long
sequences, where we usually have 3-shot examples, while for TREC we can use as many as 80-shot examples.

for low-budget AL, using GPT-J. According to
the results in Figure 8, CoverICL’s performance
is significantly better than Patron’s performance
at p < .05 (see the last line of the appended results,
highlighted in blue color).

D.2 Uncertainty Threshold

By default, we consider 50% (θ = 0.5) of the exam-
ples with the lowest confidence as hard examples.
Table 12 shows results when we focus on harder
examples by setting θ = 0.33 for COVERICL+.
Interestingly, COVERICL+’s performance can be
further boosted with careful tuning of the uncer-
tainty threshold. Thus, automatically determining
which examples are considered as hard examples
for the models seems a promising research direc-
tion.

D.3 Graph Ablation

We experiment on the importance of graph-based
algorithms, such as COVERICL. We implement
different selection algorithms, such as clustering
methods, that rely on (i) distances between points
(Kmeans, Hierarchical Clustering), (ii) distances
between graph-nearest points (Max Degree, Graph
Clustering, Graph Propagation, Graph MaxCover),
or (iii) none of the previous (Max Uncertainty).
Methods in ‘(ii)’ are graph-based.

As Table 13 shows, our proposed Graph-based
MAXCOVER (COVERICL) algorithm outperforms
competing alternatives. Overall, graph-based al-
gorithms outperform non-graph methods, showing
the importance graph-based solutions for ICL.

Furthermore, we experiment using a threshold-
based graph (δ-graph) instead of the m-nn graph.
To determine threshold δ, we compute the cosine
similarity between all nodes and set δ such as each
node has m neighbors on average (at the m-nn
graph each nodes has exactly m neighbors). As Ta-
ble 14 shows, using the δ-graph performs slightly
worse than the m-nn graph. We hypothesize that

Figure 8: Significance test based on Wilcoxon Signed-
Rank at p-value < 0.05.
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Table 10: Performance comparison for GPT-J (6B).

Topic Classification Sentiment Analysis Natural Language Inference
AGNews TREC SST2 Amazon RTE MRPC MNLI

Random 68.87±5.39 49.34±3.19 81.63±0.30 87.89±1.77 52.86±2.41 69.01±4.61 39.58±3.98

Hardest 72.13±2.12 35.93±5.53 82.67±1.64 87.36±0.66 55.33±2.25 66.80±5.25 38.80±1.11

Fast-votek 73.69±2.39 49.61±4.43 78.99±4.53 89.58±0.80 53.00±0.49 68.23±2.89 39.97±3.98

IDEAL 74.73±2.43 39.57±6.33 78.38±8.14 88.41±0.80 56.77±0.48 66.27±3.73 40.23±1.59

Votek 72.26±1.27 45.83±1.75 80.45±1.47 85.80±3.80 54.16±2.30 68.10±2.75 39.72±2.07

Patron 75.90±1.81 44.13±6.92 81.89±6.39 90.88±2.57 55.20±1.27 66.40±5.25 38.53±2.57

Active-Kmeans 73.56±2.96 50.64±9.11 84.11±3.25 91.01±1.77 52.73±2.21 66.53±4.78 38.66±4.50

Best (Avg.) Active-Kmeans (62.10) Active-Kmeans (87.56) IDEAL (54.42)

COVERICL 76.89±3.01 51.95±8.43 82.81±1.39 90.49±1.57 56.90±1.75 70.17±1.72 40.36±1.75

COVERICL+ 77.08±1.11 53.38±5.10 84.24±1.32 92.45±1.50 55.07±0.85 68.49±0.97 36.58±1.12

Best (Avg.) COVERICL+ (65.23) COVERICL+ (88.35) COVERICL (55.81)

∆-Gain (Absolute) +3.13 +0.79 +1.39

Table 11: Performance comparison for GPT-Neo (1.3B).

Topic Classification Sentiment Analysis Natural Language Inference
AGNews TREC SST2 Amazon RTE MRPC MNLI

Random 59.47±8.54 54.68±1.68 68.48±1.87 73.95±2.03 48.30±1.30 64.48±7.67 40.99±0.97

Fast-votek 62.23±3.89 46.48±3.04 69.78±8.34 69.39±0.98 50.64±1.02 64.19±0.97 38.40±0.92

IDEAL 69.00±2.17 44.66±9.22 73.17±5.10 67.70±0.97 52.47±2.94 63.27±4.18 36.97±1.47

Votek 62.77±4.82 53.12±4.07 73.69±9.05 75.13±0.98 49.99±0.32 67.44±2.96 39.18±1.60

Hardest 65.10±2.43 49.34±2.17 71.48±5.32 75.00±2.49 52.86±0.80 61.84±4.79 37.49±1.77

Patron 69.39±1.87 49.34±2.17 71.48±5.32 75.00±2.49 52.86±0.80 61.84±4.79 37.49±1.77

Active-Kmeans 70.17±1.84 48.24±0.98 77.86±1.02 75.77±3.62 53.77±0.73 64.71±7.39 39.71±1.03

Best (Avg.) Active-Kmeans (59.21) Active-Kmeans (76.82) Votek (52.20)

COVERICL 70.95±1.87 55.33±2.57 79.68±1.77 77.73±2.23 53.12±1.59 67.05±8.10 42.96±2.92

COVERICL+ 69.39±1.35 59.89±2.07 79.03±2.47 77.08±1.50 51.16±1.39 65.69±8.92 40.49±2.04

Best (Avg.) COVERICL+ (64.64) COVERICL (78.71) COVERICL (54.38)

∆-Gain (Absolute) +5.53 +1.99 +2.28

Table 12: Ablation study on hyper-parameter θ, which
controls the number of the examples that are considered
as hard ones.

TREC SST2 Amazon

Votek 53.12±4.07 73.69±9.05 75.13±0.98

*COVERICL+ (θ = 0.5) 59.89±2.07 79.03±2.47 77.08±1.50

COVERICL+ (θ = 0.33) 60.28±3.13 78.77±2.59 78.90±1.14

*Denotes the default value.

using the δ-graph gives more importance on the
semantics of the train distribution (as δ value is
computed based on the similarity scores between
all train examples), which may not always general-
ize well to the test distribution.

E Task Prompts

As a design choice of the input prompts, we slightly
modify the templates proposed by Gao et al. (2021)
to transform them as a continuation task. We find
that these are more challenging prompts for the
large LMs, which we present in Table 15 (top).
Next, we experiment with alternative prompt tem-
plates similar to Su et al. (2023), as shown in Ta-
ble 15 (bottom).

Table 13: Performance comparison of graph-based and
non-graph methods.

AGNews SST2

(i) Kmeans (Active-Kmeans) 73.56 84.11
(i) Hierarchical clustering 72.93 80.79
(ii) Max Degree (threshold-based) 76.17 81.90
(ii) Graph Clustering (Fast-votek) 73.69 78.99
(ii) Graph Uncertainty Propagation (Patron) 75.90 81.89
(ii) Graph-based MAXCOVER (COVERICL) 77.08 84.24
(iii) Max Uncertainty (Hardest) 72.13 82.67

Table 16 reports results when we use alterna-
tive ICL prompt templates (Table 15) for the input
examples. COVERICL is robust to the design of
the prompt templates, where it outperforms other
baselines in most datasets.

F Dataset Examples

We provide examples of these datasets in Table 17,
which we access via Hugging Face package (Lhoest
et al., 2021).
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Table 14: Graph ablation study for COVERICL using GPT-J with different graph construction approaches.

AGNews TREC SST2 Amazon RTE MRPC MNLI

m-nn graph 77.08±1.11 53.38±5.10 84.24±1.32 92.45±1.50 56.90±1.75 70.17±1.72 40.36±1.75

δ-graph 76.17±3.45 50.51±4.65 81.90±2.48 88.80±1.57 56.63±3.23 68.75±1.93 40.62±2.08

Table 15: Prompt templates for the ICL demonstrations.

Task Template Continuation (label word)

Default
AGNews Content: < S1 > \n World, Sport, Business, Sci-Tech
TREC Content: < S1 > \n Abbreviation, Entity, Description, Human, Location, Numeric
SST2 < S1 >. It was great, terrible
Amazon < S1a >< S1b >. It was great, terrible
RTE < S1 >? [MASK], < S2 > [MASK]: Yes, [MASK]: No
MRPC < S1 >? [MASK], < S2 > [MASK]: Yes, [MASK]: No
MNLI < S1 >? [MASK], < S2 > [MASK]: Yes, [MASK]: Maybe, [MASK]: No

Alternative
AGNews Content: < S1 > Topic: World, Sport, Business, Sci-Tech
TREC Content: < S1 > Answer Type: Abbreviation, Entity, Description, Human, Location, Numeric
SST2 Content: < S1 > Sentiment: Positive, Negative
Amazon Title: < S1a > Review: < S1b > Sentiment: Positive, Negative
RTE < S1 >. Question: < S2 >. True or False? Answer: True, False
MRPC Are the following sentences equivalent or not equivalent? < S1 > \n < S2 > equivalent, not equivalent
MNLI < S1 >. Based on that information, is the claim < S2 > True, False, or Inconclusive? Answer: True, Inconclusive, False

Table 16: Prompt template ablation study.

GPT-Neo GPT-J
AGNews TREC SST2 Amazon RTE MRPC MNLI

Default Prompts
Random 59.47±8.54 54.68±1.68 68.48±1.87 73.95±2.03 52.86±2.41 69.01±4.61 39.58±3.98

Votek 62.77±4.82 53.12±4.07 73.69±9.05 75.13±0.98 54.16±2.30 68.10±2.75 39.72±2.07

COVERICL 70.95±1.87 55.33±2.57 79.68±1.77 77.73±2.23 56.90±1.75 70.17±1.72 40.36±1.75

Alternative Prompts
Random 73.69±1.21 51.76±4.55 59.89±3.98 73.82±3.35 56.41±2.13 56.37±3.72 38.93±1.18

Votek 72.78±2.12 50.38±5.90 64.84±2.92 73.43±2.23 56.38±2.70 51.95±2.53 40.49±2.05

COVERICL 76.95±1.27 54.94±1.43 65.88±4.58 75.64±1.29 56.37±1.29 59.22±2.39 35.40±1.31
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Table 17: Dataset examples. < S1 > denotes the input sequences.

Dataset Task Example x Labels/Annotations y

AGNews Topic Classi-
fication

< S1 >: “Amazon Updates Web Services
Tools, Adds Alexa Access The Amazon Web
Services (AWS) division of online retail giant
Amazon.com yesterday released Amazon E-
Commerce Service 4.0 and the beta version of
Alexa Web Information Service.”

World, Sport, Business,
Sci-Tech

TREC Answer Type
Classifica-
tion

< S1 >: “What is the date of Boxing Day?” Abbreviation, Entity, De-
scription, Human, Loca-
tion, Numeric

SST2 Sentiment
Analysis

< S1 >: “covers this territory with wit and
originality , suggesting that with his fourth
feature”

Positive, Negative

Amazon Sentiment
Analysis

< S1a >:“Very Not Worth Your Time”, <
S1b >:“The book was written very horribly.
I would never in my life recommend such a
book..."

Positive, Negative

RTE Natural Lan-
guage Infer-
ence

< S1 >:“In a bowl, whisk together the
eggs and sugar until completely blended and
frothy.”, < S2 >:“In a bowl, whisk together
the egg, sugar and vanilla until light in color.”

Entailment,
Not Entailment

MRPC Paraphrase
Detection

< S1 >:“He said the foodservice pie business
doesn’t fit the company’s long-term growth
strategy.”, < S2 >:“The foodservice pie busi-
ness does not fit our long-term growth strat-
egy.”

Equivalent, Not Equiva-
lent

MNLI Natural Lan-
guage Infer-
ence

< S1 >:“The new rights are nice enough”,
< S2 >: “Everyone really likes the newest
benefits”

Entailment, Neutral, Con-
tradiction

XSUM Summarization < S1 >:“The 3kg (6.6lb) dog is set to be-
come part of a search-and-rescue team used
for disasters such as earthquakes. Its small size
means it will be able to squeeze into places too
narrow for dogs such as German Shepherds.
Chihuahuas, named after a Mexican state, are
one of the the smallest breeds of dog. "It’s
quite rare for us to have a chihuahua work
as a police dog (said a police spokeswoman
in Nara, western Japan). We would like it to
work hard by taking advantage of its small
size. Momo, aged seven, will begin work in
January.”

“A chihuahua named
Momo (Peach) has passed
the exam to become a
dog in the police force in
western Japan, in what
seems to be a first.”

GSM8K Math Rea-
soning

< S1 >:“James writes a 3-page letter to 2
different friends twice a week. How many
pages does he write a year?”

“He writes each friend
3*2=6 pages a week So
he writes 6*2=12 pages ev-
ery week That means he
writes 12*52=624 pages a
year. Thus, the answer is
624.”
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