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Abstract

In recent years, Large Language Models
(LLMs) have demonstrated remarkable capa-
bilities across various domains. Within the
training pipeline of LLMs, the Reinforcement
Learning with Human Feedback (RLHF) phase
is crucial for aligning LLMs with human pref-
erences and values. Label smoothing, a tech-
nique that replaces hard labels with soft labels,
emerges as promising techniques to enhance
RLHF training. Despite the benefits, the choice
of label smoothing parameters often relies on
heuristic approaches and lack theoretical under-
standing. This paper addresses the challenge
of selecting the label smoothing parameter in
a principled manner. We introduce Confidence
Aware Label Smoothing (CALS), a method
that iteratively updates the label smoothing pa-
rameter based on preference labels and model
forecasts. Our theoretical analysis character-
izes the optimal label smoothing parameter,
demonstrates its dependence on the confidence
level, and reveals its influence on training dy-
namics and equilibrium. Empirical evaluations
on state-of-the-art alignment tasks show that
CALS achieves competitive performance, high-
lighting its potential for improving alignment.

1 Introduction

Large Language Models (LLMs), empowered by
deep transformer architecture (Vaswani et al., 2017)
and huge text datasets, have acquired remarkable
capabilities in various domains (Brown et al., 2020;
Bubeck et al., 2023; Chowdhery et al., 2023),
achieving tremendous success on diverse tasks.
The full training pipeline of LLMs can be divided
into three stages: Pretraining phase (Radford et al.,
2018) where the LLM is trained with unsupervised
learning on huge corpus of text data, Supervised
Fine-Tuning (SFT) phase (Wei et al., 2021) where
the LLM is fine-tuned with supervised learning
on datasets for the downstream task, and Rein-
forcement Learning with Human Feedback (RLHF)

phase (Stiennon et al., 2020; Ouyang et al., 2022)
where the LLM is trained on pairwise (or listwise)
comparison dataset to improve the alignment with
human preferences. In particular, the RLHF phase
plays a critical role in controlling the model behav-
ior and aligning LLMs with human values (Perez
et al., 2022; Ganguli et al., 2022; Bai et al., 2022).

Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is widely adopted as the RL optimizer
in RLHF phase. Recently, Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) emerges as
a promising alternative to Reinforcement Learning
methods, as it directly optimizes the model with a
classification loss and bypasses the need of fitting a
separate reward model. In DPO and more generally
MLE training, label smoothing (Müller et al., 2019;
Mitchell, 2023) is a standard technique to mitigate
the noise in preference labels and overfitting is-
sues. However, the choice of the label smoothing
parameter is often set heuristically and theoretical
understanding remains scarce. Therefore in this
work, we ask the question:

How to select the label smoothing parameter in a
more principled way?

To answer this question, we first analyze the trade-
off between bias and variance of the gradient esti-
mate and then characterize the optimal choice of
the label smoothing parameter that minimize the
expected error of gradient estimate under different
distance measures. Our theorem suggests that the
label smoothing parameter should depend on the
confidence level of the preference label. Motivated
by this result, we propose Confidence Aware La-
bel Smoothing (CALS), a method that iteratively
updates the label smoothing parameter to reflect
the confidence of preference label. Our method
ensures that the gradient is weighted by both the
confidence level of preference label and the cor-
rectness of model forecast based on preference la-
bel and model forecasts, illustrated in Figure 1.
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(a) DPO with no/constant label smoothing. (b) DPO with confidence-aware label smoothing.

Figure 1: Illustration of our method, where pθ(y
+ ≻ y−) represents how correctly the model is able to predict

human preference and p∗(y+ ≻ y−) corresponds to how confident the preference label is. In vanilla DPO gradient,
the likelihood update is weighted by pθ(y

+ ≻ y−) in the sense that samples with lower pθ(y+ ≻ y−) (where
the model is incorrect) get faster update. This is illustrated in Figure 1a. In confidence-aware label smoothing
(Figure 1b), we add another dimension to the diagram, so that the update rate is also dependent on confidence
of preference labels. In effect, samples with lower pθ(y

+ ≻ y−) (where the model is incorrect) and higher
p∗(y+ ≻ y−) (where the label is confident) will obtain faster update.

We analyze the equilibrium and dynamics of DPO
with CALS, showing that our proposed method has
a more stable gradient and conservative equilib-
rium. Finally, we empirically evaluate our method
in state-of-the-art alignment tasks, which shows
competitive performance over the baseline.

1.1 Related works
RLHF. Ziegler et al. (2019); Stiennon et al.
(2020); Ouyang et al. (2022); Bai et al. (2022) es-
tablish RLHF pipelines for LLM alignment. With
the framework, various methods refine the PPO-
based RLHF algorithms, by improving the re-
ward function training (Zhu et al., 2023a; Song
et al., 2024; Zhu et al., 2024), reducing variance
in RL optimization (Wu et al., 2023; Zhu et al.,
2023b), or including sampling techniques (Dong
et al., 2023; Gulcehre et al., 2023; Wang et al.,
2024). Recently, alternative methods have been pro-
posed to directly align human preference, including
DPO (Rafailov et al., 2023), RRHF (Yuan et al.,
2023), IPO (Azar et al., 2024), DRPO (Chang et al.,
2024), Slic (Zhao et al., 2023), RSO (Liu et al.,
2023), GPO (Tang et al., 2024),KTO (Ethayarajh
et al., 2024), LiPO (Liu et al., 2024), ΨPO (Azar
et al., 2024), and GRPO (Ramesh et al., 2024).
These methods focuses on the form of loss func-
tions, and are parallel to our work.

Label smoothing. Label smoothing has been
used successfully in improving deep learning
models in various tasks (Szegedy et al., 2016;
Chorowski and Jaitly, 2016; Zoph et al., 2018).
In knowledge distillation, using soft labels help the

training of student networks (Hinton et al., 2015).
Various methods propose adaptive or instance-
dependent label smoothing techniques (Krotha-
palli and Abbott, 2020; Maher and Kull, 2021;
Liu et al., 2022; Park et al., 2023; Guo et al.,
2024) to strengthen the method. It has been shown
that appropriate label smoothing can improve gen-
eralization (Müller et al., 2019), mitigate label
noises (Liang et al., 2024), and prevent reward
overfitting (Zhu et al., 2024).

2 Preference Learning

RLHF pipelines. Reinforcement Learning with
Human Feedback (Ziegler et al., 2019; Stiennon
et al., 2020; Ouyang et al., 2022; Bai et al., 2022)
is a process to align with human preference, typi-
cally happening after training after pretraining and
Supervised Finetuning (SFT). In this phase, a set
of preference data (x, y+, y−) is given, where x is
the prompt and y+ is the preferred response over
y−.

First, RLHF trains a reward function rϕ(x, y)
that maps a pair of prompt and response to a scalar
value. In Bradley-Terry model (Bradley and Terry,
1952), the probability of preferring response y1
over y2 given prompt x is expressed by

p(y1 ≻ y2|x) =
exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))

= σ(r∗(x, y1)− r∗(x, y2))

where r∗ is the ground-truth reward and σ(x) =
1/(1 + exp(−x)) is the sigmoid function. Under
this model, RLHF learns the reward function by
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minimizing the MLE loss:

Lrew(rϕ;D)

= − E(x,y+,y−)∼D[log σ(rϕ(x, y
+)− rϕ(x, y

−))]
(1)

where D is the empirical distribution over the train-
ing dataset.

Using the learned reward function rϕ, RLHF
then applies Reinforcment Learning (RL) to train
the policy model πθ, maximizing the objective

E x∼DRL
y∼π(·|x)

[rϕ(x, y)− β ·KL(πθ(·|x)∥πsft(·|x))]

(2)
where DRL is the empirical distribution over the
training dataset for the RL phase, KL(·∥·) is the
KL-divergence, and πsft is the model learned af-
ter the SFT phase. The regularization term −β ·
KL(πθ(·|x)∥πsft(·|x)) is used to mitigate the distri-
bution shift issue and to prevent over-optimization.
Typically, PPO (Schulman et al., 2017) is used to
optimize the objective function.

Direct preference learning. Besides RLHF, di-
rectly learn from human preference may also be
directly learned (Rafailov et al., 2023; Zhao et al.,
2023; Azar et al., 2024) without the need of first
learning a reward function. Among Direct Prefer-
ence Optimization (Rafailov et al., 2023) (DPO)
directly optimizes the following objective

LDPO(πθ;D) = E(x,y+,y−)∼D
[

− log σ

(
β
πθ(x, y

+)

πsft(x, y+)
− β

πθ(x, y
−)

πsft(x, y−)

)]

By plugging in the optimal solution to the KL-
constrained objective in Eq. (2)

r(x, y) = β
πθ(x, y)

πsft(x, y)
+ β logZ(x)

it is shown that DPO optimizes the same objective
as in Eq. (1).

2.1 RLHF as a classification problem

RLHF can be rewritten as a classification prob-
lem over the data (w, z), where the input w =
(x, y1, y2) is a tuple of one prompt and two re-
sponses, and the label z = 1(y1 ≻ y2) ∈ {0, 1}
indicates whether human prefers y1 or y2. The
prediction model can be expressed by the reward
model:

pϕ (w) = σ (rϕ(y1|x)− rϕ(y2|x))

or directly by the preference model:

pθ (w) = σ

(
log

πθ(y1|x)
πsft(y1|x)

− log
πθ(y2|x)
πsft(y2|x)

)
.

In either case, RLHF can be expressed as learning
the prediction model p with Binary Cross-Entropy
(BCE) loss

LBCE(p;D) =
n∑

i=1

li (3)

where li = −zi log p(wi)+(1−zi) log(1−p(wi))

Label smoothing. Label smoothing may be ap-
plied to classification losses to improve generaliza-
tion and tolerance to label noises (Szegedy et al.,
2016; Mitchell, 2023; Zhu et al., 2024; Liang et al.,
2024). Let αi denote the label smoothing parame-
ter for datapoint (wi, zi), then the BCE loss with
label smoothing is given by

Lα
BCE(p;D) =

n∑

i=1

lαi (4)

where lαi = −(1 − αi) ·
(
zi log p(wi) + (1 −

zi) log(1 − p(wi))
)
− αi ·

(
(1 − zi) log p(wi) +

zi log(1− p(wi))
)
.

3 Gradient Estimation

In this section, we analyze the influence of label
smoothing parameters on gradient estimation. Con-
sider the BCE loss in Eq. (3) . For each li, its
population version l∗i := Ezi [li] represents the
average loss on wi under the ground truth distri-
bution zi ∼ Bernoulli(p∗(wi)), where p∗(wi) =
σ(r∗(x, y1) − r∗(x, y2)) in Bradley-Terry model.
Essentially, l∗i is the KL-distance between the
true distribution of zi and the model prediction,
Bernoulli(pθ(wi)). Our objective is to minimize
l∗i , which is equivalent to fitting pθ(wi) to p∗(wi).

In gradient-based methods, we estimate gradi-
ents using ∇lαi

i instead of ∇(l∗i ). The parameter
αi controls the trade-off between the bias and vari-
ance: when α = 0, the gradient estimate is unbi-
ased, in the sense that Ezi [∇lαi

i ] = ∇(l∗i ); when
αi = 0.5, the gradient estimate has zero variance,
i.e., Var(∇lαi

i ) = 0. Therefore, it is crucial to de-
termine the α∗

i that minimizes the distance between
∇lαi

i and ∇l∗i . This is answered by the following
theorem.

Theorem 3.1. We abbreviate q := p∗(wi). Con-
sider the expected distance Ezi [d(∇lαi

i ,∇l∗i )] be-
tween the gradient estimate ∇lαi

i and the expected
gradient ∇l∗i under distance d, then:
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1. if d(u, v) = ∥u − v∥ββ where ∥ · ∥β is the
ℓβ metric (β > 1), the expected distance
Ezi [d(∇lαi

i ,∇l∗i )] is minimized when α∗ is
the unique solution of the equation

q(q + x− 1)β−1 − (1− q)(q − x)β−1 = 0

2. when d(u, v) = 1(u ̸= v) is the ℓ0 metric, the
expected distance Ezi [d(∇lαi

i ,∇l∗i )] is mini-
mized when

α∗
i = min {q, 1− q} .

The proof is found in Appendix A. The above
result characterizes the optimal choice of the label-
smoothing parameter under a range of distance
measures. Specifically, for α2, the optimal α∗ has
the closed form expression

α∗
i = 2p∗(wi)− 2p∗(wi)

2.

Figure 2 illustrates the curves of the optimal

Figure 2: Optimal label smoothing parameter.

label-smoothing parameter with respect to q, un-
der different β. It’s observed that α∗ always lie
in [min {q, 1− q} , 0.5], indicating a conservative
loss function. Furthermore, α∗ increases with
min {q, 1− q}: when q = 1/2, the optimal pa-
rameter α∗ = 1/2 and ∇li = ∇l∗; when q = 0, 1,
the optimal parameter α∗ = 0. This aligns with the
intuition that the label smoothing parameter should
be small when the label has high confidence, while
it can be set higher when the label is uncertain.

4 Confidence Aware Label Smoothing
(CALS)

Motivated by the previous section, we develop
confidence-aware label smoothing where the label
smoothing parameter is set to reflect the confidence
level of the label. Ideally, we hope the parameter
for data (w, z) to be certain function of the confi-
dence per data: p∗(w) = P∗(z = 1|w). However,
p∗(w) is usually not accessible and difficult to esti-

mate as each individual prompt only appears once
or a few times in the RLHF dataset.

To deal with this issue, we define a function
α̃ : [0, 1] → [0, 0.5) such that for any x ∈ [0, 1],

α̃(x) = (P∗(z ̸= 1(x > 0/5)|pθ(w) = x))<0.5

where the probability P∗ is with respect to w ∼
D and z ∼ Bernoulli(p∗(w)), and the notation
(·)<0.5 is defined with (x)<0.5 = x · 1(x <
0.5),∀x ∈ [0, 1]. Then for each data point
w, we set the label-smoothing parameter to be
α̃(pθ(w)). To understand this quantity, first notice
that pθ(w) = x means the model forecast that z =
1 happens with probability x, and x > 0/5 means
the model predicts that z = 1 is more likely to hap-
pen. Therefore, P∗(z ̸= 1(x > 0/5)|pθ(w) = x)
represents the probability that the model pθ’s pre-
diction 1(x > 0/5) misaligns with the realiza-
tion z, conditional on that the model forecasts x
as the probability. Then we clip the conditional
probability with (·)<0.5 to ensure that it always
falls in [0, 0.5). Finally, α̃(pθ(w)) expresses the
frequency that the prediction fails to align with
realization among the data where the forecast is
pθ(w), thereby reflecting the true confidence level
of the label per forecast, instead of per data. This
quantity is related to notion of calibration (Foster
and Vohra, 1998; Hébert-Johnson et al., 2018), and
it converges to the true probability p∗θ(w) under
certain regularity conditions (Blasiok et al., 2024).
The lower the confidence level, the higher the value
of α̃, suggesting that the gradient update should be
more conservative.

This gives rise to the BCE loss with confidence-
aware label smoothing:

Lα
CALS(p;D) =

n∑

i=1

lα̃i (5)

where lα̃i = −(1 − α̃(p(wi))) ·
(
zi log p(wi) +

(1 − zi) log(1 − p(wi))
)
− α̃(p(wi)) ·

(
(1 −

zi) log p(wi) + zi log(1− p(wi))
)
.

4.1 DPO with CALS

Now we introduce our DPO algorithm with
confidence-aware label smoothing, detailed in Al-
gorithm 1. The algorithms takes the preference
dataset D and a prior α0 as inputs. We use a
symmetric (over line x = 1/2) piecewise-constant
function α : [0, 1] → [0, 0.5) to model α̃. In partic-
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Algorithm 1 DPO with confidence-aware label smoothing
1: Input: D = {(xi, y

+
i , y−

i ), i ∈ [n]}, α0

2: for t = 1, 2, . . . , T do
3: Sample mini-batch Dt ⊂ D
4: Apply gradient descent

θt+1 ← θt − η · ∇θLα
CALS(πθt ,Dt)

with the loss function over batch Dt

Lα
CALS(πθ;Dt) = −

∑

j∈D
((1− α(pθ(wj))) · log pθ(wj) + α(pθ(wj)) · log (1− pθ(wj)))

where

α(pθ(wj)) = α̂k, if pθ(wj) ∈
[
1

2
+

k

2K
,
1

2
+

(k + 1)

2K

]
∪
[
1

2
− k

2K
,
1

2
− (k + 1)

2K

]

pθ(wj) = σ

(
log

πθ(y
+
j |xj)

πsft(y
+
j |xj)

− log
πθ(y

−
j |xj)

πsft(y
−
j |xj)

)

5: Update label smoothing parameters (α̂0, . . . , α̂K−1):

α̂k ←
α0 ·Nk +

∑t
i=1

∑
(w,z)∈Di

1

(
pθi(w) ∈

[
1
2
− k

2K
, 1
2
− (k+1)

2K

])

Nk +
∑t

i=1

∑
(w,z)∈Di

1

(
pθi(w) ∈

[
1
2
+ k

2K
, 1
2
+ (k+1)

2K

]
∪
[
1
2
− k

2K
, 1
2
− (k+1)

2K

]) . (6)

6: end for
7: Return πθT

ular, we discretize [0, 1] into 2K bins[
0,

1

2
− K − 1

2K

]
, . . . ,

[
1

2
− 1

2K
,
1

2

]
,

[
1

2
,
1

2
+

1

2K

]
, . . . ,

[
1

2
+

K − 1

2K
, 1

]

Notice that for any preference data (w, z) =
(x, y1, y2, z), the BCE loss l(pθ; (w, z)) is invariant
under the flipping (y1, y2) → (y2, y1) and z → 1−
z. Thus we merge the bins

[
1
2 + k

2K , 12 + (k+1)
2K

]

and
[
1
2 − k

2K , 12 − (k+1)
2K

]
, and assign the same

value α̂k. Eq. (6) displays how we update α̂k.
At initialization, all α̂k’s are set as the prior α0.
The value Nk represents the weight of the prior: a
larger Nk indicates that α̂k is updated more slowly
and remains closer to the prior. In the denomina-
tor, the second term expresses the number of the
past data where the model’s forecast lies in interval[
1
2 + k

2K , 12 + (k+1)
2K

]
∪
[
1
2 − k

2K , 12 − (k+1)
2K

]
. The

numerator indicates the number of data out of those
considered in the denominator where the model’s
prediction does not align with the human feedback,
corresponding to the event z ̸= 1(pθ(w) > 0.5).
Summing up, α̂k forms an estimate of the confi-
dence α̃.

A nice property of α̂ is that it doesn’t involve
additional computation related to the model. In fact,
the terms pθi(wj) have been already computed in
the forward pass of the model. As a result, the
function αt can be updated on the fly, using only
pre-computed values.

4.2 Theoretical analysis

In this section, we study the theoretical property of
the BCE loss in Eq. (4).

Equilibrium. The following result characterizes
the global minimizer of the population loss when
the label smoothing parameter is set as a function
of model forecast.

Theorem 4.1. Consider the population loss

Lα
CALS(θ;D) := E

[
l(pθ; (w, z))

]

where l(pθ; (w, z)) = −(1 − α(p(w))) ·(
z log p(w)+ (1− z) log(1− p(w))

)
−α(p(w)) ·(

(1−z) log p(w)+z log(1−p(w))
)
. For any func-

tion α : [0, 1] → [0, 0.5) , the population loss has
a unique minimizer p̃, such that for any w, p̃(w) is
the unique solution of the equation

p̃(w) = p∗(w) + α(p̃(w))− 2p∗(w)α(p̃(w)).
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Furthermore, when α is set as

α̃(x) = (P∗(z ̸= 1(x > 0/5)|pθ(w) = x))<0.5

then the minimizer p̃(w) is given by

p̃(w) =

{
1− 2p∗(w) + 2p∗(w)2, p∗(w) > 0.5

2p∗(w)− 2p∗(w)2, p∗(w) ≤ 0.5
.

Figure 3: Equilibrium of the population loss.

The proof is deferred to Appendix B. Figure 3
illustrates p̃(w) as a function of p∗(w) when α̃(x)
is set as (P∗(z ̸= 1(x > 0/5)|pθ(w) = x))<0.5. In
the equilibrium, α(p(w)) becomes the actual prob-
ability that the preference label aligns with the
model prediction. As compared to the ground
truth probability, it can be observed that p̃(w) is
more conservative in the sense that the prediction
is closer to 0.5. This implies that the model will
favor generating responses with higher likelihood
to be preferred by human.

Dynamics. We discuss the gradient of the loss
function on datapoint w = (x, y+, y−), written as

∇θl(pθ; (x, y
+, y−)) = λ ·

(
−∇θ log

πθ(y
+|x)

πθ(y−|x)

)

where

λ = 1− pθ(w)− α̃(pθ(w))

pθ(w) = σ

(
log

πθ(y
+|x)

πsft(y+|x)
− log

πθ(y
−|x)

πsft(y−|x)

)
.

In the expression of ∇θl(pθ; (x, y
+, y−)), the

component −∇θ log
πθ(y

+|x)
πθ(y−|x) serves as increasing

the likelihood of y+ and decreasing the likeli-
hood of y−. The weight λ controls the increas-
ing/decreasing rate of the likelihood. In λ, the term
1− pθ(w) represents how incorrectly the implicit
reward model orders the completions, and the term
α̃(pθ(w)) corresponds to how unconfident the hu-
man label is. Therefore, samples with incorrect
model forecast (i.e., large 1− pθ(w)) and high la-
bel confidence (i.e., low α̃(pθ(w))) will achieve
faster likelihood update, as depicted in Figure 1.

This is desirable for stabilizing the training and
preventing from overfit.

5 Experiments

5.1 Logistic regression
Task. We consider logistic regression over nor-
malized Gaussian data in Rd. The model fam-
ily is given by {pθ(x) = σ(θ⊤x) : θ ∈ Rd}.
The train and test data is sampled i.i.d. from
x ∼ N (0, Id/d), and y ∼ Bernoulli(pθ∗(x))
where θ∗ is the ground truth parameter. We fo-
cus on the near-high-dimensional setting where the
dimensionality d is not significantly smaller than
the number of training data. This scenario is com-
mon in RLHF, where LLMs typically possess large
model sizes.

Methods. We consider two confidence-aware la-
bel smoothing methods proposed in Theorem 3.1:

1. MLE-CALS-2: we set the label smoothing
parameter as α∗

i = 2p∗(wi) − 2p∗(wi)
2, i.e.,

the minimizer under ℓ2 metric.

2. MLE-CALS-0: we set the label smoothing
parameter as α∗

i = min{p∗(wi), 1− p∗(wi)},
i.e., the minimizer under ℓ0 metric.

We compare the methods MLE-CALS-2,
MLE-CALS-0 with standard MLE training with
no label smoothing.

Evaluation. We utilize BCE loss over a large test
dataset to evaluate the learned models. In particular,
we set the same initialization and test dataset, and
plot the mean and standard deviation of test loss
of the three algorithms. The mean and standard
deviation are computed over multiple samples of
the training dataset and the optimizer.

Results. Figure 4 displays the loss curves un-
der d = 20, 200, 500. It can be observed that
MLE-CALS-0 has lower average test losses than
the other two methods, which justify our selection
of this method in Algorithm 1. In comparison,
the test loss under MLE-CALS-2 achieves lower
variance. It is because the label smoothing param-
eter in MLE-CALS-2 is closer to 0.5, as shown
in Figure 2, suggesting more conservative training
dynamics.

5.2 Preference learning
We evaluate our proposed algorithms’ ability to
align with human preference.
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(a) d = 20, ntrain = 50, epoch = 100 (b) d = 200, ntrain = 103, epoch = 20 (c) d = 500, ntrain = 103, epoch = 50

(d) d = 20, ntrain = 50, epoch = 100 (e) d = 200, ntrain = 103, epoch = 20 (f) d = 500, ntrain = 103, epoch = 50

Figure 4: Mean and standard deviation of test loss in logistic regression.

Task. Our experiments explore explore open-
ended text generation task. The data come from Ul-
trafeedback dataset (Cui et al., 2023), a large-scale,
fine-grained dataset that contains diverse prefer-
ence values, and Orca (Mukherjee et al., 2023), a
rich instruction-tuning dataset. We finetune two
models of size 7B and 15B: Zephyr-7B (Tunstall
et al., 2023b) and Starchat2-15B (Tunstall et al.,
2023a). The base policies for alignment training
for both models have gone through supervised fine-
tuning.

Methods. We use DPO (Rafailov et al., 2023)
as the baseline method. For fair comparison, we
set the initialization α0 in Algorithm 1 to be the
same as the label smoothing parameter used in
DPO. We follow the state-of-the-art implementa-
tions of trl (von Werra et al., 2020) and alignment-
handbook (Tunstall et al., 2023b). A complete
configuration of training parameters can be found
in Appendix C.

Figure 5: GPT-4 comparison between our method and
the baseline, on Zephyr-7B and Starchat2-15B.

Figure 6: ArmoRM comparison between our method
and the baseline, on Zephyr-7B and Starchat2-15B.

Evaluation We evaluate algorithms using head-
to-head win rate between our method and the DPO
baseline. We consider two evaluators: GPT-4 (Ope-
nAI, 2023) and ArmoRM (Dong et al., 2024),
since the latter is the best model on the Reward-
Bench (Lambert et al., 2024) leaderboard1. The
dataset is split into training set and test set. For
each trained model, we generate responses on the
prompts of the test dataset, and use the evaluators
to compute the winning probability of our algo-
rithm versus the DPO baseline. For GPT eval-
uator, we use the prompt shown in Appendix D
to elicit GPT’s preference on response A or B
or tie, and we apply random flipping of the two
responses to mitigate the bias of GPT responses.
For ArmoRM, we directly compute the reward at-
tribute ‘ultrafeedback-overall_score’ of the prompt-
response pairs and compute the probability that our
method’s reward is higher.

1Retrieved on June 12 2024.
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5.2.1 Results
The GPT and ArmoRM evaluation results are
shown in Figure 5 and Figure 6 respectively. In
these figures, bars with dark blue color correspond
to the percentage of test data where the evaluator
prefers responses from our method, and bars with
light blue color correspond to the percentage of test
data where the evaluator prefers responses from
baseline method. GPT evaluator may also respond
with ‘tie’, indicating the two responses are close in
quality. The comparison exhibits that our method
has a higher winning rate compared to baseline, in
both 7B and 15B models. In the implementation,
we find that it is helpful to select larger Nk for
k ≤ K/2. This is due to that in the early phase
of the training there are typically a large number
of data points where the model’s forecast is close
to 0.5, and so setting larger Nk for those forecasts
can make sure that all α̂k’s update in a similar rate.

Effect of initialization. We further vary the la-
bel smoothing parameter of DPO and accordingly
the initialization α0 in Algorithm 1. For each
α ∈ {0.8, 0.9, 1.0}, we apply our algorithm and
the baseline on supervised-funetuned Zephyr-7B
model, while making sure that the initialization α0

in our method is the same as the label smoothing
parameter in DPO.

Figure 7: GPT-4 comparison between our method and
the baseline, under different label smoothing parameter
α.

Figure 8: ArmoRM comparison between our method
and the baseline, under different label smoothing param-
eter α.

The GPT and ArmoRM evaluation results are

shown in Figure 7 and Figure 8 respectively. One
can observe that our algorithm consistently out-
performs DPO under different label smoothing pa-
rameter initialization, affirming that it could better
align with human preference than the baseline. We
notice that the initialization parameter α0 has little
affect on the overall performance of our method.

6 Conclusions

In this paper, we present Confidence Aware La-
bel Smoothing (CALS) as a principled approach to
select the label smoothing parameter in Direct Pref-
erence Optimization (DPO) for the RLHF phase
of LLM training. By analyzing the trade-off be-
tween bias and variance in gradient estimation, we
found that the optimal label smoothing parameter
that minimizes the expected error under different
distance measures should align with the confidence
levels of the label. The proposed method ensures
that the gradient is weighted based on both the con-
fidence level of preference label and the correctness
of model forecast, leading to more accurate align-
ment with human preferences. Empirical results
on alignment tasks using state-of-the-art models
demonstrated that CALS improves performance
over baseline methods.

Limitations. While our proposed method shows
promising results in enhancing the alignment of
Large Language Models (LLMs) with human pref-
erences, it comes with some limitations. First,
CALS relies on the accurate estimation of confi-
dence levels for preference labels, which can be
challenging in scenarios where the data is sparse
or of low quality. Second, our analysis on gradi-
ent estimation in Theorem 3.1 is difficult to gen-
eralize to larger batch sizes. Furthermore, while
our empirical evaluations demonstrate competitive
performance, the generalizability of CALS across
different tasks and model architectures requires fur-
ther investigation.
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A Proof of Theorem 3.1

Proof. We first rewrite the loss

lαi
i = u · log p(wi) + (−1− u) · log(1− p(wi))

where the coefficient u is defined as

u = 2αizi − αi − zi.

The gradient of the empirical loss is given by

∇lαi
i =

(
u

p(wi)
+

1 + u

1− p(wi)

)
· ∇p(wi)

The gradient of the population loss is given by

∇l∗i =

( −q

p(wi)
+

1− q

1− p(wi)

)
· ∇p(wi)

If d(u, v) = ∥u − v∥ββ . The expected distance
Ezi [d(∇lαi

i ,∇l∗i )] expands as

E

[∣∣∣∣
u+ q

p(wi)
+

u+ q

1− p(wi)

∣∣∣∣
β

· ∥∇p(wi)∥ββ

]

= f(αi) ·
∥∇p(wi)∥ββ
pβ(1− p)β

where

f(x) = q · |x+ q − 1|β + (1− q) · |q − x|β.
Now it remains to minimize f(x). We may assume
without loss of generality that q > 1/2, while the
case q < 1/2 is symmetrical. First notice that
projecting any x ̸= [1−q, q] to the interval [1−q, q]
strictly decreases the value of f , thus the minimizer
lies in [1− q, q].

The derivative of f is given by

f ′(x)

= qβ(x+ q − 1)β−1 − (1− q)β(q − x)β−1.

Since f ′(1− q) < 0 < f ′(q) and f ′ is increasing
over [1− q, q], the minimizer is the unique zero of
f ′(x), i.e. the unique solution to the equation

qβ(x+ q − 1)β−1 − (1− q)β(q − x)β−1 = 0.

If d(u, v) = ∥u − v∥0. The expected distance
Ezi [d(∇lαi

i ,∇l∗i )] is equal to

q · 1(x = 1− q) + (1− q) · 1(x = q).

It follows that the minimizer is min{q, 1− q}.

B Proof of Theorem 4.1

Proof. We rewrite the loss as

E
[
u(w) · log pθ(w)+

+ (−1− u(w)) · log(1− pθ(w))
]

where u(w) = 2α(pθ(w))p
∗(w) − α(pθ(w)) −

p∗(w). Let p̃ be any the equilibrium solution, first
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order optimality gives

p̃(w) = p∗(w) + α(p̃(w))− 2p∗(w)α(p̃(w)).

Notice that this gives a injective map from p∗(w)
to p̃(w). It follows that p̃(w) is the unique solution
of the above equation.

When

α̃(x) = (P∗(z ̸= 1(x > 0/5)|pθ(w) = x))<0.5

we have

α̃(p̃(w)) =

{
1− p∗(w), p̃(w) > 0/5

p∗(w), p̃(w) ≤ 0/5
.

Plugging back to the first order optimality condi-
tion, we have

p̃(w) =

{
1− 2p∗(w) + 2p∗(w)2, p∗(w) > 0.5

2p∗(w)− 2p∗(w)2, p∗(w) ≤ 0.5
.

This completes the proof.

C Hyperparameters for Preference
Training

Hyperparameter Value(s)

Learning rate 5.0e-7

Batch size per device 8

Number of epochs 1

Temperature 0.05

Warmup ratio 0.1

Table 1: Hyperparameters for Zephyr-7B training. We
use AdamW (Kingma and Ba, 2014) optimizer.

Hyperparameter Value(s)

Learning rate 5.0e-7

Batch size per device 2

Number of epochs 2

Temperature 0.05

Warmup ratio 0.1

Table 2: Hyperparameters for Starchat2-15B training.
We use AdamW (Kingma and Ba, 2014) optimizer.

D Prompts for GPT Evaluation

For the following query to a chatbot,
which response is more helpful?

Query:
<prompt>

Response A:
<response_A>

Response B:
<response_B>

FIRST provide a one-sentence
comparison of the two responses
and explain which you feel is
more helpful. SECOND, on a new
line, state only ‘A’ or ‘B’ or
‘tie’ to indicate which response
is more helpful. Your response
should use the format:

Comparison: <one-sentence
comparison and explanation>
More helpful: <‘A’ or ‘B’ or
‘tie’>
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