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Abstract

In interactions between users and language
model agents, user utterances frequently ex-
hibit ellipsis (omission of words or phrases)
or imprecision (lack of exactness) to prioritize
efficiency. This can lead to varying interpre-
tations of the same input based on different
assumptions or background knowledge. It is
thus crucial for agents to adeptly handle the in-
herent ambiguity in queries to ensure reliability.
However, even state-of-the-art large language
models (LLMs) still face challenges in such
scenarios, primarily due to the following hur-
dles: (1) LLMs are not explicitly trained to deal
with ambiguous utterances; (2) the degree of
ambiguity perceived by the LLMs may vary
depending on the possessed knowledge. To ad-
dress these issues, we propose Alignment with
Perceived Ambiguity (APA), a novel pipeline
that aligns LLMs to manage ambiguous queries
by leveraging their own assessment of am-
biguity (i.e., perceived ambiguity). Experi-
mental results on question-answering datasets
demonstrate that APA empowers LLMs to ex-
plicitly detect and manage ambiguous queries
while retaining the ability to answer clear ques-
tions. Furthermore, our finding proves that
APA excels beyond training with gold-standard
labels, especially in out-of-distribution sce-
narios. The data and code are available at
https://github.com/heyjoonkim/APA.

1 Introduction

Large Language Models (LLMs) (Ouyang et al.,
2022; Team et al., 2023; Achiam et al., 2023) have
demonstrated remarkable capabilities in text gen-
eration, proving particularly effective for question-
answering (QA) tasks (Zhang et al., 2023; Etezadi
and Shamsfard, 2023). QA systems in the wild fre-
quently encounter unexpected user input, such as
unanswerable (Kim et al., 2023b; Yin et al., 2023)
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When was the last time UGA won a national championship?

1. National tennis championship, 2019

2. National golf championship, 2005

3. National baseball championship, 1990

…

1. National tennis championship, 2019

Can you clarify 
your question?

UGA won the national
championship in 2019.

Model A Model B

Intrinsic Model Knowledge Intrinsic Model Knowledge

Figure 1: An example of an ambiguous query from
AmbigQA. The term “national championship” poses
diverse denotations, causing ambiguity. (Left) A model
with diverse relevant knowledge might perceive the case
as ambiguous. (Right) In contrast, the query can be
deemed unambiguous when the model lacks substantial
related knowledge. Thus, the perceived ambiguity may
differ depending on the model’s intrinsic knowledge.

or ambiguous questions (Cole et al., 2023; Lee
et al., 2023; Kim et al., 2023a). To build an agent
that is both reliable and user-friendly, it is essential
for the model to robustly handle such inputs. In this
work, we seek to extend the scope of research to
manage invalid inputs effectively. Specifically, we
focus on managing “ambiguity” (Gleason, 1963;
Mackay and Bever, 1967), which poses a signif-
icant challenge in Natural Language Processing
(NLP) (Jurafsky, 1996).

Ambiguity refers to cases where an expression
conveys multiple denotations (Wasow et al., 2005).
Users may pose queries with clear intentions that,
possibly due to insufficient domain knowledge or
omission during the utterance, result in ambiguous
requests. If a model arbitrarily responds to such am-
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biguity, there is a risk of misinterpreting the user’s
original intent, potentially harming the model’s re-
liability. This is particularly evident in domains
requiring high reliability, such as legal (Schane,
2002; Choi, 2024) or medical (Stevenson and Guo,
2010; Gyori et al., 2022), where misinterpretations
may lead to severe consequences. Despite such im-
portance, approaches to manage ambiguity robustly
are still significantly unexplored.

Properly processing ambiguous inputs is chal-
lenging primarily due to the following two hurdles.
Firstly, models are not trained to express ambi-
guity explicitly. Even if a model is capable of
recognizing ambiguity, confirming this recognition
requires explicit cues from the model itself, such
as expressing uncertainty or offering multiple inter-
pretations. The second challenge is that the degree
of ambiguity perceived by the model can vary
based on its intrinsic knowledge. Consider the sce-
nario depicted in Figure 1. The initial query is
ambiguous as the phrase “national championship”
poses various denotations, such as “national tennis
championship” or “national golf championship”.
With comprehensive knowledge across possible de-
notations, a model can likely recognize the query’s
ambiguity (Figure 1, left). However, limited knowl-
edge would lead the model to perceive the query as
unambiguous (Figure 1, right). Therefore, how a
model interprets ambiguity hinges on its knowledge
scope, which we define as perceived ambiguity.

To overcome these issues, this paper proposes
Alignment with Perceived Ambiguity (APA)— a
novel alignment pipeline for models to explicitly
handle ambiguous queries by leveraging their per-
ceived ambiguity. Specifically, we design a proxy
task that guides the model in utilizing its intrinsic
knowledge for self-disambiguation of a given query.
We then quantify the information gained from this
disambiguation as an implicit measure of the extent
to which the model perceives the input as ambigu-
ous. This measure serves as a cue for ambiguous
sample selection. For the selected ambiguous query
and its disambiguation, the model generates a clar-
ification request regarding the ambiguity. Finally,
the model is trained to request explicit clarification
in response to ambiguous queries.

Experimental results from a range of QA
datasets demonstrate that APA enables a lan-
guage model to properly handle ambiguous in-
puts while maintaining its inherent capabilities
of answering unambiguous queries. Furthermore,
we present three new datasets to provide a com-

prehensive framework for assessing ambiguity:
AmbigTriviaQA, AmbigWebQuestions, and Am-
bigFreebaseQA. These datasets facilitate a more
extensive evaluation of models’ robustness in ad-
dressing ambiguity, thus contributing to the further
expansion of related research.

Our contributions can be summarized as follows:

1. We propose a novel approach, Alignment with
Perceived Ambiguity (APA), which enables
language models to explicitly handle ambigu-
ous inputs by leveraging perceived ambiguity.

2. We introduce three new datasets— Am-
bigTriviaQA, AmbigWebQuestions, and
AmbigFreebaseQA—specifically designed to
evaluate the model’s capability of addressing
ambiguity.

3. Through empirical validation on multiple
question-answering datasets, we demonstrate
that APA enables models to effectively handle
ambiguous queries.

2 Related Work

Ambiguity in NLP An expression is ambigu-
ous if it has two or more distinct denotations (Wa-
sow et al., 2005). Ambiguity poses a significant
challenge to NLP applications by obscuring the
intended meaning of expressions, preventing mod-
els from accurately performing specific tasks. Ef-
forts to address this issue span across various do-
mains, including machine translation (Pilault et al.,
2023), coreference resolution (Poesio and Artstein,
2005; Yuan et al., 2023), and natural language in-
ference (Liu et al., 2023). The challenge intensifies
in the scope of QA, as ambiguous questions may
yield multiple answers that may not align with the
user’s initial intent. Min et al. (2020) introduce
the AmbigQA dataset to tackle ambiguity in open-
domain QA and Stelmakh et al. (2022) expand it
to long-form generation. Furthermore, Cole et al.
(2023) demonstrate that quantifying sampling rep-
etition presents a reliable uncertainty measure for
ambiguity, while Kim et al. (2023a) generate tree-
of-clarification (ToC) that refines input ambiguity.
While we share the goal of handling ambiguity, we
propose a method of directly aligning the model.

Alignment of LLMs LLMs are typically trained
through causal language modeling, a process essen-
tial for understanding and generating text of high
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Figure 2: The overall process of APA. We first select incorrect samples that the model currently fails to handle
(Stage 1). The model then self-disambiguates these samples by leveraging its intrinsic knowledge. We measure
the information gain (INFOGAIN) between the initial input and the disambiguation, identifying samples with high
INFOGAIN as ambiguous (Stage 2). Finally, the model generates a clarification request regarding the ambiguity
(Stage 3), which is used as the label for training (Stage 4).
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Figure 3: Illustration of five possible results from our
scenario. For ambiguous queries, the prediction is cor-
rect ( 1⃝) if the model generates a clarification request;
otherwise, all the other responses are classified as incor-
rect ( 2⃝). When evaluating unambiguous queries, we
compare the predictions to the ground-truth labels and
categorize them as the correct prediction ( 3⃝), incorrect
prediction ( 4⃝), or incorrect clarification request ( 5⃝).

fluency and consistency. To better harness these
models, approaches have been developed to align
them with human preferences (Leike et al., 2018;
Ji et al., 2023b). This has taken various forms, such
as Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022; Chakraborty et al.,
2024), and Supervised Fine-tuning (SFT) (Dong
et al., 2023; Yang et al., 2023; Zhou et al., 2024).
Previous works focused on preferences such as
helpfulness (Ding et al., 2023; Köpf et al., 2023;
Xu et al., 2024), safety (Bai et al., 2022; Ji et al.,
2023a; Liu et al., 2024b), and factuality (Yang et al.,
2023; Tian et al., 2024). Building on this founda-

tion, our research expands the scope by focusing
on aligning models to understand and manage am-
biguity effectively.

Data Quality Control for Alignment Data-
centric AI (Chu et al., 2016; Majeed and Hwang,
2023; Kumar et al., 2024) highlights the importance
of data quality in model training. In the context
of instruction-following techniques, LIMA (Zhou
et al., 2024) demonstrates that effective model
alignment can be achieved with just 1,000 high-
quality, human-curated samples. Similarly, Alpa-
Gasus (Chen et al., 2024) leverages only a small
subset of the Alpaca dataset (Taori et al., 2023),
filtered by ChatGPT, for an effective alignment.
Various approaches for data selection have been
explored, including those based on factors such
as length and complexity (Liu et al., 2024a), and
gradient similarity from validation sets (Xia et al.,
2024). This work proposes a new viewpoint on data
quality estimation: assessing how well data aligns
models for ambiguity management. For this pur-
pose, we utilize the model’s perceived ambiguity
as an implicit cue for measuring data quality.

3 Methodology

The primary goal of our research is to align mod-
els in a way that they can explicitly handle poten-
tially ambiguous inputs, leveraging the model’s per-
ceived ambiguity. To this end, we propose Align-
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ment with Perceived Ambiguity (APA), a four-
stage alignment pipeline, illustrated in Figure 2.
In this section, we first formulate the problem and
describe each stage in detail regarding the five pos-
sible results depicted in Figure 3. Further imple-
mentation details are stipulated in Appendix A.

Problem Formulation In this study, we focus
on open-domain QA. The model M is expected to
generate a prediction ŷunambig for an unambiguous
query xunambig given a pre-defined inference tem-
plate t(·). ŷunambig is compared to the ground-truth
label y and categorized as correct prediction ( 3⃝),
incorrect prediction ( 4⃝), or incorrect clarification
request ( 5⃝). As we expand our input scope to
ambiguous queries2, the model prediction for the
ambiguous query ŷambig is anticipated to serve as a
clarification request yclarify to resolve the ambiguity.
This approach is grounded on the assumption that
the user is best positioned to clarify their intent.3

ŷambig is considered correct ( 1⃝) if it is a proper
clarification request. Otherwise, responses that fail
to address the ambiguity are classified as incorrect
( 2⃝). The final objective of the alignment is to in-
crease the number of samples corresponding to 1⃝
while simultaneously maintaining or improving the
proportion of responses classified as 3⃝.

3.1 Initial Prediction Assessment

The initial stage focuses on identifying samples that
the model currently fails to handle. To do so, we
compare the model’s prediction with the ground-
truth label, where samples are categorized based
on accuracy. Specifically, we assess the correctness
by matching ŷunambig with y and ŷambig with yclarify.
A total of n correct samples, included in 1⃝ and 3⃝,
are collected as Dcorrect = {(xicorrect, y

i
correct)}ni=1.

Incorrect samples falling under categories 2⃝, 4⃝,
and 5⃝ are unified as a separate dataset, Dincorrect.

3.2 Perceived Ambiguity Detection

This stage aims to identify samples from Dincorrect
that the model perceives as ambiguous. Given that
it is challenging for the model to express ambiguity

2Separating ambiguous from unambiguous queries is in-
herently challenging due to subjective factors such as various
perspectives and underlying assumptions. Despite the com-
plexity, we simplify the problem and follow the pre-defined
ambiguity from the training dataset for the alignment.

3We explored alternatives for ambiguity management but
found them to be impractical. For instance, arbitrarily select-
ing one of the valid answers may not accurately capture the
user’s intent. Presenting all possible answers is often unfeasi-
ble due to the potentially vast number of valid responses.

explicitly, we construct a proxy task to estimate the
ambiguity from the model’s perspective. Specifi-
cally, the model is prompted to self-disambiguate
the given query x and generate a disambiguation
x̂disambig. The model leverages its intrinsic knowl-
edge related to x to generate further details in this
process. If x is underspecified and the model pos-
sesses related knowledge necessary to compensate,
then x̂disambig would yield a higher certainty from
the model’s perspective. On the other hand, if x
requires no specification or the model lacks the nec-
essary knowledge, x̂disambig would exhibit a similar
level of uncertainty as x. To quantify the uncer-
tainty associated with x and x̂disambig, we employ
the model’s average entropy (Malinin and Gales,
2021; Abdar et al., 2021). Formally, the entropy of
an output distribution is defined as follows:

Hx,i = −
∑

v∈V
px,i(v) log px,i(v) (1)

where px,i(v) is the probability of the ith token v
of a sentence x from the full vocabulary set V . The
average entropy for x can be defined as:

Hx =
1

N

∑

i

Hx,i (2)

with x composed of N -tokens. We quantify the
additional information gained from x̂disambig by the
difference in average entropy, which we define as
information gain (INFOGAIN).

INFOGAINx,x̂disambig = Hx −Hx̂disambig (3)

A meaningful specification from x̂disambig would
result in a substantial INFOGAIN, suggesting that
the model perceives x as ambiguous. Regardless
of the ground-truth ambiguity, samples with INFO-
GAIN greater than the threshold ϵ are classified as
ambiguous, denoted as xambig.

3.3 Response Construction
In this stage, we define yclarify, which represents
the clarification request the model should generate
in response to an ambiguous query. We explore
two approaches for response generation: Fixed re-
sponse and Generated response.

Fixed Response We utilize a pre-defined clarifi-
cation request as yclarify for xambig. Specifically, a
list of clarification requests is pre-defined, and a
single response is randomly selected as yclarify for
each instance.
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Generated Response The model is prompted
to generate a clarification request specifying the
source of the ambiguity. To do so, we provide the
model with xambig and x̂disambig to identify the as-
pect that causes the ambiguity, thereby generating
yclarify specific to the identified factor.

3.4 Supervised Fine-Tuning (SFT)
The objective of this stage is to construct datasets
for the alignment. Specifically, we label m samples
identified as ambiguous and construct an ambigu-
ous dataset Dambig = {(xjambig, y

j
clarify)}mj=1, where

yclarify serves as the ground-truth label. To prevent
the potential loss of the model’s existing knowl-
edge, we also incorporate Dcorrect for training. The
number of samples from both datasets are balanced
so that n = m. The final training dataset is thus
established as D = Dcorrect +Dambig. Utilizing the
dataset D = {(xk, yk)}n+m

k=1 , the model is trained
to generate y for xunambig and yclarify for xambig, em-
ploying the identical inference template t(·). The
model M with parameter θ is trained as follows:

min
θ

∑

(x,y)∈D

|y|∑

i=1

− logMθ(yi|y<i, t(x)) (4)

Two versions of APA are trained based on the type
of yclarify: APAFIXED and APAGEN, which utilizes
fixed and generated responses, respectively.

4 Experimental Setting

4.1 Datasets
The capability of the model to perform within the
trained domain is pivotal. However, for real-world
applicability, the model must generalize to out-of-
distribution (OOD) queries, as queries that diverge
from the training data are frequently confronted
in practice. Therefore, we utilize AmbigQA (Min
et al., 2020) as the in-domain dataset for training
and validation. The dataset includes both ambigu-
ous and unambiguous queries, with unambiguous
queries labeled with ground-truth answers. Situat-
edQA (Zhang and Choi, 2021) is used as a held-out
OOD test dataset with two different splits, denoted
as SituatedQA-Geo and SituatedQA-Temp, each
focusing on geographical and temporal ambigui-
ties. To further evaluate ambiguity across diverse
QA domains, we have constructed three additional
datasets: AmbigTriviaQA, AmbigWebQuestions,
and AmbigFreebaseQA, each derived from Triv-
iaQA (Joshi et al., 2017), WebQuestions (Berant

et al., 2013), and FreebaseQA (Jiang et al., 2019)
respectively. We prompt gpt-4o4 to ambiguate the
initial query from the original dataset and verify
the generation. To mitigate the potential biases
in the validation process, we further evaluate the
verified samples with human annotators and select
samples for the final dataset. More details on the
datasets and the construction process are described
in Appendix B.

4.2 Baselines
To evaluate the effectiveness of our approach, we in-
troduce two sets of baselines: inference-only meth-
ods and trained methods. Specific implementation
details are described in Appendix C.

Inference-Only Methods Inference-only meth-
ods address ambiguity by utilizing different prompt-
ing strategies. We employ direct prompting
(DIRECT) as a fundamental baseline, applying
a simple QA prompt. Furthermore, we explore
ambiguity-aware prompting (AMBIG-AWARE),
which incorporates additional instructions on han-
dling ambiguous inputs. We also examine Sample
Repetition (SAMPLE REP) (Cole et al., 2023) by
measuring the consistency of the sampled genera-
tions. Finally, we compare SELF-ASK (Amayuelas
et al., 2023), where the model generates an answer
and subsequently determines the ambiguity based
on the generation.

Trained Methods Given the lack of directly com-
parable prior work, we compare APA with fine-
tuned baselines wherein the model is trained with
the in-domain training set. We follow the ambiguity
as defined within the in-domain dataset, and train
the model accordingly. We compare FULL-SET,
which applies the entire training dataset. Further-
more, we compare two variations that leverages
the equal number of training samples with APA.
SUBSETRAND is trained on a randomly selected
subset with an equal number of ambiguous and
unambiguous samples. SUBSETENT applies the en-
tropy of the model’s prediction of the ambiguous
query as the uncertainty measure. Ambiguous sam-
ples with the most significant entropy are selected,
and unambiguous samples are selected at random.

4.3 Evaluation Metrics
A successful alignment should preserve the model’s
capability to handle unambiguous inputs while ef-
fectively managing ambiguous queries. Based on

4https://openai.com/index/hello-gpt-4o/

1993

https://openai.com/index/hello-gpt-4o/


Method
# Training
Samples

SituatedQA-
Geo

SituatedQA-
Temp

Ambig-
TriviaQA

Ambig-
WebQuestions

Ambig-
FreebaseQA

F1u F1a F1u F1a F1u F1a F1u F1a F1u F1a

LLAMA2 7B

DIRECT 0 30.44 0.00 28.38 0.00 47.68 0.00 24.87 0.00 50.07 0.00
AMBIG-AWARE 0 7.33 32.44 3.23 35.53 27.23 68.14 14.53 62.40 51.27 76.62
SAMPLE REP 0 6.83 34.43 8.28 38.43 53.11 72.63 13.31 69.21 63.11 78.70
SELF-ASK 0 29.66 8.18 26.97 18.48 48.04 4.99 20.81 3.02 48.54 5.03
SUBSETRAND 3,088 31.90 37.17 29.48 33.68 54.71 70.97 38.69 73.84 63.59 77.70
SUBSETENT 3,088 39.33 40.84 34.28 34.62 58.83 74.98 42.39 75.86 72.18 83.89
FULL-SET 10,036 37.67 41.45 29.59 36.92 58.10 71.25 40.46 73.84 69.97 80.34

APAFIXED 3,088 39.99 41.86 31.74 39.63 62.97 75.50 49.15 77.07 73.37 84.19
APAGEN 3,088 41.01 43.10 34.38 41.89 59.27 75.74 47.26 76.64 73.18 84.90

MISTRAL 7B

DIRECT 0 11.29 0.00 15.34 0.00 33.19 0.00 17.85 0.00 31.37 0.00
AMBIG-AWARE 0 3.66 26.01 8.43 22.48 26.26 48.43 8.39 30.52 32.96 54.91
SAMPLE REP 0 7.64 25.31 7.83 21.13 29.52 17.04 8.99 12.10 27.25 16.31
SELF-ASK 0 11.29 0.00 15.34 0.00 33.19 0.00 17.85 0.00 31.37 0.00
SUBSETRAND 1,382 41.42 33.95 34.14 37.01 60.57 67.82 45.16 71.74 70.60 75.93
SUBSETENT 1,382 47.34 29.49 42.00 32.04 62.17 67.16 50.93 71.11 72.94 77.17
FULL-SET 10,036 35.99 41.28 31.16 33.72 66.67 76.38 41.83 74.72 76.98 84.67

APAFIXED 1,382 38.43 41.84 45.01 43.95 70.70 83.48 54.02 81.07 80.84 90.12
APAGEN 1,382 39.55 42.07 43.29 40.70 67.73 82.14 51.41 79.54 80.27 89.22

LLAMA2 13B

DIRECT 0 30.44 0.00 29.69 0.00 46.43 0.00 27.59 0.00 49.17 0.00
AMBIG-AWARE 0 5.99 33.10 4.22 36.66 24.80 68.19 4.81 65.28 43.81 73.40
SAMPLE REP 0 11.57 32.85 16.56 37.87 49.93 72.44 7.89 67.26 61.05 79.33
SELF-ASK 0 30.44 0.00 29.69 0.00 46.43 0.00 27.59 0.00 49.17 0.00
SUBSETRAND 3,216 33.11 36.87 28.57 37.84 63.19 73.52 44.31 72.99 70.40 78.29
SUBSETENT 3,216 40.19 38.39 31.03 38.00 64.95 76.03 48.70 77.43 73.38 81.93
FULL-SET 10,036 37.58 38.39 29.41 34.37 68.33 76.82 47.20 75.27 76.56 83.00

APAFIXED 3,216 31.31 40.23 36.45 42.18 70.83 80.99 53.69 79.22 79.92 88.03
APAGEN 3,216 34.04 39.89 31.72 39.36 69.25 79.57 52.96 78.46 79.80 87.61

Table 1: Experimental results for five different datasets. We report the unambiguous and ambiguous F1-scores as
F1u and F1a, respectively. For each dataset, the best method is highlighted in bold and the second-best method is
underlined. APA outperforms all the baselines by utilizing the perceived ambiguity.

the five possible results illustrated in Figure 3, we
define two distinct metrics to quantify such capa-
bilities. Further details of the evaluation process
are described in Appendix D.

Unambiguous Prediction F1 (F1u) The model
must generate accurate answers to unambiguous
queries while minimizing arbitrary responses to
ambiguous queries. To measure this, we utilize
the unambiguous prediction F1 score, which is the
harmonic mean of precision ( 3⃝

2⃝+ 3⃝+ 4⃝ ) and recall
( 3⃝

3⃝+ 4⃝+ 5⃝ ) for ambiguous queries.

Ambiguity Detection F1 (F1a) Given an am-
biguous input, the model should be able to de-
tect them and generate clarification requests ac-

cordingly. However, models may exhibit biased
predictions toward clarification requests. Taking
these aspects into account, we evaluate the model’s
ambiguity detection capability with the F1-score,
which captures both the precision ( 1⃝

1⃝+ 5⃝ ) and
recall( 1⃝

1⃝+ 2⃝ ).

4.4 Implementation Details

For our experiments, we utilize LLAMA2 7B &
13B (Touvron et al., 2023), and MISTRAL 7B
(Jiang et al., 2023). We employ QLoRA (Dettmers
et al., 2023) to facilitate efficient training. Results
are averaged over three different random seeds.
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Figure 4: Misaligned Clarification Request Rate (MCR)
of trained methods. Low MCR indicates that the model
retains its intrinsic knowledge even after the alignment
process. In all instances, APA exhibits the lowest MCR.
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Figure 5: Changes in the F1a score according to the
threshold value. Regardless of the threshold value, APA
consistently outperforms all the baselines.

5 Experimental Results

The main results are presented in Table 1.
Inference-only methods exhibit significant

limitations in handling ambiguous queries. DI-
RECT fails to manage ambiguous queries, as evi-
denced by its consistent zero F1a scores. AMBIG-
AWARE and SAMPLE REP demonstrate a strong
bias towards clarification requests, exhibiting defi-
cient F1u. SELF-ASK displays a subpar F1a, indi-
cating it is challenging to resolve ambiguity by just
“asking” the model without task-specific training.

Trained methods present enhanced perfor-
mance compared to inference-only approaches.
Specifically, SUBSETRAND exhibits improved
performance across both metrics compared to

Method
SituatedQA-

Geo
SituatedQA-

Temp
Ambig-

TriviaQA
Ambig-

FreebaseQA

RAND
39.31
(1.28)

38.34
(0.44)

72.05
(0.58)

81.28
(1.88)

MIN
34.95
(1.71)

36.03
(0.90)

70.30
(1.50)

79.19
(2.02)

MAX
40.96
(0.71)

39.33
(0.88)

73.95
(1.03)

82.23
(1.31)

APA
43.10
(0.39)

41.89
(2.02)

75.74
(1.52)

84.90
(0.40)

Table 2: Average and standard deviation (in parentheses)
of F1a scores of different data selection methods. The
first , second , and third best results are highlighted.

Results show that utilizing INFOGAIN regardless of the
ground-truth ambiguity is effective for data selection.

inference-only methods. FULL-SET demonstrates
superior performance among the baselines, lever-
aging the entire training set. Notably, SUBSETENT

surpasses SUBSETRAND by a large margin and even
outperforms FULL-SET in some datasets. The re-
sults of SUBSETENT verify that entropy is capable
of capturing ambiguity to some extent and is benefi-
cial when incorporated into the alignment process.

APA achieves superior performance across all
datasets. Despite employing an identical inference
template, APA achieves a notable enhancement
in F1u compared to DIRECT. This improvement
is especially surprising considering that APA was
trained on Dcorrect, which consists of samples that
the model is already capable of handling. More-
over, APA consistently outperforms across all the
datasets in terms of F1a, achieving gains up to
6 points. The results highlight the effectiveness
of leveraging perceived ambiguity for alignment,
enhancing generalization and robustness. When
compared to SUBSETENT, the improvement of APA

suggests that INFOGAIN provides better quantifi-
cation of ambiguity than entropy. The efficacy
of leveraging only the data perceived ambiguous,
comprising approximately 32% in the LLAMA2
family and 13% in MISTRAL, again emphasizes
the importance of data quality over quantity (Zhou
et al., 2024; Chen et al., 2024). Furthermore,
APAFIXED generally exhibits enhanced performance
compared to APAGEN. This is because APAGEN en-
gages in a more challenging task of generating
specific clarification requests.

6 Ablation Study

In this section, we perform a series of ablation stud-
ies to further evaluate APA. Unless otherwise speci-
fied, all experiments are conducted on LLAMA2 7B
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Type Generations

x How many pages in a brave new world?
x̂disambig How many pages in the 1932 edition of the book brave new world by Aldous Huxley?
yclarify Your question is ambiguous. Which edition of the book are you interested in?

x Who was the commander of the british forces in boston?
x̂disambig Who was the commander of the british forces in boston during the american revolution?
yclarify Your question seems ambiguous. Can you be more specific about the event or time?

Table 3: Examples of generated yclarify and x̂disambig from the initial query x. Additional specification from the
disambiguation is highlighted in bold and the specification of the clarification requests are underlined.

across four datasets: SituatedQA-Geo, SituatedQA-
Temp, AmbigTriviaQA, and AmbigFreebaseQA.
Additional details are stipulated in Appendix E.

6.1 Analysis on Sample-level Misalignment

The alignment process of generating clarification
requests for ambiguous queries may lead to a po-
tential trade-off, where the model incorrectly gen-
erates clarification requests for unambiguous in-
puts that were previously well-handled. To assess
such a case, we define Misaligned Clarification
Request Rate (MCR), which measures the propor-
tion of unambiguous samples that were correctly
answered ( 3⃝ in Figure 3) before training but in-
correctly shifted to erroneously generating clarifi-
cation requests ( 5⃝ in Figure 3) after alignment. A
low MCR is desirable, representing that the model
preserves its existing capabilities even after the
alignment. We can observe from Figure 4 that,
overall, APA consistently demonstrates the lowest
MCR, indicating that the model successfully learns
to handle ambiguity while effectively preserving
the existing capabilities.

6.2 The Effect of Threshold Values

The number of training samples used for alignment
depends on the threshold value ϵ. To understand the
impact of ϵ on performance, we conduct an analysis
by applying different ϵ for ambiguous data selec-
tion. We compare SUBSETENT and SUBSETRAND,
each with an equal number of training samples. Fig-
ure 5 presents the F1a scores measured under dif-
ferent ϵ. In general, larger ϵ reduces the data avail-
able for training, resulting in declined performance.
SUBSETRAND consistently demonstrates subpar per-
formance, whereas SUBSETENT is a strong baseline
across all scenarios. Nevertheless, APA outper-
forms all the baselines across different ϵ values.

6.3 Impact of INFOGAIN for Data Selection
For a deeper analysis of INFOGAIN on data selec-
tion within APA, we conducted an ablation study
by varying the criteria for selecting ambiguous data.
With the correct dataset Dcorrect held constant, we
alter the strategies of selecting m ambiguous sam-
ples as follows:

• Random Selection (RAND) We randomly se-
lect m ground-truth ambiguous samples.

• INFOGAIN-based Selection We explore two
different selection methods leveraging INFO-
GAIN: MAX selects top-m samples with the
largest INFOGAIN from the ground-truth am-
biguous samples. MIN selects the bottom-m
samples with the minimum INFOGAIN among
those that are ground-truth ambiguous.

APA differs from the baselines by utilizing sam-
ples perceived as ambiguous, allowing the potential
inclusion of ground-truth unambiguous samples.

Table 2 demonstrates the overall results. RAND

consistently lags behind MAX by a margin of 1 to 4
points. The disparity underscores the effectiveness
of data selection based on INFOGAIN, even with
ground-truth ambiguous samples. Moreover, APA

outperforms all the baselines across all the datasets.
Notably, even though the perceived ambiguity does
not always coincide with ground-truth ambiguity,
results show that exploiting model-perceived am-
biguity significantly enhances alignment. MIN

demonstrates the worst performance among the
methods evaluated. We speculate that this decline
is because the training samples with low INFOGAIN

are perceived as unambiguous, yet are trained as
ambiguous. This misalignment likely accounts for
the degradation in performance.

6.4 Case Study
Table 3 demonstrates examples of generated dis-
ambiguation x̂disambig and the clarification request
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yclarify from the query x. We can observe that the
model generates factual specifications about the
query leveraging its intrinsic knowledge (e.g., 1932
edition of the book). Furthermore, given x and
x̂disambig, the model successfully generates a clari-
fication request, specifically mentioning the factor
that causes the ambiguity (e.g., Which edition). Fur-
ther examples of disambiguations and failure cases
are in Appendix F.

7 Conclusion

In this work, we present a novel alignment pipeline,
dubbed Alignment with Perceived Ambiguity
(APA), designed to enhance the ability of LLMs
to address ambiguities within queries, leveraging
the model’s intrinsic knowledge. Our method em-
ploys an implicit measure INFOGAIN to quantify
the ambiguity perceived by the model itself. The
model learns to effectively manage (un)ambiguous
queries through alignment based on this metric. Ex-
perimental results demonstrate the effectiveness of
APA, which outperforms all the baselines across
various QA datasets. As a future avenue, we plan
to explore extending this methodology to broader
domains and more complex types of ambiguities,
further solidifying the role of LLMs in managing
the inherent uncertainty present in NLP tasks.

Limitations

The scope of our research is mainly focused on
short-form QA tasks. The research scope could be
expanded to long-form generation tasks such as de-
tailed reasoning. Furthermore, there are cases when
a query becomes ambiguous by considering addi-
tional contexts, e.g., cases in conversational QA
(Guo et al., 2021). As our research focuses solely
on situations where a single query is given, future
work may consider scenarios where additional con-
text is provided to the model. For experiments, we
explore the most widely used models for evalua-
tion, specifically LLAMA2 and MISTRAL. Despite
this, a more comprehensive evaluation encompass-
ing a broader range of LLMs could have enriched
our findings, providing insights across different
architectures and capabilities. Larger-scale mod-
els may exhibit different tendencies and, therefore,
should be explored in future research. Furthermore,
our work mainly focuses on supervised fine-tuning
(SFT) as the alignment method. However, alter-
native methods, such as Reinforcement Learning
from Human Preference (RLHF) (Ouyang et al.,

2022) or Direct Preference Optimization (DPO)
(Rafailov et al., 2023), could offer distinct advan-
tages toward our objective.
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A Implementations Details

A.1 Pipeline Details

For initial prediction assessment (Stage 1), we uti-
lize the same inference template as DIRECT (Table
4) and disambiguate the given query with the tem-
plate from Table 5. We use the greedy generation
for the disambiguation. The threshold ϵ is empir-
ically set to 0.1 for selecting ambiguous inputs.
When balancing training set size, if n > m, we
randomly select m samples from Dcorrect, where
n = |Dcorrect| and m = |Dambig|. If n < m, we
select n samples from Dambig with the largest IN-
FOGAIN. For APAGEN, we use the template from
Table 6 to generate specific clarification requests
for each ambiguous queries. Furthermore, for
APAFIXED, we randomly set yclarify from the fol-
lowing pre-defined phrases : [The questions is
ambiguous. Please clarify your question.
Your question is ambiguous. Can you
clarify your question? Your question is
not clear. Can you clarify your question
please?]

A.2 Training Details

For training, we applied AdamW optimizer
(Loshchilov and Hutter, 2019) with a batch size
of 32. We selected the model with the best per-
formance in the validation set from learning rates
{1e-3, 5e-4, 1e-4} and training epochs {1, 2,
3}. All the experiments were implemented with Py-
torch (Paszke et al., 2019) and Huggingface Trans-
formers library (Wolf et al., 2020). For efficient
training, we applied QLoRA from Huggingface
PEFT library (Mangrulkar et al., 2022) with r=4
and alpha=16. The training takes about half an
hour on a single Tesla V100 GPU. All experiments
are averaged over three different random seeds.
The full results of APA and trained baseline meth-
ods with the standard deviation are demonstrated
in Table 18.

B Dataset Overview

B.1 Dataset Details

This section stipulates the details of the datasets we
used in the experiments. The statistics of ambigu-

Answer the following question.
Question: <question>
Answer:

Table 4: Direct prompting template.

Evaluate the clarity of the input
question. If the question is ambiguous,
enhance it by adding specific details
such as relevant locations, time
periods, or additional context needed
to resolve the ambiguity. For clear
questions, simply repeat the query as
is.

Example:
Input Question: When did the Frozen
ride open at Epcot?
Disambiguation: When did the Frozen
ride open at Epcot?

Input Question: What is the legal age
of marriage in the USA?
Disambiguation: What is the legal
age of marriage in each state of the
USA, excluding exceptions for parental
consent?

Input Question: <question>
Disambiguation:

Table 5: Disambiguation template used in Perceived
Ambiguity Detection Stage of APA. We provide 2-shot
demonstrations from AmbigQA train set.

ous and unambiguous samples for each dataset is
specified in Table 7.

AmbigQA (Min et al., 2020) is a derivative of
the Natural Questions dataset (Kwiatkowski et al.,
2019), designed to verify ambiguous data points.
The dataset covers diverse sources of ambiguity,
such as event and entity references. The dataset
consists of pre-defined ambiguous and unambigu-
ous queries, where unambiguous queries are la-
beled with ground-truth answers. We set AmbigQA
as the in-domain dataset and utilize it for training
and validation. Specifically, we follow the ambi-
guity defined by the dataset and train the model
to generate ground-truth answers for unambiguous
queries and pre-defined clarification requests for
ambiguous queries. Further training details are
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Engage with the provided ambiguous
question by extracting the key point
of ambiguity, and interactively ask
for clarification based on the
disambiguated question.

Example 1:
Ambiguous Question: Who won?
Disambiguation: Who won the 2020 U.S.
presidential election?
Clarification Request: Your question
seems ambiguous. Could you specify
which competition or event you are
asking about?

Example 2:
Ambiguous Question: What’s the weather
like?
Disambiguation: What’s the weather
like in Miami today?
Clarification Request: Your question
is ambiguous. Where are you interested
in the weather report for?

Ambiguous Question: <ambiguous
question>
Disambiguation: <disambiguation>
Clarification Request:

Table 6: Template for generating clarification request for
the given ambiguous query. The model is prompted to
extract the factor that causes the ambiguity and generate
a clarification request based on the extracted factor.

stipulated in Appendix C.

SituatedQA (Zhang and Choi, 2021) focuses
explicitly on temporal and geographic ambiguity
from the input query. As the cause of ambiguity
and its construction process are distinct, we assess
performance on the temporal and geographic split
separately, denoted as Temp and Geo, respectively.

TriviaQA (Joshi et al., 2017) consists of
question-answer-evidence triplets collected from
Wikipedia and the web. For our experiments, we
only utilize the question-answer pairs. We ambigu-
iate the subset of TriviaQA to build AmbigTrivi-
aQA.

WebQuestions (Berant et al., 2013) is a question-
answering dataset that uses Freebase as the knowl-
edge base. The dataset consists of questions from

Dataset Train Validation / Test
Unambig. Ambig. Unambig. Ambig.

AmbigQA 5,287 4,749 830 1,172
SituatedQA-Geo - - 506 129
SituatedQA-Temp - - 2,795 876
AmbigTriviaQA - - 500 500
AmbigWebQuestions - - 500 500
AmbigFreebaseQA - - 500 500

Table 7: Number of ambiguous and unambiguous sam-
ples for each datasets. We utilize AmbigQA for in-
domain training and validation. The rest of the datasets
are evaluated as OOD test sets.

Please make the following question
ambiguous. Your task is to introduce
ambiguity by altering the specificity
of the noun phrase or omitting crucial
details from the statement. Keep the
rest of the sentence unchanged except
for the modified sections. Generate
only the revised statement.

Question: <question>
Ambiguation:

Table 8: Template to ambiguate the input query for
dataset construction. We prompt gpt-4o for the genera-
tion.

the Google Suggest API and then answers obtained
from Amazon Mechanical Turk. In creating Am-
bigWebQUestions, we applied ambiguity to the
subset of WebQuestions.

FreebaseQA (Jiang et al., 2019) is an open-
domain QA over the Freebase knowledge graph.
The question-answer pairs are collected from vari-
ous sources such as TriviaQA, QuizBalls, and Quiz-
Zone. AmbigFreebaseQA is derived from the sub-
set of FreebaseQA.

B.2 Dataset Construction Details

To further examine the model’s capability to in-
terpret and generate responses to intentionally am-
biguous queries, we constructed AmbigTriviaQA,
AmbigWebQuestions, and AmbigFreebaseQA by
ambiguating the TriviaQA, WebQuestions, and
FreebaseQA, respectively. We first prompt gpt-4o
to ambiguate the original question with the tem-
plate from Table 8. To further validate the gener-
ation and control the dataset’s quality, we again
prompt gpt-4o for secondary verification. We uti-
lize the template in Table 9 and collect samples
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An ambiguous question has multiple
valid answers. Is the following
question ambiguous with multiple
possible answers? Answer only in Yes
or No.

Question: <ambiguous generation>

Yes or No:

Table 9: Template for validating the generated am-
biguated queries. We prompt gpt-4o for the validation.
Samples with the output "Yes" are considered a valid
ambiguation.

You are given an ambiguous question
and its possible ambiguation. Please
verify whether the ambiguous question
poses proper ambiguity. An ambiguous
question must have multiple valid
answers.

Original Question: <original question>
Ambiguous Question: <ambiguated
question>

Yes or No:

Table 10: Instructions for human validation for dataset
construction. Samples selected as "Yes" are considered
a valid ambiguation.

verified as ambiguous. Validating the generations
from the same model may pose unnecessary biases.
To mitigate the potential biases in the validation
process, we evaluate the verified samples with hu-
man annotators and select samples for the final
dataset. (Table 10) This human-in-the-loop data
construction ensures the quality and fairness of the
dataset. The process yielded 1,000 question-answer
pairs, with 500 ambiguous and 500 unambiguous
pairs. Examples from AmbigTriviaQA are demon-
strated in Table 14.

C Baseline Details

In this section, we describe implementation details
of the baselines.

DIRECT We make a direct inference using the
template from Table 4. The greedy generation re-
sult with temperature 0 is used for evaluation.

Answer the following question. If
the question is ambiguous, it is
proper to answer with “The question is
ambiguous”.
Question: <question>
Answer:

Table 11: Ambiguity-aware prompting. We explicitly
describe how to handle ambiguity.

Answer the following question. Given
the question and answer, is the
question ambiguous or unambiguous?
Answer only ambiguous or unambiguous.
Question: <question>
Answer: <generated answer>

Is the question ambiguous or
unambiguous? Answer only ambiguous or
unambiguous.
Ambiguous or Unambiguous:

Table 12: Verification template for SELF-ASK. With the
generated answer and the original question, the model
is prompted to verify the ambiguity of the initial query.

AMBIG-AWARE We utilize the template from Ta-
ble 11, where we explicitly describe how to handle
ambiguity. Identically, we use the greedy genera-
tions for evaluation.

SAMPLE REP The template from Table 4 is used
to generate a single greedy generation and ten sam-
pled generations with sampling temperature of 1.0.
We quantify the rate of sampled generations that
match the greedy generation as the uncertainty mea-
sure, where 1.0 is the most certain and 0.0 being
the least certain. Samples with the measure below
a specific threshold are considered ambiguous. For
instance, if three out of ten samples exactly match
the greedy generation, then the uncertainty for the
given query is 0.3. We empirically select a thresh-
old that demonstrates the best F1u and F1a with
the least trade-off.

SELF-ASK We initially prompt the model with
the template from Table 4 and generate a greedy
generation. Then, the initial query and the gen-
erated answer are utilized with the template from
Table 12 and prompt the model to verify the query’s
ambiguity. We modified the prompt from Amayue-
las et al. (2023) so that the model can specifically
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focus on ambiguity. The ambiguity detection is
determined based on the model’s final verification
of "Yes" or "No".

FULL-SET The entire training set is utilized for
training. Following APAFIXED, we label the ground-
truth ambiguous samples with pre-defined clarifi-
cation requests as yclarify. (Pre-defined clarification
requests are listed in Appendix A.1.) The model
is trained to generate y for xunambig and yclarify for
xambig with the inference template from Table 4.

SUBSETRAND The training method is identical to
FULL-SET, but SUBSETRAND utilizes a subset of the
training set. We randomly select |D| samples from
the training data, with the equal number (|D|/2) of
ambiguous and unambiguous samples.

SUBSETENT The training of SUBSETRAND is iden-
tical to SUBSETRAND except the ambiguous sample
selection method. When xambig is given, we mea-
sure the entropy of the generated result from the
model. A high entropy value indicates that the
model is uncertain about the prediction of the am-
biguous query. Therefore, among the xambig in the
train set, we select |D|/2 samples with the highest
output entropy and use them as ambiguous sam-
ples.

D Evaluation Details

In this section, we describe the evaluation details of
our experiments. We utilize the greedy generation
from the model for the evaluation.

D.1 Unambiguous Query Evaluation
For unambiguous queries, we measure the quality
of the generation by employing RougeL5 (Lin and
Och, 2004) with all the possible valid answers. The
prediction from the model is regarded as correct if
the score is above 0.3.

D.2 Ambiguous Query Evaluation
For ambiguous questions, we expect the model to
generate clarification requests. Since there are vari-
ous ways to express clarification requests, we use
the following phrases to detect the requests. The
presence of pre-defined ambiguity-related phrases
in the model’s output is treated as a successful de-
tection. The pre-defined phrases are the follows:
[ambiguous, ambig, unclear, not clear,
not sure, confused, confusing, vague,

5https://huggingface.co/spaces/
evaluate-metric/rouge

Threshold 0.1 0.3 0.5 0.7 0.9
# Samples 3,088 3,088 1,860 886 396

Table 13: Number of training samples for different
threshold values. We vary the threshold value from
0.1 to 0.9.

uncertain, doubtful, doubt, questionable,
clarify, not clear]

E Details of Ablation Experiments

E.1 Details of Sample-level Misalignment
Analysis

To measure Misaligned Clarification Request rate
(MCR), we start with a base model (e.g., LLAMA2
7B or MISTRAL 7B) which has not undergone any
alignment training. We prompt the model using the
template in Table 4 and select the correct, unam-
biguous samples. Subsequently, we evaluate the
aligned models, such as FULL-SET, SUBSETENT,
or APAGEN, leveraging these pre-selected samples.
We then count the cases where the aligned model’s
predictions shifted from providing correct answers
to generating wrong clarification requests post-
alignment. MCR is measured as the proportion
of these shifted samples relative to the total num-
ber of initially correct, unambiguous samples. The
metric quantified the extent to which the model’s
alignment process leads to unnecessary clarifica-
tion requests for previous well-handled unambigu-
ous queries.

E.2 Details of Threshold Ablation

To measure the performance with different thresh-
old values, we apply ϵ ∈ {0.1, 0.3, 0.5, 0.7,
0.9}. The number of selected samples for training
is illustrated in Table 13.

E.3 Details of Data Selection Ablation

This section details the data selection methods from
Section 6.3, with the corresponding visualization in
Figure 6. Consider the case where the ground-truth
ambiguous and unambiguous queries are sorted
based on their INFOGAIN. APA selects m-samples
with the largest INFOGAIN regardless of the ground-
truth ambiguity, focusing on perceived ambiguity.
In contrast, RAND randomly selects m-samples
as ambiguous from the ground-truth ambiguous
queries (highlighted in blue in Figure 6). MAX and
MIN select top-m and bottom-m samples regarding
the INFOGAIN from the ground-truth ambiguous
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Figure 6: Illustration of ground-truth ambiguous and
unambiguous samples sorted by the INFOGAIN. We
highlight the chosen samples for each data selection
method. APA selects samples with the largest INFO-
GAIN regardless of the ground-truth ambiguity. On the
other hand, baseline methods select training data from
ground-truth ambiguous samples with different selec-
tion strategies.

queries, respectively. Unlike the baseline methods,
which only consider the ground-truth ambiguity,
APA leverages the perceived ambiguity, which may
not always align with the ground-truth ambiguity.

F Additional Case Studies

F.1 Failure Cases Before Alignment

Table 15 demonstrates generations by models
before alignment for ambiguous queries from
SituatedQA-Geo. Given the diverse denotations
of the query, each model interprets the query dif-
ferently based on their intrinsic knowledge. For
instance, the first question is ambiguous due to
the numerous possible “revolution” it could ref-
erence. Each model interprets “revolution” dif-
ferently: LLAMA2 7B as the “Russian revolu-
tion”, MISTRAL 7B as the “French revolution”,
and LLAMA2 13B as the “American Revolutionary
War”. Consequently, each model generates fac-
tual responses corresponding to its interpretation.
We regard this phenomenon as problematic since
the user likely has a specific “revolution” in mind
while querying the model. However, the model
may misinterpret the input and generate responses
not aligned with the user’s intended reference. Con-
sequently, this misalignment can lead to providing
incorrect or irrelevant answers.

F.2 Case Study of Disambiguations
Table 16 demonstrates examples of initial query
x and its disambiguation x̂disambig. The first ex-
ample is when x is inherently ambiguous, yet the
model perceives it as unambiguous. Specifically,
the model generates hallucination ("in the 1960s")
where the song "don’t mess around with jim" was
originally released in 1972. This non-factual gen-
eration would not provide any information gain to
the model, classifying x as ambiguous. In such a
case, x should be considered "unknown" with no
related knowledge within the model. The second
and third examples are correctly classified, as the
model properly applies its intrinsic knowledge to
perceive ambiguity. Regardless of the quantity of
additional context generated, the model is capa-
ble of verifying its ambiguity. The last example
is a misclassification as ambiguous. Despite dis-
ambiguation provides factually correct information
("1932 novel" and "by Aldous Huxley") for "brave
new world", we speculate that the misclassification
may arise from the existence of various media, such
as movies and songs or even different versions of
the book, sharing the title "brave new world".

F.3 Failure Cases of Clarification Request
Generation

Table 17 presents failure cases of clarification re-
quest generation. Even when the model success-
fully provides valid disambiguation (e.g., in the
usa or in 2015), in some cases the model fails to
consider the aspect that causes the ambiguity while
generating clarification requests. For example, the
first case generates "What is the book the title refers
to?", which does not address the relevant ambiguity.
Furthermore, the second example only requests for
clarification and fails to provide further specifica-
tions regarding the ambiguity.
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Original Question Ambiguated Question

Who wrote the 19th century novel ‘Anna Karenina’? Who wrote a 19th century novel?

What was President Gerald Ford’s middle name? What was the middle name of a former U.S. president?

Where in England was actor Nigel Hawthorne born? Where in the UK was the actor born?

Table 14: Examples of the original question and its ambiguation from AmbigTriviaQA. The ambiguated phrase is
highlighted in bold.

Question Llama2 7B Mistral 7B Llama2 13B

When did the revolution be-
gin?

The revolution began in
1917. (Russian revolution)

The revolution began in
1789. (French revolution)

The revolution began in
1775. (American Revolu-
tionary War)

When did we host the world
cup?

1992 (Not factual) 1994 (15th World Cup) 1996. (Not factual)

Who was the first elected
president?

George Washington George Washington The first elected president
of India was Dr. Rajendra
Prasad.

Table 15: Model predictions of ambiguous queries from SituatedQA-Geo before alignment. Ambiguous query,
due to its variety of denotations, leads the model to interpret the query differently based on its intrinsic knowledge,
consequently generating diverse answers.

Model
Prediction

Ground
Truth Type Generated Text

Unambig. Ambig. x Who sings don’t mess around with jim?
x̂disambig Who sings don’t mess around with jim, in the 1960s?

Unambig. Unambig.
x Who is winner in bigg boss season 5 kannada?

x̂disambig
Who is the winner of the fifth season of the kannada version of the indian reality
television series bigg boss?

Ambig. Ambig. x How many jury members in a criminal trial?
x̂disambig How many jury members are required in a criminal trial in the united states?

Ambig. Unambig. x How many pages in a brave new world?
x̂disambig How many pages are in the 1932 novel brave new world by aldous huxley?

Table 16: Example of initial query x and its disambiguation x̂disambig. Additional specification from the model is in
bold. Unambig. and Ambig. refers to Unambiguous and Ambiguous, respectively.

Type Generations

x Where was the old man and the sea published?
x̂disambig Where was the old man and the sea published in the usa?
yclarify Your question is ambiguous. What is the book the title refers to?

x Who won last triple crown of horse racing?
x̂disambig Who won the triple crown of horse racing in 2015?
yclarify I’m not sure about your question, could you provide some more information.

Table 17: Failure cases of generated clarification request yclarify from the initial query x and its disambiguation
x̂disambig. Additional specification from the disambiguation is highlighted in bold. Despite the correct disambigua-
tions, the model fails to generate clarification requests regarding the ambiguity.
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Method LLAMA2 7B MISTRAL 7B LLAMA2 13B
F1u F1a F1u F1a F1u F1a

SituatedQA-Geo

SUBSETRAND 31.90 (3.29) 37.17 (0.97) 41.42 (3.08) 33.95 (1.62) 33.11 (3.21) 36.87 (0.85)

SUBSETENT 39.33 (3.77) 40.84 (0.28) 47.34 (1.41) 29.49 (4.36) 40.19 (0.95) 38.39 (1.80)

FULL-SET 37.67 (1.87) 41.45 (1.19) 35.99 (1.18) 41.28 (0.40) 37.58 (1.71) 38.39 (1.01)

APAFIXED 39.99 (0.96) 41.86 (0.39) 38.43 (1.17) 41.84 (0.39) 31.31 (3.32) 40.23 (0.40)

APAGEN 41.01 (0.89) 43.10 (0.39) 39.55 (5.14) 42.07 (1.13) 34.04 (4.59) 39.89 (2.10)

SituatedQA-Temp

SUBSETRAND 29.48 (7.72) 33.68 (7.24) 34.14 (5.02) 37.01 (0.82) 28.57 (3.09) 37.84 (1.39)

SUBSETENT 34.28 (1.52) 34.62 (2.56) 42.00 (1.71) 32.04 (2.73) 31.03 (2.02) 38.00 (1.33)

FULL-SET 29.59 (0.85) 36.92 (1.43) 31.16 (4.97) 33.72 (8.36) 29.41 (8.25) 34.37 (8.93)

APAFIXED 31.74 (1.16) 39.63 (0.89) 45.01 (2.06) 43.95 (2.07) 36.45 (0.38) 42.18 (3.37)

APAGEN 34.38 (0.40) 41.89 (2.02) 43.29 (3.69) 40.70 (2.98) 31.72 (3.24) 39.36 (1.45)

AmbigTriviaQA

SUBSETRAND 54.71 (2.26) 70.97 (2.57) 60.57 (0.81) 67.82 (4.14) 63.19 (3.06) 73.52 (3.94)

SUBSETENT 58.83 (1.42) 74.98 (2.09) 62.17 (0.81) 67.16 (4.14) 64.95 (1.17) 76.03 (0.86)

FULL-SET 58.10 (0.66) 71.25 (1.53) 66.67 (0.66) 76.38 (0.53) 68.33 (0.82) 76.82 (0.91)

APAFIXED 62.97 (0.63) 75.50 (0.62) 70.70 (1.16) 83.48 (0.59) 70.83 (1.43) 80.99 (1.67)

APAGEN 59.27 (1.07) 75.74 (1.52) 67.73 (1.11) 82.14 (1.76) 69.25 (1.59) 79.57 (1.74)

AmbigWebQuestions

SUBSETRAND 38.69 (1.83) 73.84 (1.67) 45.16 (2.03) 71.74 (1.75) 44.31 (3.51) 72.99 (2.36)

SUBSETENT 42.39 (1.36) 75.86 (0.94) 50.93 (5.43) 71.11 (4.74) 48.70 (1.19) 77.43 (1.34)

FULL-SET 40.46 (4.04) 73.84 (1.67) 41.83 (1.95) 74.72 (0.40) 47.20 (1.59) 75.27 (0.75)

APAFIXED 49.15 (2.57) 77.07 (1.67) 54.02 (2.17) 81.07 (1.26) 53.69 (0.97) 79.22 (0.35)

APAGEN 47.26 (1.01) 76.64 (0.50) 51.41 (0.92) 79.54 (0.24) 52.96 (3.46) 78.46 (2.00)

AmbigFreebaseQA

SUBSETRAND 63.59 (2.53) 77.70 (1.93) 70.60 (1.27) 75.93 (4.66) 70.40 (7.06) 78.29 (5.35)

SUBSETENT 72.18 (0.87) 83.89 (1.10) 72.94 (2.97) 77.17 (4.66) 73.38 (0.89) 81.93 (0.25)

FULL-SET 69.97 (1.33) 80.34 (1.19) 76.98 (2.62) 84.67 (3.08) 76.56 (1.13) 83.00 (0.69)

APAFIXED 73.37 (0.40) 84.19 (0.45) 80.84 (0.69) 90.12 (0.27) 79.92 (2.82) 88.03 (1.51)

APAGEN 73.18 (0.74) 84.90 (0.40) 80.27 (1.32) 89.22 (0.96) 79.80 (2.14) 87.61 (2.82)

Table 18: Average and standard deviation (in parentheses) of the trained methods over three different random seeds.
The best method is highlighted in bold and the second-best method is underlined.
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