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Abstract

Reinforcement Learning (RL) has been used to
finetune Large Language Models (LLMs) using
a reward model trained from preference data, to
better align with human judgment. The recently
introduced direct alignment methods, which
are often simpler, more stable, and computa-
tionally lighter, can more directly achieve this.
However, these approaches cannot optimize ar-
bitrary rewards, and the preference-based ones
are not the only rewards of interest for LLMs
(e.g., unit tests for code generation or textual
entailment for summarization, among others).
RL-finetuning is usually done with a variation
of policy gradient, which calls for on-policy or
near-on-policy samples, requiring costly gener-
ations. We introduce Contrastive Policy Gra-
dient, or CoPG, a simple and mathematically
principled new RL algorithm that can estimate
the optimal policy even from off-policy data.
It can be seen as an off-policy policy gradient
approach that does not rely on important sam-
pling techniques and highlights the importance
of using (the right) state baseline. We show
this approach to generalize the direct alignment
method IPO (identity preference optimization)
and classic policy gradient. We experiment
with the proposed CoPG on a toy bandit problem
to illustrate its properties, as well as for fine-
tuning LLMs on a summarization task, using a
learned reward function considered as ground
truth for the purpose of the experiments.

1 Introduction

Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017) is a classic
finetuning step intended at aligning a Large
Language Model (LLM) with human judgment
(Ouyang et al., 2022). The underlying principle is
to learn a reward model from a preference dataset,
and to optimize this reward with a regularized
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Reinforcement Learning (RL) approach (Fox
et al., 2015; Jaques et al., 2017; Geist et al., 2019),
usually a Policy Gradient (PG) approach (Williams
and Peng, 1991) or a variation like Proximal
Policy Optimization (PPO) (Schulman et al., 2017).
These methods require on-policy or near-on-policy
samples, and thus require costly generations from
the LLM. They can also be hard to tune and
computationally heavy, for example through the
use of an additional value network.

More recently, the field of direct alignment meth-
ods has surged with the introduction of Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023),
Sequence Likelihood Calibration (SLiC-HF) (Zhao
et al., 2023) or Identity Preference Optimization
(IPO) (Azar et al., 2024). These approaches allow
directly learning a policy optimizing for prefer-
ences, from a given preference dataset, in an offline
manner and without using a proxy reward function.
They are usually considered simpler, more stable,
and computationally more lightweight than classic
RLHF. However, by design, they cannot optimize
for arbitrary reward functions.

We posit that preference-based rewards are not
the only rewards worth considering when fine-
tuning an LLM. Not everything can be measured
through preferences, which are also costly to label.
Such examples are using unit tests as a reward for
code generation (Le et al., 2022) or a reward mea-
suring textual-entailment for summarization (Roit
et al., 2023). The aim of this paper is to propose an
RL approach able to optimize an arbitrary reward
while being as simple as direct alignment. It is im-
portant to note that we do not introduce any specific
reward here. Our intent is to provide a convenient
and efficient tool for optimizing an arbitrary
reward function. In particular, we take inspiration
from the contrastive learning objective, which had
tremendous success in the self-supervised learning
technique (Oord et al., 2018; Chen et al., 2020),
and extend it to RL techniques.
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To this end, we introduce Contrastive Policy Gra-
dient, or CoPG. It minimizes a supervised-friendly
loss, of which we show the optimal policy of inter-
est (optimizing the initial RL problem) to be the
unique minimizer. It can be interpreted as a form
of off-policy policy gradient, not relying on impor-
tance sampling (an approach that can easily lead the
gradient variance to explode), but exploiting a spe-
cific state baseline that can be seen as a contrastive
term to the reward being optimized. Our proposed
approach is versatile as it regroups IPO and policy
gradient as special cases. Notably, we obtain as
a special case an offline off-policy generalization
of Reinforce Leave-One-Out (RLOO) (Kool et al.,
2019; Ahmadian et al., 2024). To illustrate its prop-
erties, we experiment with the proposed CoPG on a
toy bandit problem. We also test it for finetuning
an LLM on a summarization task. For this case, we
train a reward model from the preference dataset
and consider it the ground truth to be optimized.

2 Background

We denote a prompt x and a generation y, and
we call the LLM to be trained a policy π(y|x).
We assume the prompts to be sampled accord-
ing to some unknown distribution ρ. We also
assume to have access to some reference model
πref, typically the LLM pretrained and supervised-
finetuned (SFT model), used both for initializing π
and regularizing the RL problem. We consider
having access to a reward model R(x, y) to be
maximized under π, with some regularization to-
ward the reference model through a KL-divergence
KL(π(·|x)||πref(·|x)). To lighten notations, we
drop the prompt x in the main text (it appears ex-
plicitly again in the proofs in Appx. A).

The regularized RL problem consists in max-
imizing J(π) = Ey∼π[R(y)] − βKL(π||πref).
Let’s write the regularized reward

Rπ
β(y) = R(y)− β ln

π(y)

πref(y)
, (1)

the RL problem can equivalently be written as

J(π) = Ey∼π[R
π
β(y)]. (2)

A classic approach is policy gradient, which
maximizes J by gradient ascent. This is not a
supervised-friendly loss because the expectation
depends on the optimized policy, not on some fixed
dataset of generations. The gradient is given by

∇J(π) = Ey∼π[R
π
β(y)∇ lnπ(y)].

In practice, an empirical estimate of this gradient re-
quires fresh generations from π, making it a costly
method. It is common to subtract a baseline b:

∇J(π) = Ey∼π[(R
π
β(y)−b)∇ lnπ(y)]. (3)

This does not bias the gradient as long as it does not
depend on y (because Ey∼π[∇ lnπ(y)] = 0), and
this is generally introduced to reduce the variance
of the empirical gradient (Greensmith et al., 2001).
A classic baseline is an estimate of the expected
reward (that is the value, b ≈ Ey∼π[R

π
β(y)]).

Objective (2) can be made supervised-friendly
by relying on some fixed sampling distribution µ
(e.g., underlying a dataset), by using importance
sampling. Indeed, we have

J(π) = Ey∼µ[
π(y)

µ(y)
Rπ

β(y)]. (4)

The related gradient is, with a baseline here,

∇J(π) = Ey∼µ[
π(y)

µ(y)
(Rπ

β(y)−b)∇ lnπ(y)].

The corresponding empirical gradient suffers from
a larger variance: when the policy π becomes
different from the sampling model µ (which
happens, as π is trained), the probability ratio can
explode. Training is thus not stable or efficient.
Moreover, this requires having access to the
probabilities µ(y), which may not be possible, for
example when the underlying generations have
been made by humans rather than by an LLM.

An approach for alleviating this stability issue
is to clip the probability ratio in objective (4), to
kill the gradient whenever π becomes too different
from µ. This is the core idea behind PPO, which
considers for µ older copies of the π network and
uses a value estimate as the baseline. However, this
still requires fresh generations, even if they can be
used for more than one gradient step.

3 Contrastive Policy Gradient

3.1 General objective

Contrastive approach requires pairs of generations,
which do not need to be ranked as in RLHF. For
a pair of independent generations (y, y′), we
introduce the following sample loss:
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ℓCoPG(y, y
′;π) = (5)

(
Rπ

β/2(y)−Rπ
β/2(y

′)
)
ln

π(y)

πref(y)

+
(
Rπ

β/2(y
′)−Rπ

β/2(y)
)
ln

π(y′)
πref(y′)

.

This can be seen as a weighted log-likelihood,
where the weight is the reward of the generation
contrasted with the reward of an independent
generation, and it’s symmetric.

Let µ1 and µ2 be some independent distributions
(for example underlying a dataset of pairs of gener-
ations), that do not need to be known analytically
(contrary to policy gradient with importance sam-
pling), and that can be the same too. The objective
to be maximized is then

L(π) = Ey∼µ1,y′∼µ2 [ℓCoPG(y, y
′;π)]. (6)

To get more insights, let’s rewrite this objective.
First, write the expected reward over µ as

Rπ
β/2

µ
= Ey∼µ[R

π
β/2(y)].

Notice that in RL terms, this is not strictly speaking
the value, as the expectation is under µ rather than
π. Then, L can be rewritten as

L(π) = Ey ∼µ1 [
(
Rπ

β/2(y)−Rπ
β/2

µ2
)
ln

π(y)

πref(y)
]

+ Ey′ ∼µ2 [
(
Rπ

β/2(y
′)−Rπ

β/2

µ1
)
ln

π(y′)
πref(y′)

].

Again, this can be seen as a weighted log-
likelihood, where the reward weighting the
log-likelihood under one distribution is contrasted
with the expected reward under the other distribu-
tion. This loss is supervised-friendly, as it does not
involve sampling from the trained policy.

The natural question is whether maximizing this
objective L solves the intended problem (2), and
thus maximizes any language scores. The answer
is positive, and we deferred all proofs to Appx. A:

Theorem 1 (CoPG solves the right problem).
Assume that πref, µ1 and µ2 all have the same
support. Then, the unique maximizer of L(π),
defined Eq. (6), is π∗(y) ∝ πref(y) exp

R(y)
β , which

is also the unique maximizer of J(π).

To shed more light on the relationship to policy
gradient, let’s consider the gradient of L(π). By
simple calculus (taking care of the fact that Rπ

β/2
does depend on π), one obtains:

∇L(π) = Ey ∼µ1 [
(
Rπ

β(y)−Rπ
β

µ2
)
∇ lnπ(y)]

+ Ey′ ∼µ2 [
(
Rπ

β(y
′)−Rπ

β

µ1
)
∇ lnπ(y′)]. (7)

When compared to Eq. (3), the classic policy
gradient with baseline, we obtain a sum of two
policy-like gradients, however with striking
differences. First, the expectation is not according
to the learnt policy π, but according to either
µ1 or µ2, meaning that it can be understood
as a sound off-policy policy gradient. Second,
there is a baseline, the contrastive term, which
is the expected reward but according to the other
distribution (which can be the same if both are
identically distributed). Crucially, it cannot be
any baseline (because Ey∼µ[∇ lnπ(y)] ̸= 0 in
general), it must be this specific one.

Overall, the proposed objective function (6),
alongside with the strong result of Thm. 1, thanks
to the specific form of the gradient (7), tells us that
policy gradient can be safely applied to off-policy
data, without the introduction of a correcting impor-
tance sampling term, if we use the right baseline,
that is the contrastive term depicted above. The
relationship to policy gradient can be made even
clearer for the specific case µ1 = µ2, to be com-
pared again to Eq. (3):

∇L(π) µ1=µ2
= 2Ey∼µ[

(
Rπ

β(y)−Rπ
β

µ
)
∇ lnπ(y)].

3.2 A simple sample-based objective
To obtain a practical algorithm, one has to choose
what µ1 and µ2 are, if they are different or the
same, and how to estimate the expectations. The
outer expectations can be estimated using Monte
Carlo (forming a batch for each gradient step). De-
pending on the nature of µi, the inner expectations
underlying the terms Rπ

β

µi can be estimated using
a single (or multi-) sample Monte Carlo estimate,
or even possibly by learning an associated value
network. Regarding the distributions µ1 or µ2,
the main constraint is that they share the same
prompts. It can be a dataset, generations from the
current policy, generations from another policy, or
coming from a replay buffer as commonly done for
off-policy RL methods (Mnih et al., 2015). One
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could also choose a hybrid approach, where µ1

is for example a dataset of good but suboptimal
generations while µ2 comes from a replay buffer
collecting past generations of the trained policy.
This is reminiscent of RL from demonstrations,
which has been shown to be beneficial in the classic
RL setting (Piot et al., 2014; Hester et al., 2018).

All these choices may impact the stability and
the efficiency of the resulting algorithm. We
leave these interesting research directions for fu-
ture works and focus here on the simple case where
we learn in an offline manner from a given dataset,
reminiscent of the now commonly used direct align-
ment methods, except that we do not need rankings.

LetD = {(yj , y′j)1≤j≤n} be a dataset of pairs
of scored generations with identical prompts.
CoPG minimizes the following empirical loss:

L̂(π) =
1

n

n∑

j=1

ℓCoPG(yj , y
′
j ;π). (8)

with ℓCoPG being defined in Eq. (5).

It is a simple supervised-friendly objective func-
tion that can be minimized by performing gra-
dient ascent on mini-batches sampled from the
dataset. The gradient can readily be obtained by
auto-differentiation (contrary to the gradient of
Eq. (2), due to the dependency of the expectation
to the optimized policy), but we give it for a pair of
generations for completeness:

∇ℓCoPG(y, y′;π) =
(
Rπ

β(y)−Rπ
β(y

′)
)
∇ lnπ(y)

+
(
Rπ

β(y
′)−Rπ

β(y)
)
∇ lnπ(y′). (9)

From this, we observe that the optimization will
increase the log-likelihood of the preferred genera-
tion (according to the reward model) and decrease
that of the dispreferred one, proportionally to the
reward difference.

To further simplify the practical implementation,
one can easily verify that

∇ℓCoPG(y, y′;π) ∝ −∇
(
Rπ

β(y)−Rπ
β(y

′)
)2

,

We provide the related pseudocode (used in our
experiments) in Alg. 1.

4 Related works

Contrastive Policy Gradient is related to policy gra-
dient (Williams and Peng, 1991). It can be seen

Algorithm 1: Practical offline CoPG

input :Dataset D = {(x, y, y′)}, reference
model πref, model to train πθ

Initialize πθ ← πref;
for t← 1 to T do

Sample a batch B from D;
Define the regularized reward;
Rπ

β(x, y) = R(x, y)− β ln πθ(y|x)
πref(y|x) ;

Compute the gradient;
gt =

1
|B|

∑
x,y,y′∈B∇

(
Rπ

β(x, y)−Rπ
β(x, y

′)
)2

;

Update the parameters;
θt+1 ← θt − ηt∇gt;

as a sound off-policy policy gradient, but crucially
not relying on importance sampling, and thus not
requiring clipping techniques such as Proximal Pol-
icy Optimization (Schulman et al., 2017) or vari-
ations (Wu et al., 2023), allowing for broader ap-
plicability (notably, PPO cannot be applied offline
to a dataset of unknown density). This link is even
stronger:
Property 1 (CoPG and policy gradient). CoPG gen-
eralizes policy gradient in the sense that

Ey∼π,y′∼π[∇ℓCoPG(y, y′;π)] = 2∇J(π).
The expectation of the gradient of ℓCoPG ac-

cording to the current policy is exactly (up to the
scaling) the policy gradient of Eq. (3). So, we can
retrieve policy gradient as a special case of the pro-
posed approach, which is much less restrictive as it
does not require the generations to be sampled ac-
cording to the current policy. This result is asymp-
totic, as the expectation requires an infinite number
of generations, but we have a similar connection
to a more practical policy gradient approach.

Reinforce Leave-One Out is a sample-based
policy gradient, using a Monte Carlo estimate
of the expected reward from k generations as
a baseline (Kool et al., 2019). It is remarkably
effective for finetuning LLMs, simpler than PPO
while providing better results, but still relying on
fresh generations for each mini-batch (Ahmadian
et al., 2024). When using only two generations,
the gradient is naturally symmetrized not to waste
information and matches exactly Eq. (9).
Property 2 (CoPG and RLOO). The sample-based
gradient ∇ℓCoPG(y, y′;π) is exactly the gradient of
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RLOO for k = 2, when both y and y′ are sampled
from the current policy π.

A core difference is that CoPG is valid for any
sampling distribution, while RLOO critically relies
on using on-policy generations when derived from
objective (2). This result shows that it is valid
and principled to use the RLOO gradient in an off-
policy manner. This is highly non-trivial, new to
the community, and made possible thanks to the
proposed principled approach.

Contrastive Policy Gradient can also be related
to direct alignment methods (Rafailov et al., 2023;
Zhao et al., 2023; Azar et al., 2024; Tang et al.,
2024b), and more especially to Identity Policy Opti-
mization (Azar et al., 2024), in the following sense.

Property 3 (CoPG and IPO). For a pair of genera-
tions (y, y′), assume without loss of generality that
y is preferred to y′ according to the reward model,
and redefine R(y) = −R(y′) = 1

4 , then we have

∇ℓCoPG(y, y′;π) =

− 1

2β

(
1

2
− β

(
ln

π(y)

πref(y)
− ln

π(y′)
πref(y′)

))2

,

where the term on the right-hand side is the gradi-
ent of the sample-based IPO loss to be minimized.

These results show that if we replace the reward
in our objective with a binary signal depending on
which generation is preferred, we follow the same
gradient as IPO. In that sense, our approach also
subsumes direct alignment approaches, allowing
us to optimize for an arbitrary reward.

5 Toy experiment

For an illustrative purpose, we consider a sim-
ple bandit problem, with 3 arms rewarded by
R = (2.5, 2, 1). We choose the data distributions to
be µ1 = (0.1, 0.2, 0.7) and µ2 = (0.05, 0.05, 0.9).
Using these distributions, we sample a dataset of
104 pairs of rewarded arms. We set β = 0.5 and
πref(y) =

1
3 for y ∈ {1, 2, 3}. The analytical solu-

tion to this bandit problem is π∗(y) ∝ exp R(y)
β .

We consider the practical CoPG objective of
Eq. (8), for which we recall the gradient Eq. (9).
Given that CoPG generalizes policy gradient (PG,
Prop. 1), we also experiment with it to illustrate the
importance of choosing the right baseline. For PG,
we consider the following sample-based gradient:

∇ℓPG(y, y
′;π) = (Rπ

β(y)− b)∇ lnπ(y)

+ (Rπ
β(y

′)− b)∇ lnπ(y′).
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Figure 1: Bandit experiment. CoPG achieves zero regret,
converging to the optimal solution. IPO converges to a
biased solution, as it optimizes for the expected prefer-
ence. PG without a baseline has increasing regret, and
PG with a value baseline converges to a biased solution.

As explained before, this gradient is valid when-
ever both y and y′ are sampled according to the
current policy π. However, here we use pairs of
arms sampled from the dataset. In other words, this
can be seen as a naive off-policy policy gradient.
We consider two kind of baselines, b = 0 (no base-
line) and b = Ey∼π[R(y)] (value baseline). The
first case corresponds to vanilla policy gradient,
and the second case corresponds to the baseline
most often used in the literature. Notice that in
practice this should be estimated (typically with a
value network), but we compute it exactly in this
experiment. Given the link between CoPG and IPO
(Prop. 3), we also experiment with IPO.

For each approach, we train the policy π̂ with
stochastic gradient descent. We use Adam (Kingma
and Ba, 2014) with learning rate 10−3, batches of
size 512, and train for 100 epochs. We measure the
performance of the trained policy with the regret:

regret = J(π∗)− J(π̂),

with J being defined Eq. (2). If CoPG and PG both
rely on a reward function, IPO can only use pref-
erences. We simply set them to be sampled ac-
cording to a Bradley-Terry Model, P (y > y′) =
σ(R(y)−R(y′)), with σ the logistic function.

Results are presented in Fig. 1. We can observe
that CoPG converges to the right solution, as pre-
dicted theoretically (Thm. A). IPO converges to a
biased solution. This was to be expected, as it can
be shown to optimize the reward Ey′∼µ2 [σ(R(y)−
R(y′)] (Azar et al., 2024), which is different from
the reward of interest R. Regarding policy gradient,
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we can observe that without baseline, naively ap-
plying the policy gradient on off-policy data leads
to an increase in the regret: Learning deteriorates
the initial policy. Adding the value baseline helps,
but it still converges to a biased solution (and it
is an ideal algorithm, as here the baseline is an-
alytically computed, while it has to be estimated
in practice). Sample-based CoPG converges to the
right solution, showing the importance of choosing
the right baseline in an off-policy context.

6 LLM experiments

In this section, we demonstrate the ability of CoPG
to optimize a reward function for finetuning an
LLM. As depicted in Sec. 3.2, we consider a pure
offline objective, where one has to learn from a
fixed dataset of pairs of generations. Classic RLHF
approaches, such as policy gradient or PPO, do
not work in such a pure offline setting. PPO could
possibly do a single-step policy improvement,
but it would require access to the underlying
probabilities µ(y) of elements in the dataset, which
are not available. Moreover, it would require an
additional costly value network. Therefore, as
baselines, we consider direct alignment methods,
specifically DPO and IPO, for which the preferred
completion is chosen according to the same reward
model being optimized by CoPG.

Dataset. We consider the Reddit TL;DR
dataset1 of Stiennon et al. (2020). It is a summa-
rization dataset with an SFT split, consisting of
human-written summaries, and a preference split,
made of human-annotated preference pairs. We
will rerank the preferences according to the reward
model, so that CoPG and direct alignment methods
optimize for consistent objectives.

Policy Model. We use Llama2-7B as the base
model2 (Touvron et al., 2023). We supervise fine-
tune it on the SFT split of the TL;DR dataset, giving
πref as a result. This is both the initial policy and
the reference model for CoPG as for direct align-
ment baselines. This model is trained for 2 epochs
with Adam, with a cosine decay scheduler (2.10−5

to 0), warmup of 10%, using a batch of size 128.
Reward Model. Our objective is to provide an

approach to optimize arbitrary reward functions.
As a proof of concept, for this empirical study,
we train a reward model using the preference split

1https://github.com/openai/
summarize-from-feedback

2https://huggingface.co/meta-llama/
Llama-2-7b-hf

of the TL;DR dataset and will consider it as the
ground truth reward function to be optimized. We
insist right away that we do not claim such a reward
model to be the best thing to optimize for improv-
ing the LLM, we use it as a proxy for assessing
if the proposed approach can indeed optimize a
reward at scale. For training the reward function,
we use a classic Bradley-Terry model (Bradley and
Terry, 1952), optimizing for the loss

ℓRM(y+, y−, R) = − lnσ(R(y+)−R(y−)).

The reward model is trained for two epochs on the
train split of the preference dataset, with Adam, the
learning rate of 10−6, a batch of size 128, and a
warm-up of 10% of the total number of training
steps. The trained reward model achieves an accu-
racy of 89.1% on the train set and of 72.8% on the
validation set.

Training details. We train all algorithms
for two epochs over the train split of the prefer-
ence dataset. We use a batch of size 128. We
optimize the respective losses with Adam, with
a learning rate of 10−6 in all cases. For all ap-
proaches we use a warm-up of 10% of all train-
ing steps. For CoPG and DPO we sweep over
β ∈ {0.01, 0.03, 0.06, 0.1, 0.3, 1}. For IPO we
sweep over slightly lower values, specifically β ∈
{0.003, 0.01, 0.03, 0.06, 0.1, 0.3}.

Evaluation. Recall that the objective is to know
if CoPG can optimize a reward function by learning
offline from a fixed dataset. To evaluate this, every
50 training steps, we perform generations using
the trained model on a fixed batch of 128 prompts
from the validation dataset and score them using
the reward model. We do the same for IPO and
DPO, for which we recall that they are trained for
preferences according to the reward model, and not
according to the original dataset, for a fair compari-
son, as the reward model is used for evaluation. We
also note that the reward model was not trained on
the validation set, only on the train set.

6.1 Can CoPG optimize a reward?

CoPG comes with strong theoretical guarantees, and
we here aim to assess its scalability while optimiz-
ing a reward in an LLM setting. We train and
evaluate it in the setting depicted before, and we
provide the corresponding results in Fig. 2. This
figure shows how the reward of generations (av-
eraged over 128 prompts from the validation set)
from the model evolves over training (validation
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Figure 2: CoPG: Rewards of generations along training.
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Figure 3: DPO: Rewards of generations along training.

each 50 training steps), for the different considered
values of β.

We can observe that CoPG successfully optimizes
the reward over a large range of temperature
β ∈ [0.03, 0.1], with the higher reward being
achieved for β = 0.06. When the temperature is
too low, it becomes unstable, and the reward drops.
Interestingly, this does not translate into a sign
of overfitting in other validation metrics, such as
the loss. This is not something new to the LLM
community, but it highlights the necessity of doing
generations when evaluating a model, which is a
classic RL thing, especially in a pure offline setting.
When the temperature is too high, the reward still
increases, but to a lower value. This has to be
expected. In this case, the Kullback-Leibler term
becomes predominant, and the policy is incen-
tivized more to avoid moving too far away from the
reference model, which was also the initial policy.

For a more complete study, we also provide
the related results for IPO and DPO. They do not
directly aim at optimizing the reward but rather at
optimizing the preferences. However, given that,
in our case, these preferences are ranked according
to the reward model, they should also generate
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Figure 4: IPO: Rewards of generations along training.
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Figure 5: Final reward as a function of β.

sequences of increasing rewards. For DPO, given
that in this specific case the preference follows a
Bradley-Terry model, it should indeed optimize
the reward function, while IPO optimizes for a
different objective, see Azar et al. (2024, Prop. 1
and Thm. 1) for more details.

We provide the result for DPO in Fig. 3. We
can observe that DPO is indeed able to optimize
the reward too. As CoPG, it is not too sensitive to
the value of β, for the same range. Similarly, it be-
comes unstable when β is too low, and it increases
less the reward when the temperature is too high
because it stays closer to the reference model.

The results for IPO are provided in Fig. 4. IPO,
too, increases the reward. Conversely to CoPG or
DPO, it seems to be more stable, because we do not
observe a significant drop when β becomes smaller
(but we expect this to happen for lower values of
β). It also appears to be not too sensitive to the
value of β in a given range (taking into account the
difference of scale without a “dropping” run), yet
for lower values.

To summarize these results, we show in Fig. 5
the expected reward after training as a function
of β. This showcases the stable range and the fact
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that the various approaches rely on different ranges
of temperature values to provide high rewards.

6.2 How does CoPG compare to direct
alignment?

So far, we have shown that both CoPG and the di-
rect alignment methods DPO and IPO were able to
increase the reward in an offline manner. However,
a core question is to know if directly optimizing a
reward, as CoPG does, provides better results than
optimizing for a preference based on this reward
function. In a simple and controlled case, such as
the bandit experiment of Sec. 5, the answer is clear,
because we can exhibit the optimal solutions and
we know to what each method should converge.
However, it is much less clear in a large-scale prob-
lem, such as an LLM generating sequences.

To assess this, we compare CoPG, DPO and IPO
with the best temperature from Fig. 5 (respectively
β = 0.06, β = 0.1 which is also the classic value
for DPO in the literature, and β = 0.01). We also
rerun the experiments, this time gathering gener-
ations for a batch of 1024 prompts from the vali-
dation set, to get a better estimate of the expected
reward, doing this each 100 training steps.

Results are presented in Fig. 6, the shaded en-
velop corresponding to the standard errors. We can
observe that CoPG consistently achieves a higher
reward, and faster, than both IPO and DPO. We
hypothesize that it could be even more true for a
reward not trained from preference data.

In this case, the preferences following the
Bradely-Terry model (because ranked according
to the reward function), DPO should optimize for
the reward function, according to Azar et al. (2024,
Prop. 1). Yet, it achieves the lowest reward in this
experiment. We think that this is due to this conver-
gence result being an asymptotical one. In practice,
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Figure 7: KL-Reward trade-off for CoPG, DPO and IPO.

CoPG uses explicitly the reward signal, while DPO
only uses a binarized signal (which completions is
preferred), and it would require the algorithm to
observe multiple rankings of the same completions
to converge to the right solution.

In principle, IPO converges to a different solu-
tion, but for the same β. For the stated theoretical
results, β is part of the problem, while in practice
it is a hyperparameter. Here, we have chosen β
so as to achieve the highest possible reward, and
the effective β for IPO is much smaller than for
both CoPG and IPO. However, IPO also achieves a
lower reward than CoPG, even if closer than DPO.

Overall, this experiment also suggests that if we
are given a reward function to optimize, it may not
be sufficient to use it to build a preference dataset
with preferences ranked according to the reward
model so as to learn from it using a direct align-
ment method. Reinforcement learning approaches
still have a place in this field, and our proposed
CoPG allows to maximize efficiently the reward, in
a purely off-policy manner, while being as simple,
stable and computationally lightweight as direct
alignment approaches.

6.3 KL-Reward trade-off

In regularized RL, the objective is to maximize the
reward while keeping the KL divergence between
the policy and the reference model small enough.
This is especially important for LLMs, as this can
prevent reward hacking for example. For this ex-
periment, we consider the HH dataset from Bai
et al. (2022). We use the same recipe as TL;DR
for training the SFT checkpoint (this time using the
preferred examples, in the absence of SFT data),
the reward model, IPO, DPO and CoPG. We also
use the same hyperparameters.

We follow the same methodology, sweeping for
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each algorithm over values of β, selecting the one
with the higher final reward averaged of 128 gen-
erations. Then, we retrain each algorithm with its
best value of β, using 1024 generations for comput-
ing the reward at each validation step. From that,
we compute the KL/reward Pareto front for IPO,
DPO and CoPG.

Results are presented in Fig. 7. It is a scatter plot
of the rewards as a function of the KL divergences,
each point corresponding to one of the 1024 gener-
ations for a specific validation step and a specific
algorithm. The figure also provides a polynomial
interpolation. The Pareto front clearly shows that
CoPGoutperforms IPO and DPO in achieving higher
rewards while maintaining lower KL divergence.
In particular, we note that DPO tends to achieve a
higher KL more easily than other methods.

7 Discussion and perspectives

We have introduced Contrastive Policy Gradient, a
new RL approach for finetuning LLMs. It is a form
of policy gradient that contrasts the reward with
a specific baseline. The corresponding objective
function is supervised-friendly, in the sense that
it does not (necessarily) rely on fresh generations
from the model. This allows to learn a policy in a
pure offline setting, without relying on importance
sampling or clipping of log-probability ratios, and
does not require the introduction of an additional
value network. We have demonstrated that CoPG
indeed optimizes for the optimal KL-regularized
policy (Thm. 1), and we have shown that it gener-
alizes policy gradient (Prop. 1), RLOO (Prop. 2),
or IPO (Prop. 3).

On a controlled but simple bandit experiment
(Sec. 5), we have illustrated empirically the con-
vergence properties of the proposed approach, the
importance of choosing the right baseline (the one
coming from our derivations rather than the classic
value baseline, and even less no baseline), and the
advantage of optimizing a reward function rather
than preferences derived from these rewards, which
leads to a biased solution. On a larger scale LLM
experiment (Sec. 6), we have shown that CoPG is
able to optimize a reward function, in a fully of-
fline and off-policy manner, conversely to other
RL-finetuning approaches, and that it can achieve a
higher reward than by using a direct alignment
approach on preferences ranked by the reward
model. Our experimental study also suggests that
this higher reward is achieved at a lower KL cost,

compared to IPO or DPO.
A core perspective is to study CoPG in an online

setting. Indeed, if it works in the offline setting,
being the first such RL approach in the context
of LLMs (to the best of our knowledge), it is not
restricted to this setting. Recent works have high-
lighted the benefits of using online (or fresh) data
for direct alignment (Tang et al., 2024a; Tajwar
et al., 2024), and we hypothesize that these find-
ings can also benefit to CoPG. Typically, one can
consider using a replay buffer, as classically done in
off-policy RL but less common for LLM finetuning.
As CoPG uses pairs of generations, we think that
this can also open new perspectives by using hetero-
geneous distributions for the completions, as briefly
discussed in Sec. 3.2. For example, one distribu-
tion could correspond to the replay buffer, while
the other could correspond to exploratory genera-
tions (for addressing the exploration/exploitation
dilemma), or by using a dataset of good but subop-
timal generations, in the spirit of RL from demon-
strations. Another important perspective is to ex-
periment CoPG on more tasks and rewards, and
we also plan to study its possible extension to the
multi-objective RL setting.

Limitations

If the proposed CoPG approach comes with strong
theoretical guarantees and has been validated in
both a simple bandit problem and a larger scale
LLM experiments, it would benefit from being as-
sessed on more tasks and rewards in the context of
LLMs. CoPG works in a pure offline setting, which
is a strength, but it would benefit from using fresh
generations too, as well as from possibly hetero-
geneous sources of data. Nothing prevents it in
principle, but this has still to be investigated, and
would provide a fair comparison to other classic
RL finetuning approaches, relying on (near) on-
policy samples. The proposed approach optimizes
for a single reward model, its extension to multi-
ple rewards remains an interesting open question.
Also, our approach assumes that the reward model
is reliable, which is often not the case in practice,
especially when it is learnt from data. This is in part
the role of KL-regularization (to avoid hacking the
reward), but our approach has no additional mech-
anism for preventing optimizing bad areas of the
reward model. This would be especially important
for a number of LLM applications.
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A Proofs of theoretical results

In this section, we prove the stated theoretical results. First, we reintroduce the notations, now taking into
account the prompt x (or context). The regularized reward defined in Eq. (1) becomes

Rπ
β(x, y) = R(x, y)− β ln

π(y|x)
πref(y|x)

. (10)

The classic RL problem of Eq. (2) writes

J(π) = Ex∼ρ,y∼π(·|x)[R(x, y)− βKL(π(·|x)||πref(·|x))] = Ex∼ρ,y∼π(·|x)[R
π
β(x, y)]. (11)

The unique maximizer of J is well known, J being a Legendre-Fenchel transform (e.g., see Vieillard et al.
(2020, Appx. A)), it is given by

π∗(y|x) =
πref(y|x) exp R(x,y)

β

Z∗(x)
, (12)

with Z∗(x) =
∑

y πref(y|x) exp R(x,y)
β the associated partition function.

The proposed CoPG loss (5) with context x simply writes

ℓCoPG(x, y, y
′;π) =

(
Rπ

β/2(x, y)−Rπ
β/2(x, y

′)
)
ln

π(y|x)
πref(y|x)

+
(
Rπ

β/2(x, y
′)−Rπ

β/2(x, y)
)
ln

π(y′|x)
πref(y′|x)

.

The associated objective function (6) to be maximized is then, with context x,

L(π) = Ex∼ρ,y∼µ1(·|x),y′∼µ2(·|x)[ℓCoPG(x, y, y
′;π)]. (13)

Now, we restate Thm. 1 in a more general form and prove it.

Theorem 1 (CoPG solves the right problem.). Assume that πref, µ1 and µ2 all have the same support (that
is, for any triplet (x, y, y′) such that ρ(x) > 0, we have πref(y|x) > 0⇔ µ1(y|x) > 0⇔ µ2(y|x) > 0).
Then, the unique maximizer of L(π), Eq. (13), is the optimal policy π∗ of Eq. (12), which is also the
unique maximizer of J(π), Eq. (11).

Proof. We start by showing that π∗ is a maximizer, before proving that it is the sole one. First recall the
CoPG loss:

ℓCoPG(x, y, y
′;π) =

(
Rπ

β/2(x, y)−Rπ
β/2(x, y

′)
)
ln

π(y|x)
πref(y|x)

+
(
Rπ

β/2(x, y
′)−Rπ

β/2(x, y)
)
ln

π(y′|x)
πref(y′|x)

.

Without loss of generality, thanks to the support assumption, we can reparametrize the policy π as follows:

β ln
π(y|x)
πref(y|x)

= V (x, y)− ZV (x), (14)

with ZV (x) = β ln
∑

y πref(y|x) exp V (x,y)
β the associated (scaled) partition function. In essence, V (x, y)

can be understood as the logits of the learnt policy, shifted by the log-probabilites of the reference policy.
Then, we can rewrite the CoPG loss using the above reparametrization:

βℓCoPG(x, y, y
′;V )

(a)
=

(
R(x, y)− 1

2
(V (x, y)− ZV (x))−R(x, y′) +

1

2
(V (x, y′)− ZV (x))

)
(V (x, y)− ZV (x))

+

(
R(x, y′)− 1

2
(V (x, y′)− ZV (x))−R(x, y) +

1

2
(V (x, y)− ZV (x))

)(
V (x, y′)− ZV (x)

)

(b)
=

(
R(x, y)−R(x, y′)− 1

2
(V (x, y)− V (x, y′))

)(
V (x, y)− V (x, y′)

)

(c)
=

1

2
(R(x, y)−R(x, y′))2 − 1

2

(
R(x, y)−R(x, y′)− (V (x, y)− V (x, y′))

)2
. (15)
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In the above derivations, (a) is true by using the reparametrization of Eq. (14), (b) is obtained by canceling
terms (all terms ZV (x) are weighted by 0) and refactoring, and (c) is easily obtained by recoginizing a
partial square expansion in (b) (of the form 1

2(∆V )2 − (∆V )(∆R)).
Hence, a pointwise maximizer of ℓCoPG(x, y, y′;V ) is necessarily a minimizer of (R(x, y)−R(x, y′)−

(V (x, y)− V (x, y′)))2 (the term (R(x, y)−R(x, y′))2 being constant with respect to optimization), and
V = R is obviously such a minimizer, setting the square term to 0. With V = R, Eq. (14) characterizes
the optimal policy π∗ of Eq. (12). Therefore, we have just shown that π∗ is a maximizer of L(π).

Now, let us show that this maximizer is unique. Let π̃ be a maximizer of L(π), and let Ṽ be an
associated logit function according to Eq. (14) (notice that there is no unicity of the logits, a shift by an
x-dependant function provides the same equation). The term Ṽ necessarily sets the square term of Eq. (15)
to zero (because V = R does so). Therefore, for any triplet (x, y, y′) such that ρ(x) > 0, πref(y|x) > 0
and πref(y

′|x) > 0, we have that

R(x, y)− Ṽ (x, y) = R(x, y′)− Ṽ (x, y′).

This is not enough to ensure unicity, Ṽ (x, y) − b(x) would satisfy this equality for an arbitrary b(x).
However, we’re interested in the policy solution. We have that:

R(x, y)− Ṽ (x, y) = R(x, y′)− Ṽ (x, y′)

(a)⇔ R(x, y)− β ln
π̃(y|x)
πref(y|x)

= R(x, y′)− β ln
π̃(y′|x)
πref(y′|x)

(b)⇔ β lnπ∗(y|x)− β ln π̃(y|x) = β lnπ∗(y′|x)− β ln π̃(y′|x)
(c)⇔ π∗(y′|x) =

π∗(y|x)π̃(y′|x)
π̃(y|x)

(d)⇒ 1 =
∑

y′
π∗(y′|x) =

∑

y′

π∗(y|x)π̃(y′|x)
π̃(y|x) =

π∗(y|x)
π̃(y|x)

⇔ π̃(y|x) = π∗(y|x).

In the above derivation, (a) is true by Eq. (14) and canceling the terms lnZṼ (x) appearing in both sides,
(b) is true by recognizing from Eq. (12) that β lnπref(y|x) + R(x, y) = β lnπ∗(y|x) − β lnZ∗(x) and
canceling the terms β lnZ∗(x) appearing on both sides, (c) is true by simplifying β, exponentiating and
rearranging, and (d) is true by using the fact that both π∗(·|x) and π̃(·|x) are distributions.

We have just shown that any maximizer π̃ of L is necessarily π∗, which concludes the proof.

Next, we restate Property 1 and prove it.

Property 1 (CoPG and policy gradient). CoPG generalizes policy gradient in the sense that

Ex∼ρ,y∼π(·|x),y∼π(·|x)[∇ℓCoPG(x, y, y′;π)] = 2∇J(π).

Proof. Let start by reproving the classic policy gradient. We have that

∇J(π) = ∇Ex∼ρ,y∼π(·|x)[R
π
β(x, y)]

= Ex∼ρ,y∼π(·|x)[R
π
β(x, y)∇ lnπ(y|x) +∇Rπ

β(x, y)]

= Ex∼ρ,y∼π(·|x)[R
π
β(x, y)∇ lnπ(y|x)],

where for the last step we make use of the fact that Ex∼ρ,y∼π(·|x)[∇ lnπ(y|x)] = 0.
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Now, let compute the gradient of the CoPG loss:

∇ℓCoPG(x, y, y′;π)

= ∇
((

Rπ
β/2(x, y)−Rπ

β/2(x, y
′)
)
ln

π(y|x)
πref(y|x)

+
(
Rπ

β/2(x, y
′)−Rπ

β/2(x, y)
)
ln

π(y′|x)
πref(y′|x)

)

= ∇
(
Rπ

β/2(x, y)−Rπ
β/2(x, y

′)
)
ln

π(y|x)
πref(y|x)

+
(
Rπ

β/2(x, y)−Rπ
β/2(x, y

′)
)
∇ ln

π(y|x)
πref(y|x)

+∇
(
Rπ

β/2(x, y
′)−Rπ

β/2(x, y)
)
ln

π(y′|x)
πref(y′|x)

+
(
Rπ

β/2(x, y
′)−Rπ

β/2(x, y)
)
∇ ln

π(y′|x)
πref(y′|x)

=
(
Rπ

β(x, y)−Rπ
β(x, y

′)
)
∇ lnπ(y|x) +

(
Rπ

β(x, y
′)−Rπ

β(x, y)
)
∇ lnπ(y′|x). (16)

It is important to not ignore the fact that Rπ
β/2 does depend on π, and thus contributes to the gradient, the

rest of derivations skipped above are simple calculus and rearranging terms.
So, the gradient∇ℓCoPG(x, y, y′;π) is a sum of two terms, let focus on the first one. We have that

Ex∼ρ,y∼π(·|x),y′∼π(·|x)[(R
π
β(x, y)−Rπ

β(x, y
′))∇ lnπ(y|x)]

=Ex∼ρ,y∼π(·|x)[R
π
β(x, y)∇ lnπ(y|x)]− Ex∼ρ


Ey′∼π(·|x)[R

π
β(x, y

′)]Ey∼π(·|x)[∇ lnπ(y|x)]
︸ ︷︷ ︸

=0




=∇J(π).

By symmetry, we have exactly the same result for the second term,

Ex∼ρ,y∼π(·|x),y′∼π(·|x)[(R
π
β(x, y

′)−Rπ
β(x, y))∇ lnπ(y′|x)] = ∇J(π),

which overall shows that

Ex∼ρ,y∼π(·|x),y′∼π(·|x)[∇ℓCoPG(x, y, y′;π)] = 2∇J(π).

This concludes the proof.

Then, we restate Prop. 2 and prove it.

Property 2 (CoPG and RLOO). The sampled-based gradient∇ℓCoPG(x, y, y′;π) is exactly the gradient of
RLOO for k=2, when both y and y′ are sampled from the current policy π.

Proof. First, recall the gradient of the CoPG loss from Eq. (16), proven in the previous proof:

∇ℓCoPG(x, y, y′;π) =
(
Rπ

β(x, y)−Rπ
β(x, y

′)
)
∇ lnπ(y|x) +

(
Rπ

β(x, y
′)−Rπ

β(x, y)
)
∇ lnπ(y′|x).

Next, we rederive RLOO from first principle. Recall the classic policy gradient:

∇J(π) = Ex∼ρ,y∼π(·|x)[R
π
β(x, y)∇ lnπ(y|x)].

A sample-based gradient is given by, with y being sampled according to π(·|x),

∇̂J(π) = Rπ
β(x, y)∇ lnπ(y|x).

As explained before, a baseline b(x) can be considered, without biasing the gradient, as long as it is
independent from the generation y:

∇̂bJ(π) = (Rπ
β(x, y)− b(x))∇ lnπ(y|x).

It is easy to check that the gradient is unbiased:

Ey∼π(·|x)∇̂bJ(π) = Ey∼π(·|x)[R
π
β(x, y)∇ lnπ(y|x)]

︸ ︷︷ ︸
=∇J(π)

−b(x)Ey∼π(·|x)[∇ lnπ(y|x)]
︸ ︷︷ ︸

=0

= ∇J(π).
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The principle of RLOO is to perform k independent generations y1, · · · , yk for each prompt x, using
the current policy π(·|x), and to use as a stochastic baseline for Rπ

β(x, y
j), more specifically the leave-

one-out empirical expectation of the reward using the k − 1 other generations. This is still a valid
baseline (derivation above applies), as even if the baseline is stochastic, it is independent from yj . The
corresponding empirical gradient is

∇̂kJ(π) =
k∑

j=1

(
Rπ

β(x, y
j)− 1

k − 1

k∑

l=1
l ̸=j

Rπ
β(x, y

l)
)
∇ lnπ(yj |x).

In the case k = 2 this simplifies to:

∇̂k=2J(π) =
(
Rπ

β(x, y
1)−Rπ

β(x, y
2)
)
∇ lnπ(y1|x) +

(
Rπ

β(x, y
2)−Rπ

β(x, y
1)
)
∇ lnπ(y2|x).

This is exactly the gradient ∇ℓCoPG(x, y, y′;π), which proves the result. However, as explained in the
main text, it is crucial to note that RLOO derivation is only valid when generations are done with the
current policy, while CoPG can account for arbitrary generations. In this sense, CoPG says that RLOO can
be safely used in an off-policy context.

Eventually, we restate and prove Prop. 3.

Property 3 (CoPG and IPO). For a prompt x and a pair of generations (y, y′), assume without loss of
generality that y is preferred to y′ given x according to the reward model, that is R(x, y) > R(x, y′), and
redefine R(x, y) = −R(x, y′) = 1

4 , then we have

∇ℓCoPG(x, y, y′;π) = −
1

2β

(
1

2
− β

(
ln

π(y|x)
πref(y|x)

− ln
π(y′|x)
πref(y′|x)

))2

,

where the term on the right-hand side is the gradient of the sample-based IPO loss to be minimized.

Proof. First, from Eq. (16), we have that

∇ℓCoPG(x, y, y′;π) =
(
Rπ

β(x, y)−Rπ
β(x, y

′)
)
∇ lnπ(y|x) +

(
Rπ

β(x, y
′)−Rπ

β(x, y)
)
∇ lnπ(y′|x).

Given the assumptions (y preferred to y′ given x and binarized reward, that is redefine R(x, y) =
−R(x, y′) = −1

4 ), and given the definition of Rπ
β in Eq. (10), the gradient writes

∇ℓCoPG(x, y, y′;π) =
(
1

2
− β ln

π(y|x)
πref(y|x)

+ β ln
π(y′|x)
πref(y′|x)

)(
∇ lnπ(y|x)−∇ lnπ(y′|x)

)
.

Now, let consider the gradient of the sample-based IPO loss:

∇
(
1

2
− β

(
ln

π(y|x)
πref(y|x)

− ln
π(y′|x)
πref(y′|x)

))2

=2

(
1

2
− β

(
ln

π(y|x)
πref(y|x)

− ln
π(y′|x)
πref(y′|x)

))(
β∇ lnπ(y′|x)− β∇ lnπ(y|x)

)

=− 2β∇ℓCoPG(x, y, y′;π).

This proves the stated result.
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B Qualitative results

We list two examples from the TL;DR dataset during evaluation. We observe that the summary improves
in quality during training, with more elaborate structures. Additionally, we started noticing some reward
hacking artifacts after 2 epochs (2× 600 steps) of the training.

SUBREDDIT: relationships
TITLE: (24/F) I hate losing arguments to my bf (27/m)
POST: I just got into another heated petty argument with my bf of 3 years! He started telling our
roommate a story about someone, I was sure he was thinking of something else, he stops dead in
his tracks and tells me that that’s not what happened. I said more details of what I remembered, he
told me again that I was wrong and I should believe him because it’s a story that happened to him.
He said what he always does, "why is it that when we disagree you assume I must be wrong? Why
don’t you ever consider that you could be wrong?"
By that point I had realized it was possible I was wrong, but I absolutely did not want to concede
that to him or offer him any slack. I don’t get like this with everybody, but my bf and I both have
this stupid trait of never backing down! And I hate admitting I’m wrong to him because I feel like
he acts super smug and condescending, when I make a mistake he laughs at me in an "oh, you"
sort of way that INFURIATES me. I know I overreact to this sort of thing but I don’t know how to
improve!

DPO:

• Step=300: I hate admitting to my bf that I’m wrong and I get super defensive when he acts like he’s
so happy and smug that I was wrong. How do I improve?

• Step=600: I hate admitting I’m wrong to my bf because he acts super smug and I don’t like it. How
do I get better about this?

• Step=900: I hate admitting I’m wrong to my bf in arguments because he acts super smug and I can’t
stand it, but I also hate losing arguments so I always fight to the death with him even when I’m sure
I’m wrong sometimes! What do I do?!

• Step=1200: I hate admitting I’m wrong to my bf because he acts super smug and I want to
win every argument. How do I improve ?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?
!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!!?!?!?
!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!!?!?!?!?!!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?
!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!?!

IPO:

• Step=300: I hate admitting to my bf that I’m wrong and I get super defensive when he acts like he’s
so happy that he was right and I was wrong. I want to improve so I don’t get so upset over this!

• Step=600: I hate admitting I’m wrong to my bf because he acts super smug and I don’t like it, but I
also hate losing arguments and always want to be right. I need to learn how to not care so much!

• Step=900: I hate admitting I’m wrong to my bf in arguments because he acts super smug and I can’t
stand it, but I also hate losing arguments! How do I improve so I don’t feel so defensive about being
wrong?

• Step=1200: I hate admitting I’m wrong to my bf in arguments because he acts super smug and I
want to win every argument anyway even if I’m not 100% sure I’m right. How do I stop?

CoPG:
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• Step=300: I hate admitting I’m wrong to my bf in arguments, he always acts super smug and I can’t
stand it. How can I get better about this?

• Step=600: I hate admitting I’m wrong to my bf and I hate when he acts super smug and condescending
when he knows he has proven he was right and I was wrong. I need to learn how to not let this get to
me!

• Step=900: I hate admitting defeat in petty arguments to my bf, he always acts so smug and I can’t
stand it, but I don’t know how to improve so I don’t get as upset with him over it!

• Step=1200: I hate admitting that I’m wrong to my bf after a disagreement because he acts like a
superior being, I don’t want to back down and admit it to him, but I also don’t want to continue the
argument because it just gets more heated and nasty.

SUBREDDIT: relationships
TITLE: Me [19 F] with my boyfriend [19 M ] 3.5 years, when is it time to let go? with line breaks.
POST: Okay, so I’ve never really posted anything before, so sorry if this is weird or I’m not doing
it right or something. I started dating my current BF when I was 15 and a sophomore in high
school, he was 16 and a junior. Now we are both in college. We are insanely close. Like spend
literally ALL our time together. He is incredibly important to me and we do everything together. I
love him a lot and I have incredible respect for him as a person. The problem is we both don’t
have friends outside of the relationship. I mean we both have friends. We have a lot of friends
really, but we just don’t feel like we connect with anyone other than each other anymore. It’s hard
to explain. We both ditched all of our friends from high school. Some of it was because of our
relationship, but a lot of it was high school is shitty.

DPO:

• Step=300: I know I need to break up with my boyfriend of 3.5 years, but I’m scared because I feel
like I won’t ever connect with anyone again because we have kind of abandoned our friends for each
other.

• Step=600: I know I need to break up with my boyfriend of 3.5 years, but I feel like I won’t ever
connect with anyone else because I’ve been so focused on this relationship my whole life. I don’t
know what to do.

• Step=900: I know I need to break up with my boyfriend I’ve been with for 3.5 years, but I’m afraid
because I feel like I won’t ever connect with anyone again after him. I feel like I only connect with
him. I don’t feel like I connect with anyone else.

• Step=1200: My boyfriend and I have pretty much zero outside friends and we are too dependent
on each other, I know we should break up but I’m scared I will never connect with anyone else. I’d
really appreciate some advice. Thanks.

IPO:

• Step=300: I know I need to break up with my boyfriend of 3.5 years, but I’m scared because I feel
like I won’t ever connect with anyone outside of my SO now. Has anyone expressed something like
this?

• Step=600: I know I need to end my relationship with my boyfriend whom I love very dearly, but I’m
scared because I feel like I won’t ever connect with anyone outside of the relationship anymore if I
do.
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• Step=900: I know it’s time to move on from my long-term relationship, but I’m scared because I
don’t feel like I’ll ever connect with anyone again outside of my SO. Has anyone else expressed this
feeling before? If so, what did you do?

• Step=1200: My boyfriend and I have pretty much ditched all of our friends from high school and
replaced them with each other. We know we need to break up eventually, but I’m scared because I
don’t feel like I’ll ever connect with anyone else. Has anyone else experienced something like this?

CoPG:

• Step=300: I know I need to break up with my boyfriend of 3.5 years whom I love very dearly, but
I’m scared because I feel like I won’t ever connect with anyone else outside of this relationship. Has
anyone expressed this feeling before?

• Step=600: I know I need to end my relationship with my boyfriend whom I love very dearly, but I
am scared I’ll never find anyone I connect with after him because I feel like I don’t connect with
anyone other than him.

• Step=900: I know I need to end my long-term relationship, but I’m scared because I don’t feel like
I’ll ever be able to connect with anyone else because all of my friends currently are either from this
relationship or I made this year and don’t feel like I connect with them.

• Step=1200: My boyfriend and I are pretty much all each other have ever cared about or focused on
in terms of friends. I know I need to break up with him, but I’m scared I won’t find any friends I
connect with ever again.
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