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Abstract

Guiding users through complex procedural
plans is an inherently multimodal task in which
having visually illustrated plan steps is crucial
to deliver an effective plan guidance. How-
ever, existing works on plan-following lan-
guage models (LMs) often are not capable of
multimodal input and output. In this work,
we present MM-PlanLLM, the first multimodal
LLM designed to assist users in executing in-
structional tasks by leveraging both textual
plans and visual information. Specifically, we
bring cross-modality through two key tasks:
Conversational Video Moment Retrieval, where
the model retrieves relevant step-video seg-
ments based on user queries, and Visually-
Informed Step Generation, where the model
generates the next step in a plan, conditioned on
an image of the user’s current progress. MM-
PlanLLM is trained using a novel multitask-
multistage approach, designed to gradually ex-
pose the model to multimodal instructional-
plans semantic layers, achieving strong perfor-
mance on both multimodal and textual dialogue
in a plan-grounded setting. Furthermore, we
show that the model delivers cross-modal tem-
poral and plan-structure representations aligned
between textual plan steps and instructional
video moments. 1

1 Introduction

The research of Large Language Models (LLMs)
in assisting users with complex procedural plans,
such as cooking or DIY projects, presents an ex-
citing new frontier in NLP research (Choi et al.,
2022). However, while LLMs can excel at text-
based conversational interactions (Chiang et al.,
2023), procedural plans are inherently multimodal,
often accompanied by illustrative images or instruc-
tional videos (Sener and Yao, 2019; Marin et al.,

1The model, code, and non-personal data will be made
publicly available at https://github.com/dmgcsilva/
mmplanllm

Thanks! Can I use any kind of
pepper? I only have red pepper.

Yes, you can use red pepper if you prefer,
but black pepper is recommended for the
best flavor profile.

Can you show me how to beat the egg?

Video now playing from the specified step.

I lost track of the recipe. This is how
the sauce looks like. What should I
do next?

Woah you jumped to Step 5: When the
sauce has thickened, add the fried
chicken. Toss to coat.

Step 1
Season chicken ...

Step 2
Fry until ...

Let's start the recipe

Let's get cooking! Step 1: Season
chicken with salt and pepper. Coat
with cornstarch, dip in beaten egg.

Step 3
In a large pan...

Step n
...
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Figure 1: Example of a plan-grounded multimodal dia-
logue. The proposed model has the ability to understand
and respond to multimodal input, provide relevant in-
formation from multiple knowledge sources, and guide
the user through a complex task while adhering to a
structured plan.

2019). Thus, to interact in a reliable and trustwor-
thy manner, it is crucial that these models not only
comprehend procedural plans, but also ground the
dialogue on these plans and align them with the
visual domain, understanding images and videos
to accurately assess progress and provide helpful
guidance (Figure 1).

In this work, we tackle this challenge and pro-
pose a multimodal LLM that is deeply grounded
in both procedural text-plan and the accompany-
ing visual-plan. Specifically, we focus on jointly

21371

https://github.com/dmgcsilva/mmplanllm
https://github.com/dmgcsilva/mmplanllm


learning three fundamental tasks: Plan-following
capabilities where the LLM can generate and skip
steps of the plan (label 1 of Figure 1), Conversa-
tional Video Moment Retrieval to retrieve a rele-
vant step-video moment that accurately describes
the current plan step (label 2 of Figure 1), and
Visually-Informed Step Generation, where, the
goal is to, based on visual user input describing
their current progress, generates the appropriate
follow-up plan step (label 3 of Figure 1). To ad-
dress these challenges, we propose MultiModal
Plan LLM (MM-PlanLLM), a dedicated model
architecture capable of guiding users through a
complex task plan, while supporting textual and
visual plan information, both as input and output.
In particular, we extend an LLM backbone with
task-specific projection layers. These allow cap-
turing video semantic and temporal information
and supporting flexible decode-time multimodal
retrieval, conditioned on task plans. For training,
we devise a novel multitask, multistage training
approach designed to progressively instill the de-
sired multimodal capabilities while preserving or
improving on previously learned ones.

MM-PlanLLM, the main contribution of this pa-
per, is a model capable of guiding users through
complex tasks, while adhering to the user requests,
grounding the plan progress on user-uploaded im-
ages through visually-informed step retrieval, and
performing conversational step-video moment re-
trieval. In particular, its groundbreaking multi-
modal plan-guiding capabilities, lets it align im-
age inputs with the correct step of the instructional
plan, perform step-video moment retrieval, produc-
ing step-aligned cross-modal representations, with
limited performance drop on text-only requests.

A thorough evaluation shows MM-PlanLLM’s
competitive performance on text-only tasks against
task-specific baselines, and substantial improve-
ments over existing approaches on multimodal
tasks.

2 Related Work

In recent years, with the release of large open
source foundational models such as OPT (Zhang
et al., 2022), Llama (Touvron et al., 2023a) and
others (Radford et al., 2019; Brown et al., 2020a;
Jiang et al., 2023a), the field of Large Language
Models (LLMs) for conversational settings has re-
ceived significant attention. Due to this, the contri-
butions have been diverse, with work focusing on

improving training data (Chiang et al., 2023; Tou-
vron et al., 2023b), scaling model size (Chowdhery
et al., 2022), and adopting a Mixture of Experts
(MoE) architecture (Jiang et al., 2024; Shen et al.,
2023). The applications of these models are varied,
such as instruction following (Brown et al., 2020b;
Taori et al., 2023; Mishra et al., 2022), conversa-
tional dialogue (Zhang et al., 2020c; Chiang et al.,
2023), and other task-specific applications (Raffel
et al., 2020; Hosseini-Asl et al., 2020).

Researching models capable of understanding
multimodal input has also been a topic of great in-
terest. A common approach has been the usage of
pretrained LLMs and Visual Encoders to achieve
efficient and effective Large Vision-Language Mod-
els (LVLMs) with limited resources; however, the
way these models interface has been varied. Some
approaches, such as the LLaVa models (Liu et al.,
2023; Sun et al., 2023) and FROMAGe (Koh et al.,
2023) have found that linear projections are enough.
Others deploy larger "interpretation" modules such
as the Q-Fromer in BLIP (Li et al., 2023; Dai
et al., 2023), the Visual Abstractor in mPLUG-
Owl (Ye et al., 2023a), or the Perceiver (Jae-
gle et al., 2021) employed in Flamingo (Alayrac
et al., 2022). Another interesting approach is the
modification of the internal Transformer (Vaswani
et al., 2017) attention blocks such as the visual
expert in CogVLM (Wang et al., 2023a) and the
Modality-Adaptive Module in mPLUG-Owl2 (Ye
et al., 2023b). Some work has also been done
on training multimodal models from scratch such
as PaLi (Chen et al., 2023), Gemini (Team et al.,
2023), and Large World Model (Liu et al., 2024).

Video Moment Retrieval (VMR) is the task of,
given a video and textual prompt that describes
an action or event that occurs in a video, retriev-
ing a video clip from within said video that best
matches the provided textual prompt. Proposal-
driven approaches focus on identifying candidate
proposals and then ranking them to find the most
relevant one (Gao and Xu, 2021; Wang et al., 2022;
Liu et al., 2018). In contrast, others opt for a
proposal-free approach that predicts the target mo-
ment directly from the video-prompt feature map-
pings (Wang et al., 2023b; Zhang et al., 2020a;
Yuan et al., 2018) often relying on cross-modal at-
tention modules or on learnable query embeddings
such as EaTR (Jang et al., 2023) or MH-DETR (Xu
et al., 2023). A common problem in VMR is the
need to do extensive and expensive temporal an-
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notations, an alternative is point-level VMR where
the annotation is a single frame point (Jiang et al.,
2023b) or a small segment (Ji et al., 2023). Re-
cently, several approaches have been adopting a
Detection Transformers (Carion et al., 2020), as it
does away with the need for many hand-designed
components, and tackling the problem as a direct
set prediction (Lei et al., 2021a; Sun et al., 2024;
Moon et al., 2023; Lei et al., 2021b).

3 Multimodal Plan-Grounded LM

In this section, we present the main elements of
this work: we start by formalizing the problem,
then we describe MM-PlanLLM, its architecture,
and the multi-stage training process used. We end
by detailing how the supporting synthetic training
dataset is generated.

3.1 Problem Definition

Let D = ⟨P, T, V ⟩ be a dialogue that consists of a
procedural plan P composed of k sequential steps
P = {s1, · · · , sk}, and a set of n user-system in-
teraction turns T = {t1, · · · , tn}, where a turn
ti = ⟨Ui, Ri, I

∗
i ⟩ is composed of a user request

Ui, a system response Ri and, optionally, a user-
uploaded image Ii, and V a video that demon-
strates how to follow the plan P . V is composed
of i frames V = {f1, · · · , fl}. Here, a plan step
is a sequence of words s = {w1, w2, · · · }, and
a video moment mV is the sequence of video
frames denoted by its starting and ending frame
mV = {fs, fe} with fs, fe ∈ V and s, e ≤ l. Each
video moment represents a plan step or part of it.

Based on the user-request type, our approach si-
multaneously adapts and performs interleaved mul-
timodal plan-grounded tasks. In particular, three
key features are supported: general plan-grounded
answer generation, conversational video moment
retrieval, and visually-informed step generation.
These key features are delivered by extending a
vision and language model, in a multi-task setting,
through a multi-stage training scheme.

3.2 MM-PlanLLM Learning

Plan-Grounded Answer Generation (PGAG).
In this task, given a dialogue Dj and the lat-
est user request Ui+1 the objective is to generate
Ri+1 = {wr

1, . . . , w
r
n} that adequately answers

the user request, while conditioning on the pre-
vious turns Ti−c:i, with c being the context size and
1 ≤ i < i + 1. The objective is formulated as a

plan-grounded cross-entropy loss,

Lpgag = −
T∑

t=1

logP (wr
t |wr

1:t−1,Ui+1, Dj)

Conversational Video Moment Retrieval
(CVMR). This task seeks to retrieve a video
moment that illustrates the current step of the task
plan. Namely, given a textual user video request
Ui+1, it seeks to retrieve the relevant video moment
from a video V , given a dialogue Dj , considering
only the previous turns Ti−c:i, with c being the
context size. To formulate the retrieval problem,
MM-PlanLLM generates a system response Ri+1

and locates the corresponding video moment mV

within V . For tractability, we focus on retrieving
a single keyframe fm that represents moment
mv. We define fm as the relevant segment’s
middle frame, with m = ⌊ e−s

2 ⌉. Recognizing
the high similarity between consecutive frames
(see Appendix C), we formulate a video moment
retrieval task by relaxing the retrieval target to
consider a bidirectional context window of N
adjacent frames. This translates to retrieving any
frame in a window of 2N + 1 frames centered
around fm. Specifically, the two-component loss
is formulated as follows:

Lret = −
m+N∑

k=m−N

log
(
P (fk|Dj , Ui+1)

2N + 1

)

Lcvmr = Lret + Lpgag

Visually-Informed Step Generation (VSG). In
this last task, given a user request Ui+1 and a user-
uploaded image Ii+1, that visually depicts their
current progress on the task being executed, the
goal is to generate an appropriate system response
Ri+1 , that accurately copies the relevant plan step
s, while accounting for the conversational history
Dj , considering only the previous turns Ti−c:i, with
c being the context size. The loss is formulated as
a visually conditioned cross-entropy loss,

Lvsg = −
T∑

t=1

log P (wr
t |wr

t−1:1, Ii+1, Dj , Ui+1).

3.3 Model Architecture

The architecture of the proposed model, MM-
PlanLLM, expands on the framework presented
in FROMAGe (Koh et al., 2023) and is composed
of three main component groups: a) a language
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Conversational Video Moment Retrieval

Procedural Plan

Ok all done, next step

Alright! Step 3: Peel the ...

Can you show me how to do it?

...

Dialogue Context

Video Moment Frames

Ok! Here's the video

Ok. Playing the video [RET]

W
i

InfoNCE Loss

CrossEntropy Loss

Wt

Pos. Emb.

[RET] CVMR Loss

Visually-Informed Step Generation

Procedural Plan

Ok all done, next step

Alright! Step 3: Peel the ...

[IMG] I'm ahead, what should I do next?

...

Dialogue Context

Visual
Encoder

Wc
Middle Step Frame

I see! The next step is Step 6:
spread ...

Certainly, next you need to do Step
6: spread ...

CrossEntropy Loss[IMG]

Training Stages

LLM

V. Enc.

Linears

Data

❄ Frozen*

❄ Frozen

CC3M

Stage 1

LLM

V. Enc.

Linears

Data

❄ Frozen*

❄ Frozen

🔥 Trainable

Tasty Dataset

Stage 2

LLM

V. Enc.

Linears

Data

🔥 Trainable

❄ Frozen

🔥 Trainable

TastyVidDial

Stage 3

Ground Truth

Ground Truth

Visual
Encoder

LLM

LLM

-N     Middle Frame     +N

🔥 Trainable

Figure 2: Comprehensive illustration of the MM-PlanLLM architecture, including the 3 training stages employed
for model training. *Denotes the [RET] token embedding representations and the Language Modeling Head of the
LLM remain trainable.

model backbone, b) a vision encoder, and c) task-
specific projection layers. Each of these layers will
be responsible for establishing an interface between
the visual encoder and language model represen-
tations, while providing an efficient adaptation to
new tasks, in a sequential or interleaved manner.
Figure 2 provides an overview of this architecture.
This section describes these three main component
groups:

a) V&L Model Backbone. The vision and lan-
guage backbone model, takes as input a multi-
modal sequence, comprised of a user request Un+1,
the conversation history D, and an optional im-
age In+1, and generates an appropriate system re-
sponse. For MM-PlanLLM’s backbone model we
use a pretrained decoder-only Transformer model.
We experiment with different backbone models as
detailed in Appendix B. The backbone LM model
is trained with cross-entropy loss.

b) Video Encoder. Given a frame In with res-
olution HxW , we leverage the ViT (Dosovitskiy
et al., 2021) architecture, such that the video en-
coder outputs a learnable [CLS] token that attends
to the entire frame, and a sequence of Nv visual
tokens vi ∈ Rdve , with dve being the visual token
embedding dimension. Each token is the result
of attending to different non-overlapping patches

of the frame, with H
Nv

× W
Nv

resolution. In MM-
PlanLLM this encoder remains frozen.

c) Task-specific layers. Support for novel tasks
is achieved in MM-PlanLLM through task-specific
projection layers:

• VSG-specific layers. For VSG, and general
Image-to-Text support, we learn a single lin-
ear mapping Wc ∈ Rdve×d, with d being the
LLM hidden dimension, that maps the [CLS],
obtained from the visual encoder, token to the
embedding space of the language model, the
resulting representation used to replace the
[IMG] text embedding in the LLM.

• CVMR-specific layers. For CVMR, the
model needs to be able to retrieve the mid-
dle frame of the relevant video clip, for the
current moment. In our task, each textual step
is annotated with a relevant video segment.
The fact that these textual steps are not di-
rectly describing the clip visual content, but
rather the actions that the user has to perform,
poses a greater challenge, compared to tradi-
tional VMR datasets where the captions offer
a visual description of the clip.

We propose to address this challenge with
a multi-stage multimodal plan-grounded
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training scheme, designed to close the
visual⇔plan step semantic gap. Originally, a
[RET] token is added to the language model’s
vocabulary, and is then appended to the end of
each retrieval request. Its decoder-output em-
bedding is then mapped onto a cross-modal re-
trieval embedding space, using a trained linear
mapping Wt ∈ Rd×q. A second linear layer
is trained Wi ∈ Rdve×q to map the visual fea-
tures onto the retrieval space. We leverage this
approach, and use the [RET] token to retrieve
the video moment. For the training of these
layers, we use the InfoNCE Loss (van den
Oord et al., 2018) as the Lret loss component,
where we consider the middle clip frame, plus
a bidirectional context-window of N consecu-
tive frames, as targets (i.e. positives). To incor-
porate temporal information we use fixed Ro-
tary Positional Embeddings (RoPE) (Su et al.,
2021) and apply temporal position shifting,
where each positional embedding is shifted
according to the frame’s position within the
video.

3.4 Multi-stage Multimodal Training
The model undergoes a multi-stage training
scheme, in two core tasks: image captioning and
text-to-image retrieval. We design a three-stage
training approach tailored to our setting:

Stage 1. Visual Projection Layers. This prelimi-
nary phase is focused on bootstrapping the model’s
linear layers, Wc, Wt, and Wi, by training on the
image-captioning and image-text retrieval tasks.
For both tasks, we use the CC3M (Sharma et al.,
2018) dataset, while the LLM and Visual Encoder
are kept static. Only the embedding for the in-
troduced [RET] token and the language modeling
head are subject to training.

Stage 2. Task Data Specialization. The subse-
quent stage seeks to specialize the model in the tar-
get domain. The same previous two proxy tasks are
considered, but instead of general-domain data, we
use domain-specific videos and captions. Specif-
ically, we leverage the annotations present in the
Tasty Dataset (Sener and Yao, 2019). In this dataset,
recipes are broken into actions, and these actions
are then annotated with the start and end frame
of the relevant video clip; we use these to create
image-text pairs where the text is the action text
and the image is the middle frame of the relevant
clip.

Stage 3. Multimodal Plan-Grounded Dialogue.
The third, and most important, training stage aims
to convey the necessary abilities to dialogue in
the target plan-grounded dialogue setting on the
recipes domain, attending to both uni- and multi-
modal user requests. To this extent, plan-following
multimodal instructional data is used (see sec-
tion 3.5), covering dialogue interactions, with par-
ticular emphasis on the envisioned multimodal in-
teractions. To facilitate training, we start with
text-only samples and then move to multimodal
ones, for the latter we alternate between CVMR
and VSG batches. During this phase, the LLM is
fully trained, along with all of the additional linear
layers.

3.5 Synthetic Multimodal Plan-oriented
Training Data

To prepare the model to cope with the wide range
of user requests in plan-grounded dialogues, we re-
sort to synthetic data generation. Namely, we build
upon the methodology of PlanLLM, and further
incorporate multimodal queries. This methodology
follows a pipeline that utilizes real user-agent di-
alogues and, using an intent classifier, extracts a
user policy and user utterances. To generate dia-
logues, user intents are selected for each turn, and
a combination of templates, external knowledge
bases, and generative models are used to create ac-
curate system responses. The incorporation of mul-
timodal requests is accomplished by exploiting the
Tasty Videos Dataset (Sener and Yao, 2019), which
comprises culinary recipes, each accompanied by
a video and annotations delineating each step into
individual actions and signaling the start and end of
the said actions within the video. Herein, we detail
how these annotations were leveraged to integrate
multimodal user requests into the pre-existing data
generation pipeline.

CVMR Requests. For the retrieval of specific
video moments, the target clip corresponds to the
one annotated for the current action. In instances
where a plan step is composed of multiple actions,
the first action is considered.

VSG Requests. Regarding VSG queries, a step
subsequent to the user’s current progress within the
recipe is selected (e.g., if the user is at step 3, any
step from 4 onwards is eligible), biasing to closer
steps. The middle frame of the selected step is then
used as the user-uploaded image that showcases
the user’s progress, at that point in the dialogue.
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For both request types, the textual user requests
and system responses are sampled from handwrit-
ten template lists. To improve diversity, an external
generative model is prompted to extend the lists of
possible user and system utterances. To this dataset
we call Tasty Video Dialogue (TastyVidDial).

4 Experimental Setup

4.1 Instructional Tasks Datasets
TastyVidDial. To conduct our experiments, we
propose a novel dataset for conversational multi-
modal dialogue over complex tasks. We create a
dataset of 50k generated dialogues, between a user
and a multimodal agent, while following complex
tasks, resulting in ≈ 500k dialogue turns. We uti-
lize a set of 1500 illustrated recipes obtained from
the Tasty Videos Dataset (Sener and Yao, 2019)
to ground the generated dialogues. To maximize
dialogue quality, we only consider recipes with 5
to 10 steps, at least 6 ingredients, no more than
300 tokens, and at least 1 annotated video action
for every step. To reduce frame count, we consider
1 for every 20 frames in the video. For training,
validation, and testing we use a 90/5/5 split.

Simulated Alexa TaskBot. For the evaluation of
text-only requests, we use the PlanLLM dataset as
described in Glória-Silva et al. (2024). We use this
dataset version to avoid dialogue turns where the
user request is text-only but one of the previous
turns, present in the context, is multimodal.

4.2 Methodology
Backbone Models. For the LM Backbone we use
LLama2 (Touvron et al., 2023b) (results with more
models in Appendix B). The visual encoder is CLIP
ViT-L/14 (Radford et al., 2021). See Appendix A
for more implementation details.

Metrics. For evaluation of CVMR turns, we
follow recent works (Fang et al., 2023; Diwan
et al., 2022; Wang et al., 2022) and use R@n,
mean Average Precision (mAP), Step Accuracy
to measure if the retrieved frame is inside the
video moment for the relevant step, and Mean
Normalized Frame Distance (MNFD) MNFD =
1
N

∑N
i=1

|fretrieved,i−ftarget,i|
Fi

, where fretrieved,i and
ftarget,i are the retrieved and target frame respec-
tively.

For the automatic evaluation of answer genera-
tion, we consider BERTScore(BS) (Zhang et al.,
2020b) and ROUGE-L (Lin, 2004). To measure the

Model Answer Gen. Plan-Navigation
ROUGE BS Explicit Implicit

FROMAGe 29.98 63.55 — —
PlanLLM 75.58 88.66 0.895 0.480

MM-PlanLLM 66.58 83.28 0.855 0.440

Table 1: Instructional plan following generation results,
on automatic metrics. PlanLLM results as reported in
(Glória-Silva et al., 2024)

VSG performance, apart from ROUGE-L, we use
Exact Match, which measures whether the target
step is contained, or not, in the system’s response.

Protocol. Across all dialogue-based evaluations,
we consider a context window of the 4 previous
turns and pass the model the recipe steps along
with the current step the user is on. The steps are
included in the prompt in a numbered manner (eg,
"Step 1 ..., Step 2 ..."). For CVMR, the model
also sees the candidate system response and we
extract the output embeddings for the position im-
mediately after the generated [RET] token, if the
model fails to generate the [RET] token we use the
output embeddings of the first generated token. We
set N = 2. For VSG and Answer Generation the
model does not see any additional context. When
evaluating a specific task, the model is not provided
with any marker or information indicating the type
of response wanted. For CVMR the candidate pool
is composed of all of the frames of the recipe in-
structional video and the negative frames are the
target frames for other samples in the same batch.

Baselines. As a baseline, we compare our ap-
proach with FROMAGe on a zero-shot setting, as it
was not fine-tuned for our domain specifically. We
also compare against a random baseline that ran-
domly retrieves a frame from the video for CVMR,
and, for VSG, it randomly selects a plan step from
the ones not yet completed by the user. For textual
requests, we compare against the PlanLLM model,
with no further fine-tuning, to gauge performance
variance on text-only dialogue turns.

5 Results and Discussion

5.1 Plan Grounding

Plan-Grounded Answer Generation. A key
property of MM-PlanLLM is its strong plan-
following capabilities. To assess this, we evaluated
MM-PlanLLM on text-only dialogues, mirroring
the main evaluation setting of PlanLLM. We uti-
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Method LLM Backbone
(# Params)

Conversational Video Moment Retrieval VSG
R@1 R@5 R@10 mAP Step Acc. MNFD↓ Ex. Match ROUGE

Random — 1.65 8.66 17.10 7.70 16.12 32.21 28.02 37.51
FROMAGe OPT (7B) 3.08 11.75 22.76 10.17 25.09 26.11 0.34 7.31
MM-PlanLLM Llama2 (7B) 5.50 38.53 53.82 21.52 54.10 13.26 38.16 42.62

Table 2: Evaluation results of our best-performing model MM-PlanLLM-Llama2, on multimodal tasks, against the
baselines. For the CVMR and VSG tasks we used the TastyVidDial dataset.

lized the original PlanLLM dataset, which exclu-
sively comprises text-based conversations.

As shown in Table 1, MM-PlanLLM achieves a
BERTScore of 83.28, approximately 94% of Plan-
LLM’s performance (88.66), on answer generation
in a text-only plan-grounded setting. In contrast,
FROMAGe demonstrates notably weaker perfor-
mance in this setting. To understand if this perfor-
mance differential also reflects on MM-PlanLLM’s
ability to guide users through tasks, we replicated
the GPT-4-based Plan Navigation evaluation from
Glória-Silva et al. (2024). The results in Table 1 in-
dicate that MM-PlanLLM remains competitive on
this task having 85.5 accuracy on explicit naviga-
tional requests, a 4.0 accuracy loss over PlanLLM,
reinforcing that it retained the ability to effectively
follow instructional plans.

Conversational Video Moment Retrieval. To
assess CMVR performance, we evaluated MM-
PlanLLM on all video moment retrieval requests
within the TastyVidDial test set. We benchmarked
MM-PlanLLM against FROMAGe, which is capa-
ble of general conversational image retrieval, and
the random baseline (described in Section 4.1),
to quantify the gains achieved through our task-
specific training approach.

The results shown in Table 2 highlight the effi-
cacy of our focused training. MM-PlanLLM signif-
icantly outperforms FROMAGe across all metrics,
demonstrating over 100% improvement in most
cases. Whereas FROMAGe, in turn, demonstrates
minimal improvement over the random baseline.
The performance gap between R@1 and R@5, cou-
pled with a high Step Accuracy, suggests that while
MM-PlanLLM consistently identifies the relevant
video moment (evidenced by high Step Accuracy),
the high visual similarity between adjacent frames
within the same video moment proves a challenge
for R@1 scores. This is explored in Section 5.2.

Visually-Informed Step Generation. To evalu-
ate MM-PlanLLM’s ability to interpret visual input
and align it with instructional plans, we also eval-

Figure 3: Text-query to visual plan alignment. MM-
PlanLLM effectively learns to align textual [RET] token
representations with that of the target step frames. We
remove outliers for clarity.

Figure 4: Image-query to text plan alignment. Most sim-
ilar plan step to the provided visual input, as measured
by BS using the generated answer.

uated solely in the VSG requests. Results for this
task are shown in the second column group of Ta-
ble 2. There is a stark contrast in performance
between MM-PlanLLM and FROMAGe, with the
latter rarely preserving the step text verbatim. Con-
versely, MM-PlanLLM achieves an Exact Match
score of 38%.

5.2 Multimodal Plan Alignment

Text to Visual Plan. In Figure 3 we plot the
average similarity between the [RET] token and
all frames of each plan step in the plan video, or-
dered by their absolute distance to the target step.
The results demonstrate that MM-PlanLLM effec-
tively learns to produce a representation that aligns
closely with the video moment relevant to the target
step. This is supported by the significantly higher
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Conversational Video Moment Retrieval VSG Answer Gen.
R@1 R@5 R@10 mAP Step Acc. MNFD↓ Ex. Match ROUGE ROUGE BS

LLaMa2 - Phase 1 2.05 12.13 19.02 9.01 16.42 29.25 0.00 6.48 31.78 63.44
+ Phase 2 3.45 15.21 23.04 10.68 16.98 29.46 7.33 18.87 23.68 55.30
+ Phase 3 6.72 35.26 48.69 20.80 52.52 14.03 37.14 42.84 66.11 83.03

+ Adj. Frames 7.46 30.50 48.60 20.43 52.05 14.14 34.58 40.59 65.78 82.95
+ Pos. Embs. 5.50 38.53 53.82 21.52 54.10 13.26 38.16 42.62 66.58 83.28

Table 3: Impact of the several training stages on model performance on the three main tasks.

similarity scores observed for frames within the tar-
get step (distance 0) compared to frames from other
steps. Additionally, the gradual decline in similar-
ity as the distance from the target step increases,
further confirms the model’s ability to discrimi-
nate between relevant and irrelevant video moment
frames based on the textual plan.

Image to Text Plan. To assess MM-PlanLLM’s
ability to align visual representations of steps with
the corresponding textual descriptions, we used
BERTScore to measure the similarity between gen-
erated answers and plan steps in the VSG task.
Then, for each VSG instance, we identified the
plan step with the highest BERTScore similarity to
the generated answer and plotted its distance from
the actual target step in Figure 4.

The distribution in Figure 4 reinforces that MM-
PlanLLM demonstrates a substantial capacity for
aligning visual input with the corresponding textual
step, achieving a success rate of 44.8% on the test
set. Moreover, 30.3% generated answers are most
similar to steps immediately preceding or following
the target step, highlighting the model’s ability to
capture the sequential nature of instructions and
identify steps closely related to the visual input.

5.3 Ablation Study

We conducted ablation studies to investigate the im-
pact of each training stage and architectural choices
on model performance across all tasks.

Training Stages. To train MM-PlanLLM, we de-
vised a multi-stage approach to maximize perfor-
mance gains and minimize catastrophic forgetting.
This analysis can be seen in Table 3. These re-
sults show that each of the three training stages
contributed incrementally to improving the tar-
geted capabilities. Stage 1, which focused on
general image understanding, established a foun-
dation for the model to outperform the random
baseline in CVMR. Stage 2, which aimed to instill
domain-specific multimodal understanding, further

enhanced performance on both CVMR and Step
Generation tasks, even before explicitly training
on these tasks. Finally, Stage 3, where we inte-
grated conversational abilities, led to substantial
improvements across all three tasks, highlighting
the importance of end-to-end task-specific training.

Within the last stage, we also report the im-
provements provided both by the usage of adjacent
frames as candidates and usage of positional em-
beddings for CVMR training. Surprisingly, utiliz-
ing multiple candidate frames for CVMR training
yielded minimal benefits. We hypothesize that this
is due to the high similarity between consecutive
frames in video moments. However, the addition of
positional embeddings, which incorporate temporal
information, significantly improved performance
across the board, underscoring the model’s ability
to leverage this additional context.

LLM Backbone. To understand how different
LLM Backbones affect model performance we
evaluated 8 LLMs on CVMR, VSG, and PGAG.
The evaluated models ranged in size from 1.8B
(Qwen-1.5 (Bai et al., 2023)) to 7B parameters
(Vicuna1.5 (Chiang et al., 2023)). We consider
PlanLLM as a backbone but skip the text-only
data training in Stage 3. On the CVMR evalua-
tion Llama2 achieves the best performance across
most metrics, with the exception of R@1 that is led
by PlanLLM with 6.16 R@1. For VSG, PlanLLM
exhibited a substantial lead over Vicuna in Exact
Match (42.76 vs. 40.37), while Mistral (Jiang et al.,
2023a) achieved the highest ROUGE score (46.60).

In the answer generation task, most models
demonstrated similar performance. Our approach
generalizes well for smaller LLMs, such as Qwen-
1.5 (1.8B Param.) and Phi-2 (2.7B Param.) which
achieved, on average, 88% and 95% of Llama2’s
performance, respectively. The complete results
are shown in the Appendix B.
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6 Conclusion

We propose MM-PlanLLM, a multimodal archi-
tecture that enables multimodal comprehension
for LMs in plan-grounded conversational settings.
We follow a multistage training paradigm, coupled
with task-specific synthetic data creation, that en-
ables the model to slowly acquire the necessary
abilities to understand multimodal input and gener-
ate multimodal outputs.

Experimental results demonstrates that MM-
PlanLLM outperforms task-specific baselines,
showcasing minimal performance loss in text-only
dialogues, while being capable of aligning textual
steps with video moments and user images with
the plan steps. The ablation study further high-
lights the effectiveness of the multi-phase training
methodology and the value of incorporating tempo-
ral information.

Limitations

While MM-PlanLLM addresses two key multi-
modal request types (CVMR and VSG) crucial
for plan-grounded dialogue, we acknowledge that
a complete system would need broader multimodal
support, including visual question answering. Fur-
thermore, long-term dialogue dependencies remain
a challenge due to the limited context window of 4
turns during training (limited by the available hard-
ware), hindering the model’s ability to effectively
recall and utilize information from earlier turns
in the conversation. This limitation may impact
the model’s performance in extended interactions
where maintaining context is essential. We plan to
address these limitations in future work.
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Stage 1 2 3

Batch Size 64 48 1/4
Grad. Acc. 64 1 64/4
Train Steps 10000 5000 2000
Val. Freq. 1000 1000 500
GPU # 1 1 1
Seq. Max Len. 24 45 800
DType BF16 BF16 BF16

Learning Rate 5 ∗ 10−4 1 ∗ 10−4 5 ∗ 10−4

Scheduler Constant Constant Constant
Optimizer AdamW AdamW AdamW
T. Emb. Dropout 0.1 0.1 0.1
Ret. Dimension 512 512 512

LoRa DType — — 16 bits
LoRa Rank — — 4
LoRa α — — 8
LoRa Dropout — — 0.1

Table 4: Hyperparameters used to train MM-PlanLLM
models across all three stages.

A Implementation Details

Table 4 details some of the hyperparameters used.
Each model is trained for 10k, 5k, and 2k steps
for each phase, using a batch size of 64 (and 16
on multimodal batches in phase 3) on a single
A100 40GB GPU. For optimization, we use the
AdamW optimizer (Loshchilov and Hutter, 2019)
with β1 = 0.9, β2 = 0.95, and ϵ = 1∗10−5 for all
runs. We used a constant learning rate of 1 ∗ 10−5,
for the third stage, with no warmup steps. All im-
ages are resized to fit a 224x224 image resolution.
For phase 3, text-only training was separated from
the multimodal training with the first 1k steps being
text-only and the later 1k being multimodal. The
visual encoder used was CLIP ViT-L/14 (Radford
et al., 2021), the retrieval embedding dimension
was set to 512, and the embedding dimension was
kept the same as the LM Backbone so it varied
from model to model. For the 3rd phase we use
LoRa (Hu et al., 2022), when training the LM Back-
bone, with a r = 4 and α = 8 to reduce memory
requirements.

For BERTScore calculations we utilize
microsoft/deberta-xlarge-mnli.

B LM Backbone Ablation

We consider a comprehensive array of language
model backbones in order to assess their impact on
the overall model and select the best-performing
one. In particular, we consider Qwen-1.5 (Bai
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et al., 2023), Phi-2, Gemma2b (Team et al., 2024),
Mistral-v0.1 (Jiang et al., 2023a), OPT (Zhang
et al., 2022), PlanLLM (Glória-Silva et al., 2024),
LLama2 (Touvron et al., 2023b), and Vicuna-
7B (Chiang et al., 2023). As such, we cover LM
backbones of different sizes, pre-training, and fine-
tuning schemes.

While we report our main evaluation results in
Section 5 using Llama2 (Touvron et al., 2023b) as
the LM backbone, we trained a total of 8 models
by varying the LM backbone. This sought to not
only assert which was the best-performing model
but also understand the impact of scaling the LM
backbone on all tasks.

The results from this analysis, shown in Table 5,
show a surprisingly low performance differential
between models for all three tasks, with the only
clear outlier being OPT (Zhang et al., 2022) on
the answer generation task. For Conversational
Video Moment Retrieval we see a clear lead for
Llama2 (Touvron et al., 2023b) for most metrics,
particularly for R@5, and a close second for Step
Accuracy. For Step Generation, PlanLLM (Glória-
Silva et al., 2024) outperforms the other models on
Exact Match whereas Mistral holds a small lead
on BertScore. On this task Llama2 underperforms
indicating that there might be a performance trade-
off between this task and the previous. For Answer
Generation Vicuna performs the best likely due to
its pretrain in a conversational setting, despite this
both Llama2 and PlanLLM also perform closely to
Vicuna. Focusing on MM-PlanLLMPlanLLM, on
phase 3 we skipped training on text-only samples as
the model already had been trained on this setting,
despite this the model is still competitive across all
3 tasks showing that our training approach seems
to be agnostic to the models’ pertaining tasks.

C Frame Similarity

To investigate the degree of visual similarity be-
tween frames within recipe videos, we conducted
an analysis using a subset of 1446 recipe videos
from our dataset, each containing 100 or more
frames. For each frame within the first 100 frames
of a video, we computed its cosine similarity with
all other frames in the same video using a CLIP
image encoder, and averaged the similarity for each
frame position across all videos.

The resulting averaged similarity matrix, shown
in Figure 5, confirms that frames exhibit excep-
tionally high similarity to their immediate neigh-

Figure 5: Average similarity of each frame against all
other frames from the same video. It shows a clear
bidirectional 3-frame window of higher similarity.

bors (mostly on a bidirectional 3 to 5-frame win-
dow), with a gradual drop-off in similarity beyond
that point. Interestingly, we also note how similar
frames from the same video tend to be with most
frames having at least 0.7 similarity score to every
other frame in the video. This underscores the need
of visual encoders capable of differentiating the
subtle visual changes that separate frames relevant
to different plan steps.

D CVMR and VSG Examples

In this section, we include a few examples of
CVMR (Figure 6) and VSG (Table 6) generations,
extracted from the dataset test set. Additionally, in
Figure 7, we showcase two dialogues collected by
having a volunteer interact with the system. These
examples and dialogues, demonstrate the model’s
performance on both single and multi-turn scenar-
ios, showing that it can accurately answer to a wide
range of requests in the target setting.
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LM Backbone
(# Params)

Conversational Video Moment Retrieval VSG Answer Gen.
R@1 R@5 R@10 mAP Step Acc. MNFD↓ Ex. Match ROUGE ROUGE BS

Qwen-1.5 (1.8B) 4.2 27.52 46.83 17.11 44.68 15.66 39.18 44.19 64.21 81.63
Gemma (2.5B) 3.08 24.44 47.39 15.69 46.46 15.45 37.14 42.30 63.33 82.07
Phi-2 (2.7B) 6.06 31.53 52.05 18.69 53.26 13.73 39.18 43.44 54.35 77.97
OPT (7B) 4.48 31.44 52.61 18.80 50.84 15.34 35.78 43.15 38.52 70.65
Mistral-v0.1 (7B) 5.69 33.40 50.56 19.70 47.95 14.51 39.52 46.60 61.47 80.81
PlanLLM (7B) 6.16 33.30 52.33 20.20 44.68 14.06 42.76 44.67 66.64 83.13
Llama2 (7B) 5.50 38.53 53.82 21.52 54.10 13.26 38.16 42.62 66.58 83.28
Vicuna1.5 (7B) 6.06 32.93 50.84 20.02 53.64 13.66 40.37 43.38 68.13 84.05

Table 5: Evaluation results of different LM Backbones for multimodal requests in the TastyVidDial dataset.

Figure 6: Five examples of CVMR results from the TastyVidDial test set. These examples demonstrate that the
model is adept at identifying the key elements that should be characterized in the target frame. However, in some
cases, the selected middle frame may not be ideal (3rd and 4th rows), and in others, alternative frames may more
accurately represent the target plan step (1st row). The conversational dialogue context has been omitted for
readability, and green boxes highlight the target frame amongst the retrieved ones.
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User Image

Target: Step 5: Pinch a piece of dough, about the size of a large egg, and roll
into a ball. Using your hands, flatten the dough and spoon filling into
the center. Wrap the dough into a pear shape and make sure there
aren’t any holes.

Gen: Continue with Step 5, Pinch a piece of dough, about the size of a
large egg, and roll into a ball. Using your hands, flatten the dough
and spoon filling into the center. Wrap the dough into a pear shape
and make sure there aren’t any

Target: Step 8: Bake or grill for 20-30 minutes or until chicken is no longer
pink.

Gen: Continue with Step 8, Bake or grill for 20-30 minutes or until chicken
is no longer pink.

Target: Step 4: Add the rice, soy sauce, and peas, and mix thoroughly.

Gen: Continue with Step 4, Add the rice, soy sauce, and peas, and mix
thoroughly.

Target: Step 4: Melt 75g of the white chocolate and stir in some of the yellow
food colouring until the desired colour is reached. If it seizes on you,
add a little bit of oil and stir it until it reaches a runny consistency
again.

Gen: Continue with Step 4, Melt 75g of the white chocolate and stir in
some of the yellow food colouring until the desired colour is reached.
If it seizes on you, add a little bit of oil and stir it until it reaches a
runny consistency again.

Target: Step 5: Add the shrimp and let them cook for 3 minutes. Flip and
cook for another 3 minutes.

Gen: Continue with Step 4, Add garlic, rosemary, thyme, smoked paprika,
salt and pepper. Stir and cook an additional 2 minutes.

Table 6: Five examples showcasing Visually-Informed Step Generation, from the test set. The model successfully
identifies the appropriate next step in most cases, leveraging dialogue history and user-uploaded images. However,
the difficulty increases when uploaded images lack clarity regarding the user’s progress, as seen in the final example
where it is unclear if the ingredient from Step 4 have already been added. Dialogue history ommited for readability.
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Let's start the recipe

Let's get cooking! Step 1: Add the cream
cheese, cheddar cheese, and Monterey
Jack cheese, garlic powder, oregano,
salt, and pepper to a bowl. Stir to
combine. Add 1 tablespoon of water a
time until the mixture is smooth enough
to be a spreadable paste.

Done! What's next?

Step 2: Fill each jalapeno half with 1
tablespoon of the cheese mixture.

Can you show me how to do that?

Video now playing from the specified step.

Thanks that helped! What should I
do next?

Step 3: Place a filled jalapeno on a
wonton wrapper, fold over the side
edges, then using the tip of your finger,
wet the remaining edges of the wonton
with water and continue to roll. Repeat
with remaining jalapenños.

Thats seems complicated, why
should I wet the edges of the
wonton?

Wetting the edges of the wonton helps
prevent the egg rolls from sticking to the
surface while they are frying.

Done, what is the next step?

Step 2: Heat the olive oil over medium
heat in a large skillet.

Next step: Step 8, Remove from heat
and ladle the mixture into a baking dish.

I got carried away and did a few more
things that I remmebered, what should I do
next?

Thanks! It's in the baking dish. What do I
do next?

Step 9, Bake for 20 minutes.

Next step: Step 12, Carefully remove
and allow to cool for 5-10 minutes.

I think I am almost done, whats next?

...Dialogue 1 Dialogue 2

Figure 7: Real multimodal dialogues carried out by a volunteer interacting with MM-PlanLLM. These dialogues
showcase the model’s ability to carry out full conversations with interleaved multimodal requests, without hindering
text-only performance.
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