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Abstract
Despite advancements in Large Language Mod-
els (LLMs), many complex tasks are not eas-
ily solved in a single inference step, requiring
the use of agentic LLMs in interactive environ-
ments. However, agentic LLMs suffer from a
phenomenon known as reasoning derailment,
due to the indiscriminate incorporation of ob-
servations from partially observable environ-
ments. We introduce QuBE, a method that
enhances agents’ focus on task-relevant con-
texts, by constructing a belief state via ques-
tion answering. We validate QuBE through ex-
periments in two agentic LLM scenarios with
partial observability: 1) a canonical interac-
tive decision-making scenario using text-based
game engines, and 2) an interactive retrieval-
augmented generation (RAG) scenario using
search engines. In the ALFWorld text-based
game, QuBE outperforms established baselines
by substantial margins, and in the search engine
scenario, it achieves marked improvements on
the BEIR zero-shot retrieval benchmark. The
results demonstrate that QuBE significantly
mitigates reasoning derailment, refining the
decision-making process of LLM agents in par-
tially observed environments.1

1 Introduction

Recent advancements in the general capabilities of
large language models (LLMs) has led to an ex-
plosion of interest in their deployment as agents,
capable of autonomously performing complex,
long-horizon tasks through interactive environ-
ments (Sumers et al., 2023; Muthusamy et al., 2023;
Gur et al., 2024; Wang et al., 2024b). LLM-based
agents leverage the LLM’s capability to interleave
environment interaction (actions) with reflective
reasoning (rationales) (Yao et al., 2023; Huang
et al., 2022; Shinn et al., 2023), enabling sophisti-
cated action policies for complex tasks.

*Corresponding author.
1https://github.com/mnskim/QuBE

Despite these advances, LLM-based agents still
face a critical issue known as reasoning derail-
ment (Yao et al., 2023), a phenomenon in which
agents struggle to recover from an initial erroneous
rationale, resulting in a further cycle of incorrect
reasoning and unsuccessful interactions. In this
work, we identify the partially observable nature
of many interactive environments (Hausknecht and
Stone, 2015; Liu et al., 2022; Pleines et al., 2023),
as a key factor contributing to reasoning derailment.
In partially observable environments, observations
available to the agent provide only an incomplete
view of the underlying, true state of the environ-
ment which influences the agent’s task. As such,
the agent must effectively resolve the uncertainty
and incompleteness in the observed information, to
optimize its reasoning and actions.

However, existing LLM agent methods such as
ReAct (Yao et al., 2023) and Reflexion (Shinn et al.,
2023) are ill-equipped to address this challenge, as
they operate directly on raw observed states, stored
in a non-selective input context. Rather, such naive
utilization of observations exacerbates the accu-
mulation of noisy, incomplete, and task-irrelevant
observed states, making reasoning derailment more
likely. We illustrate this phenomenon in Fig.1-(a).
In this ALFWorld example, the LLM agent erro-
neously generates the action "go to desk 1" despite
already being there, which acts as a trigger for sub-
sequent reasoning derailment due to a failure to
distinguish between its current location (desk 2)
and the target object’s location (desk 1).

To mitigate reasoning derailment in LLM agents,
we propose Question-based Belief Enhancement
(QuBE), to dynamically construct a focused, task-
relevant belief state, which estimates the unob-
served true state of the environment. Specifically,
we formulate belief state construction as a question-
answering process, implemented using an LLM
with access to environment tools. By enabling the
LLM to direct queries to both the agent’s context
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Figure 1: Comparative illustration of baseline agent (a) ReAct, with the proposed method, (b,c) QuBE, on game
(ALFWorld) and search (BEIR) tasks. The baseline agent’s trajectory is shown in the orange box, with reasoning
derailment indicated in red, eventually leading to task failure. As a solution, QuBE first (b) constructs belief states
from the raw observation, using a question-answering process, shown in blue, and then (c) provides the agent with
feedback in the form of a textual rationale, indicated by [think], shown in the green box. By resolving the noise
and incompleteness of partial observations, QuBE addresses reasoning derailment.

history, as well as the environment itself, we en-
sure the construction of a belief state that resolves
the ambiguity and noisiness of partial environment
observations in a grounded manner.

In Fig.1-(b,c), we illustrate how QuBE addresses
reasoning derailment through the construction of a
belief state. Using a series of queries, QuBE con-
structs a concise, task-relevant belief state (shown
in the blue box) which fills in the gaps due to par-
tial observability. In the ALFWorld task, the belief
state includes details like checked receptacles, in-
ferred from the agent’s context history (Q-Context),
as well as the agent’s current inventory and loca-
tion, which are issued as queries to the game en-
gine (Q-Env). Next, we repurpose the LLM to
produce a textual rationale based on the belief state,
as shown in the green box. By conditioning on the
constructed belief state, the rationale accurately lo-
cates the target object—desklamp 1 at desk 1—en-
abling QuBE to resolve derailment, and guide the

agent’s next actions toward task success.
We conduct experiments on two unique partial

observability scenarios, on a canonical scenario us-
ing the text-based game engine, ALFWorld (Shrid-
har et al., 2021), and a challenging, interactive re-
trieval scenario using a search engine, on the BEIR
benchmark (Thakur et al., 2021). In ALFWorld,
QuBE demonstrates significant improvements over
established baselines, ReAct and Reflexion, by
28% and 24% absolute in task success rate, respec-
tively. Moreover, in the BEIR benchmark, QuBE
consistently enhances performance, achieving a no-
table increase of 1.3% in nDCG@10 over ReAct,
on the challenging task of zero-shot retrieval.

The main contributions of our work are summa-
rized as follows:

• We propose QuBE, which mitigates reason-
ing derailment in partially observable environ-
ments, through belief state generation using
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tool-enabled question answering.

• We validate the effectiveness of QuBE
through improvements in task performance
in canonical (game engines) and real-world
(search engines) interactive scenarios, over
strong baselines.

• To provide insight into the derailment phe-
nomenon, we perform qualitative analysis
which shows that derailment errors are caused
by partial observability, and show that QuBE
effectively reduces derailment errors.

2 Environments

In this section, we describe in detail our selection
of environments, which aims to represent a diverse
selection encompassing different task types and
reward availabillity.

2.1 Tasks in Partially Observable
Environments

We target scenarios in which an LLM-based agent
interacts with a partially observable environment
to solve a given task. In a partially observable en-
vironment, the state observed by an agent is an
incomplete representation of an unobserved true
environment state, which explicitly represents all
factors that can influence the agent’s task execution.
As the spectrum of possible environments is vast,
we choose two environments based on 1) represen-
tativeness, and 2) reward availability, to achieve a
diverse selection representing the range of partially
observable scenarios.

Task in GE First, for the GE scenario, we con-
sider ALFWorld (Shridhar et al., 2021), an interac-
tive embodied agent task, widely studied in recent
works (Yao et al., 2023; Shinn et al., 2023; Prasad
et al., 2024; Zhao et al., 2024), and agent bench-
marks (Liu et al., 2024; Gioacchini et al., 2024).
ALFWorld is a text-based game engine designed to
align with a 3-D virtual home environment simula-
tor, ALFRED (Shridhar et al., 2020). In ALFWorld,
the agent is tasked to complete a given instruction,
e.g. “Find a desklamp and turn it on.”, by navigat-
ing and interacting with the environment.

Partial Observability in GE Text-based games,
such as ALFWorld, are canonical examples of par-
tially observed environments, where agents must
reason about the world solely through observations
which consist of incomplete textual descriptions

about the game state (Hausknecht et al., 2019; Côté
et al., 2018; Ammanabrolu et al., 2020).

In these observations, factors that may be crit-
ical for carrying out the task can be often omit-
ted. For example, the underlying game state in an
ALFWorld scenario may contain dozens of objects
in different locations throughout the virtual home
environment, but any given observation will only
provide a limited piece of information, e.g. “On the
towelholder 1, you see a towel 1”. Often, the agent
must infer information beyond the raw observa-
tion alone to progress the task: For example, if the
agent’s task is to interact with “a cup 2”, it needs
to infer from the above observation that it must
investigate a location other than the towelholder 1,
and that it does not need to visit this location again.
This incurs an overhead of additional reasoning
complexity, and in the following section, we show
that this is where the reasoning derailment errors
of LLM agents occur.

Task in SE Another representative scenario we
consider involves using interactive RAG for doc-
ument retrieval tasks. We choose the BEIR zero-
shot retrieval benchmark (Thakur et al., 2021), a
popular benchmark for testing the zero-shot re-
trieval capabilities of models (Ni et al., 2022; Wang
et al., 2022a), where single-turn retrieval models
are reported to struggle due to the difficulty of
generalizing to out-of-distribution domains (Kim
et al., 2023). Addressing this challenge, we con-
sider agentic LLM, which engages in an interactive
session of queries. In this setup, the documents
ranked by a search engine serve as the observa-
tions within the environment. The primary objec-
tive of the agent is to enhance the ranking quality,
assessed by the Normalized Cumulative Discount
Gain (nDCG@k) metric (Järvelin and Kekäläinen,
2002; Wang et al., 2013).

Partial Observability in SE In contrast to the
multi-hop QA scenario adopted in prior works such
as ReAct and Reflexion (Yao et al., 2023; Shinn
et al., 2023), where the query intents are simple and
explicit, this is rarely the case in the more general
search scenarios, where the user query is only a
partial observation of true information need (Rieh
et al., 2006), containing ambiguities or being under-
specified.

Especially in the zero-shot setting of BEIR, the
problem of inferring true user query intent involves
a higher degree of uncertainty, and is more prone
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Errors in GE Definitions ReAct QuBE

Location
The model makes incorrect assumptions about
its own location or the spatial properties of the environment,
leading to actions that are spatially incoherent.

16% 0%

Object
The model fails to accurately perceive and track objects,
leading to an incorrect understanding of the relationship
between itself and objects in the environment.

14% 8%

Task State The model incorrectly assesses the current state of the task,
becoming unable to progress the task. 6% 2%

Table 1: Types of reasoning errors in 50 examples of ALFWorld, and their rate of occurrence. Errors are identified
by evaluating the examples manually, examining the agent’s action and reasoning trace. We identify three major
error types, related to location and object perception, and task state tracking.

Errors in SE Definitions ReAct QuBE

Relevant Terms The model fails to perceive relevant terms in observed documents,
omitting them as rationale terms. 16% 14%

Non-relevant Terms The model fails to correctly perceive non-relevant terms from
the observed documents, incorrectly extracting them as rationale terms. 14% 13%

Table 2: Types of reasoning errors in 50 examples of the TREC-COVID (v2) dataset of BeIR, and their rate of
occurrence. Errors are identified by evaluating the examples manually, examining the agent’s action and reasoning
trace. We present a major error type, related to identifying the relevant and non-relevant terms with respect to the
query.

to reasoning derailment. Thus, relying solely on
the innate commonsense knowledge and reasoning
capability of the LLM is often insufficient.

2.2 Reward Availability in Environments

A key distinction between GE and SE is availability
of reward signals from the environment. We eval-
uate our proposed method both on environments
with explicit rewards (GE) and implicit rewards
(SE). The text-based game environment of GE re-
turns a sparse but explicit reward at the end of the
episode in the form of binary task success/failure.
On the other hand, a search environment generally
does not return such a reward, since this would
require knowing the user’s satisfaction with the
search results. Both are salient scenarios in agent
deployment, and both require addressing the de-
railment phenomenon, as we show in following
sections.

2.3 Preliminary Study: Analysis of Reasoning
Derailment

As a preliminary study, we manually analyze rea-
soning derailment in a baseline ReAct agent. Ta-
bles 1 and 2 present the main error types identified
in occurrences of reasoning derailment in GE and
SE, respectively. For GE, we find that derailment
is caused by errors in the agent’s inferences with

respect to: location perception, object perception,
and task state tracking, producing error rates 16%,
14%, and 6%. Similarly, in SE, we find that the
baseline agent often fails to perceive relevant terms
and non-relevant terms among terms in documents
given by the search engine, with error rates 16%
and 14%, respectively, indicating the challenge of
discerning the true search intent from the surface
form provided by the user.

As shown in the details of each error type for
each task, these errors would be easily resolved in
a fully observable environment, i.e. a GE scenario
in which the engine returns a full and exhaustive
description of the environment state, and a search
scenario in which the user’s search intent is fully
specified without ambiguity. The prevalence of
these errors indicate that despite the capabilities of
LLM agents, they are not currently able to resolve
partial observability in a satisfactory manner.

3 Method

Motivated by our preliminary study, we present our
proposed method, QuBE, in the following section.
Next, we begin by providing a broad description of
standard LLM-based agents, within which we dis-
cuss the systematic cause of reasoning derailment.
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3.1 Reasoning Derailment in LLM Agents

Formally, the task policy of a rationale-action in-
terleaving LLM agent (i.e., ReAct) at timestep t
is parametrized by the LLM, as π(a|ct), a prob-
ability distribution over actions a ∈ A, where
the action space A is the space of natural lan-
guage. The policy conditions on the context
ct = (o1, a1, · · · , ot−1, at−1, ot), which is also the
prompt input provided to the LLM, consisting of
the agent’s past actions and the partially observed
history from the environment, denoted by at′|t′<t

and ot′|t′≤t, respectively. Importantly, at can be
either a rationale, or an action, where the former
indirectly influences the policy through ct, but only
the latter is actually executed in the environment.

To illustrate the distinction between rationales
and actions, we modify the policy formulation to
separately indicate rationales, such that ct refers to
history of actions and observations, and rationales
are denoted by the set Et = {et′}tt′=1, rewriting
π(a|ct) to π(a|ct, Et).2

In Alg.1, we illustrate the full operation of the
agent, and describe how the derailment described
in Sec.1 occurs: The LLM agent’s input context ct,
which is a simple accumulation of partial observa-
tions with noisy and incomplete information, can
misguide the policy π(a|ct, Et) (Line. 6), leading
to the generation incorrect rationales, or unsuccess-
ful actions. Such generations are then incorporated
back into ct+1 or Et+1 (Line. 9, Line. 16), further
harming the subsequent generations, incurring de-
railment, as observed in Sec.2.3.

3.2 Proposed Approach: QuBE

To address reasoning derailment, our proposed ap-
proach QuBE aims to alleviate partial observabillity
in ct, by constructing a focused and task-relevant
belief state bt. We show how QuBE modifies the
operation of the agent in Alg.1. We leverage an
LLM as a tool-enabled question-answering model
Q, using it to both direct questions about both the
agent’s context ct and Et, and the environment, as
well as answer them (Line. 11). After the construc-
tion of bt which rectifies the gaps in the agent’s raw
observation context, QuBE uses a rationale gen-
eration model G, to generate the belief-informed
rationale e∗t (Line. 12), which is seamlessly inte-
grated back into the agent via Et ∪ {e∗t }. Through
this process, e∗t acts as an update signal for the pol-

2Concretely, a rationale et is indicated in the LLM output,
with the prefix “[think]”.

icy π(a|ct, Et), mitigating derailment. Note that,
a trigger mechanism which leverages environment
signals can selectively activate QuBE, for better
efficiency. In practice, we use this mechanism in
the GE setting3.

In the following section, we provide detailed
descriptions of the implementation of QuBE com-
ponents in each scenario.

Algorithm 1 Rationale-Action Interleaving LLM Agent. The
blue lines indicate augmenting the agent with QuBE.

Input: environment Env, LLM Agent policy π, QuBE LLM
components Q and G

1: t←− 0
2: n←− max timesteps
3: ct ←− {}
4: Et ←− {}
5: while t < n do
6: at ← π(a|ct, Et)
7: if type(at) = action then ▷ Acting
8: ot+1 ← Env(at)
9: ct+1 ← ct + (at, ot+1)

10: if trigger(ot+1) then ▷ QuBE
11: bt = Q(ct, Et,Env) ▷ Belief State Const.
12: e∗t = G(bt, ct, Et) ▷ Rationale Gen.
13: Et+1 ← Et ∪ {e∗t }
14: end if
15: else if type(at) = rationale then ▷ Reasoning
16: Et+1 ← Et ∪ {at}
17: end if
18: t← t+ 1
19: end while

Belief State Construction To construct the be-
lief state, we utilize a question-answering model Q,
implemented as prompted LLMs. We guide Q to
ask two question types, Q-Env and Q-Context. Q-
Env are queries which can be answered by referring
to an environment-attached tool, while Q-Context
are those answered by the LLM, by re-analyzing
the agent’s context ct and Et to infer new infor-
mation. When issuing both Q-Env and Q-Context
questions, we execute the former questions first,
and allow these QA pairs to condition the answers
to the latter questions, to improve grounding.

In GE, belief state construction aims to enhance
the agent’s estimate of the true environment state,
by resolving uncertainties and discovering links
between different portions of the raw partially ob-
served history. Therefore, we leverage Q-Env for
ego-centric information gathering (Ammanabrolu
and Hausknecht, 2020), by issuing queries to the
environment. More specifically, the LLM can lever-
age the text-based game environment as a tool
using the commands, env.step("look") and
env.step("inventory"). Further, using Q-

3Refer to Appendix A.5 for further details.
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Context, we infer task-relevant information, i.e. the
state and task-relevant properties of objects such as
receptacles, answered by the LLM from the agent’s
context history. The question and answer pairs,
shown in Fig.1-(b)(left), comprise the belief state
in GE.

In SE, belief state construction aims to improve
the agent’s estimate of the true query intent, with
the downstream goal of optimizing the retrieval
outcome. Following our interactive formulation
of retrieval, we treat the retrieved documents as
feedback signals (Rocchio Jr, 1971), which can be
further leveraged towards enhancing the alignment
between the query intent and its representation (Li
et al., 2022). Specifically, as Q-Env, we utilize
a tool easily attached to the search engine envi-
ronment, to establish an accurate list of possible
keywords that are relevant and non-relevant to the
query4. To do so, we give Q access to the DeepIm-
pact (Mallia et al., 2021) term-importance estima-
tor, which is trained using contrastive learning to
produce an impact score of each term within a docu-
ment, measuring its relevance contribution. Hence,
the question and answer pairs for relevant and non-
relevant keywords, shown in Fig.1-(b)(right), com-
prise the belief state in SE.

Rationale Generation After constructing the be-
lief state, we generate a rationale e∗t using another
prompted LLM G. Through this, the LLM can con-
cisely integrate existing information, and even gen-
erate new inferences through reasoning, grounded
on the belief state. In GE, the goal of G is to
rationalize the observed derailment, and find an
alternative next action to progress the task. In SE,
G uses the search results as retrieved context, to
further enhances the estimate of the query intent in
a detailed, textual form, by verbalizing additional
task-relevant information through RAG.

Finally, the generated rationale is integrated back
into the agent, as described in Sec.3.2. In GE,
the agent proceeds by generating the next action,
and in SE, the agent proceeds by generating an
updated query. The full prompts of the QuBE com-
ponents can be found in Appendix A.7.1 and Ap-
pendix A.7.2.

4 Experiments

To validate the effectiveness of QuBE, we conduct
experiments on our two target settings in GE and

4Implementation details of the keyword extraction process
are provided in A.6.

SE. In both scenarios, QuBE components are imple-
mented using LLMs, in conjunction with a ReAct
LLM agent5

4.1 Game Engine Scenario: ALFWorld

We compare QuBE against the following baselines
on the ALFWorld benchmark. Following previous
works, we evaluate models on the 134 ALFWorld
test environments across six different task types,
measuring task success rate.

BUTLER BUTLER (Shridhar et al., 2021) is the
baseline offline reinforcement learning agent for
ALFWorld, trained on 105 expert trajectories for
each task type.

ReAct ReAct is the agentic LLM method us-
ing a prompting approach which interleaves ac-
tion and reasoning. By making interaction possible
for LLMs, ReAct significantly outperforms previ-
ous state-of-the-art agents on ALFWorld, including
BUTLER.

Reflexion Reflexion extends ReAct, to allow the
agent to engage in a task over multiple episodes
or trials, and learn from mistakes in previous tri-
als. By providing the agent access to summarized
task memories from previously failed trials, Reflex-
ion can rectify reasoning derailment in an iterative
manner.

ExpeL ExpeL (Zhao et al., 2024) expands the
idea of Reflexion, to utilize an LLM agent to first
collect success and failure experiences on the task
into an experience pool, and then extracts knowl-
edge from these experiences as insights to guide
the LLM.

ADAPT ADAPT (Prasad et al., 2024) builds
upon ReAct, by recursively decomposing tasks into
sub-tasks, in order to enhance the LLM agent’s abil-
ity to handle complex tasks.

4.2 Search Engine Scenario: BEIR

On the BEIR benchmark, we compare QuBE
against the following baselines, evaluating with
the official metric, nDCG@10. The metric mea-
sures the quality of the top-10 results, scoring zero
when none are relevant and increasing as relevant
documents are ranked higher.

5Implementation details of LLMs are provided in Ap-
pendix A.3.
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Model Trial 0 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9

BUTLER 37% - - - - - - - - -
ReAct 57% - - - - - - - - -
Reflexion 53% 57% 66% 69% 69% 72% 72% 72% 72% 72%
ExpeL 59% 60% 63% 64% - - - - - -
ADAPT - - 80% - - - - - - -

QuBE (Ours) 81%† 90%† 93%† 94%† 95%† 95%† 95%† 96%† 96%† 96%†

Table 3: Results on AlfWorld, using task success rate as the evaluation metric. The best results are highlighted in
bold. Statistically significant improvement of QuBE over Reflexion is indicated by †, with negligibly small p-values
across all trials.

NFCorpus TREC-COVID (v2) Touché FiQA SCIDOCS SciFact Average

ColBERT 34.2 76.2 25.3 35.2 15.8 69.0 42.6
ColBERT-PRF 34.8 75.7 28.5 34.5 15.6 68.5 42.9
ReAct/Reflexion 35.2±0.1 75.2±0.8 28.3±0.3 35.5±0.3 15.9±0.1 69.2±0.4 43.2

QuBE (Ours) 35.7±0.1

(15.5%)
77.6†

±0.8

(6.0%)
30.3±0.6

(10.8%)
36.5†

±0.2

(1.5%)
16.2†

±0.1

(7.6%)
70.9†

±0.9

(2.0%)
44.5†

(7.2%)

Table 4: Results on BEIR, using nDCG@10 as the evaluation metric. For the LLM-based systems, we conduct 3
runs and report the average and variance of performance. The best results for each dataset are highlighted in bold.
Statistically significant improvement of QuBE over ReAct/Reflexion is indicated by †. P-values are micro-averaged
across the runs to secure valid sample sizes for testing, and reported in brackets below.

ColBERT ColBERT is a widely adopted retrieval
model that encodes queries and documents as mul-
tiple contextualized embeddings, representing to-
kens. Relevant documents are identified based on
maximum similarity over the query and document
embeddings. Since we adopt ColBERT6 as the
search engine, its performance is the base search
engine performance.

ColBERT-PRF ColBERT-PRF is a state-of-the-
art query expansion approach which identifies ex-
pansion terms based on clustering informed by
inverse document frequency (IDF) statistics. We
compare with ColBERT-PRF as the baseline rep-
resenting a classical query refinement approach,
which does not employ reasoning in an explicit
manner, as with LLMs.

ReAct As an agentic LLM baseline for BEIR,
we leverage ReAct for interactive query refine-
ment, given top-3 documents from the search en-
gine as observations. The agent interleaves rea-
soning, which analyzes the query and documents,
with the action step, which generates new terms to
expand the query with7. Note that, since the action
space in SE is restricted to issuing a query to the

6We use the open-sourced ColBERT checkpoint, with
settings described in the official GitHub repository: https:
//github.com/stanford-futuredata/ColBERT

7Based on empirical findings in ColBERT-PRF, we gener-
ate at most 10 query terms for both ReAct and QuBE.

search engine, we view each search operation as a
trial, making ReAct and Reflexion equivalent. In
practice, since the success or failure of the task
cannot be informed during inference in SE, we per-
form interactions up to a fixed number of timesteps,
t, for both ReAct and QuBE. We set t as 2, i.e.
one rationale step and one action step, based on
our preliminary analysis using ReAct, where the
nDCG@10 performance did not improve by per-
forming multiple steps of reasoning. Finally, con-
sidering the non-determinism of LLM inference in
SE (for which we set the temperature by 0.5), we
run experiments 3 times on each dataset, for both
ReAct and QuBE, and report average performance
along with standard deviation.

5 Results and Analysis

5.1 Results on AlfWorld
We report the results of experiments on AlfWorld
in Table 3. First, we examine the results without
applying Reflexion and observe that our method
improves over ReAct significantly, outperforming
it by 28% on task success rate. Compared to the re-
cent baselines which build on the ReAct paradigm,
ExpeL and ADAPT, QuBE shows strong perfor-
mance, outperforming both. These results demon-
strate that QuBE effectively addresses reasoning
derailment through belief state construction, en-
hancing LLM agent performance significantly.
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Next, we report the results (trials 2~9) combin-
ing our approach with Reflexion. We observe that
the performance of QuBE improves meaningfully,
around 15%, over the course of 10 trials, outper-
forming Reflexion in final performance by 24%,
and solving nearly all AlfWorld tasks. Additionally,
we observe that QuBE outperforms the maximum
performance of all compared methods with only a
single trial, indicating that its approach of resolv-
ing partial observability can translate to significant
gains in sample efficiency. These results support
the value of our approach in addressing reasoning
derailment in LLM agents.

5.2 Results on BEIR
We report the results of experiments on the BEIR
benchmark in Table 4. Compared to the ColBERT
baseline using the initial query for the search task,
ColBERT-PRF, which issues a new query using
augmented query terms from observed documents,
shows limited improvements. Meanwhile, the Re-
Act LLM agent utilizes reasoning for the task, out-
performing ColBERT-PRF, but only marginally.
These results indicate the challenge of query refine-
ment in the zero-shot setting. Further, the results
indicate that raw partial observations, in the form
of retrieved documents, are not necessarily benefi-
cial in query refinement, and that even with LLM’s
reasoning capability, this remains a difficult task.

In contrast, by addressing partial observability in
the observations through belief state construction,
QuBE is able to leverage LLM reasoning more ef-
fectively, and consistently outperforms ReAct on
all datasets by a notable margin, validating the ef-
fectiveness of our approach for enhancing LLM
agents. Note that, though the improvements of 1 or
2 points in nDCG@10 might appear modest, they
are significant in the context of zero-shot settings,
where enhancing the query representation accord-
ing to the knowledge embedded in the retriever is
challenging.

5.3 QuBE Mitigates Reasoning Derailment
Extending our preliminary study of reasoning de-
railment in Sec.2.3, we present a qualitative anal-
ysis of the effectiveness of QuBE to address rea-
soning derailment. In Table 1, it can be observed
that accurately establishing the belief state and
generating relevant rationale enables the agent to
successfully handle derailment, with lower error
rates for QuBE compared to ReAct, on all mea-
sured error types. Similarly, in Table 2, QuBE

shows lower error rates in identifying relevant and
non-relevant terms, compared to ReAct, which is
achieved by concisely organizing the belief state
and subsequently generating the rationale. These
results support our hypothesis, that grounding the
rationale on an enhanced belief state empowers the
LLM to address reasoning derailment 8.

5.4 Analysis of Computational Efficiency

To assess the computational costs and potential
trade-offs of the additional question-answering and
rationale generation steps of QuBE, we perform a
comparison of the average LLM API calls of Re-
flexion and QuBE. In SE, both the Reflexion base-
line and QuBE use 3 LLM API calls. For each, the
input token length is ∼250 tokens + query tokens
+ documents’ tokens, and ∼450 tokens + query
tokens + documents’ tokens, respectively. Since
the input context is dominated by the documents,
the difference in ∼200 tokens is negligible, indi-
cating that in SE, QuBE’s steps are more effective,
at nearly identical cost to Reflexion. In GE, the
Reflexion baseline and QuBE use on average 174.0
and 134.5 LLM API calls per task, cumulative over
all trials, respectively. While QuBE calls in GE
incur additional LLM API calls, we find that the
overall efficiency is improved, because unrectified
reasoning errors in the baseline agent result in de-
railment causes wasted API calls, leading to the
higher number of calls for Reflexion.

5.5 Generalizability to Smaller LLMs

To study the generalizability of QuBE to smaller
and open-source LLMs, we conduct additional ex-
periments using Llama3-8B and Mistral-7B9. As
shown in Tables 6 and 7, we find that derailment
poses an equally important challenge for agents
based on smaller LLMs. The results indicate that
the derailment phenomenon occurs across model
sizes, impacting performance significantly. This
is particularly evident in GE, where we observe
that a baseline Reflexion agent suffers derailment
in nearly all cases. A likely reason is that agents
based on smaller LLMs become more derailment-
prone due to the longer agent trajectories, high-
lighting the importance of addressing derailment
in such settings. In contrast, the results of QuBE
show that it is consistently effective at handling
derailment even in smaller LLMs, confirming the

8We provide full qualitative examples in Appendix A.8
9Model details are provided in Appendix A.4.
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generalizability of its effectiveness across model
scales.

6 Related Work

6.1 Language Models as Agents

Language-model based agents have a long and ex-
tensive history, with a notable early example in text-
based games, as an effective testbed for agent inter-
action (Hausknecht et al., 2019; Côté et al., 2018;
Ammanabrolu and Riedl, 2019; Ammanabrolu and
Hausknecht, 2020; Yao et al., 2020). More recently,
there has been growing interest in using text-based
games to test agents’ abilities in more complex
environments and sophisticated scenarios includ-
ing virtual home environments, interactive scien-
tific reasoning, and web navigation (Shridhar et al.,
2021; Wang et al., 2022b; Yao et al., 2022).

A parallel development has been the significant
advances in agents based on large language models
(LLMs), with a key driver being the combination of
reasoning with action. ReAct (Yao et al., 2023), ex-
emplifies this agentic approach, based on prompts
interleaving rationales with actions, with the for-
mer facilitating high-level reasoning and planning
for guiding the agent’s actions. Building on Re-
Act, Reflexion (Shinn et al., 2023) incorporates
a persistent memory to store condensed insights
over trials, enabling iterative improvement of the
agent. Recent works have further extended ReAct,
by learning from a pool of success and failure expe-
riences (Zhao et al., 2024), and recursively decom-
posing tasks into sub-tasks (Prasad et al., 2024).
On the game Minecraft, Voyager (Wang et al.,
2024a) enhances LLM’s planning through a com-
bination of execution error incorporation and self-
verification, augmented by retrieving code-based
skills from a skill library. Finally, LLM agents
are increasingly utilized in realistic and complex
scenarios, including task automation on real-world
websites (Gur et al., 2024), and enterprise settings
requiring the use APIs and tools (Muthusamy et al.,
2023).

While such existing works on LLM agents focus
primarily on driving performance improvements,
we diagnose and tackle a fundamental challenge
facing LLM agents, the partial observability of in-
teractive environments.

6.2 Reasoning in Large Language Models

LLMs guided by human-demonstrated rationales,
such as Chain of Thoughts (Wei et al., 2022), Least-

to-Most prompting (Zhou et al., 2023), have been
proven effective in reasoning tasks. Nevertheless,
such rationalizing strategies often fail to generalize
to unseen, complex scenarios which diverge from
the few-shot demonstrations (Zhou et al., 2023).

To improve the accuracy and explainability of
LLM reasoning, Lyu et al. (2023) propose Faithful
CoT, which uses a deterministic solver for solv-
ing intermediate steps in math word problem and
question answering tasks. Creswell and Shanahan
(2022) propose to finetune a language model to bet-
ter ensure the logical validity of LLM reasoning, in
logic and question answering tasks. Radhakrishnan
et al. (2023) propose reasoning by decomposing
questions into subquestions, for question answer-
ing tasks.

While our work also pursues reliable and ac-
curate LLM reasoning, our proposed solution of
belief state construction and grounded rationale
generation solves the unique problem of reasoning
derailment in LLM agents.

7 Conclusion

In this work, we studied deployment of agentic
LLMs within complex interactive environments.
Due to the challenge of partial observability, ex-
isting LLMs produce reasoning errors, which are
even more pronounced in agentic LLMs requir-
ing multiple interactions. To tackle this, we pro-
pose QuBE, which constructs a belief state us-
ing question-answering, as an estimate of the un-
observed true environment state. Using the con-
structed belief state, QuBE performs rationale gen-
eration to resolve noise and uncertainty in the raw
partial observations and enhance the LLM agent’s
action policy. Experimented on search and game
environment scenarios, QuBE reduces reasoning
errors, and improves task performance, outperform-
ing strong baselines.

Limitations

A limitation of our work is the variable nature of
interactive environments in which agents are de-
ployed for complex tasks, which can lead to differ-
ent challenges depending on the environment.

To address this, we evaluated QuBE on two di-
verse partial observability settings, both a canoni-
cal text-based game setting as well as an interac-
tive RAG scenario. Future work should expand
the exploration of the reasoning derailment phe-
nomenon to wider arrays of interactive scenar-
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ios, and promising directions for solutions include
combining more powerful faithful reasoning ap-
proaches with agentic LLMs.
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A Appendix

A.1 Dataset Details: BEIR

The statistics for the BEIR datasets are available in
Table 5, including the number of queries evaluated,
number of documents, and average query length.

A.2 Dataset Details: ALFWorld

ALFWorld consists of 134 tasks, comprised of 6
different task types in a virtual household environ-
ment: Pick (24), Clean (18), Heat (31), Cool (23),
Examine (21), and Pick two (17).

A.3 LLM API Details

We access LLMs through the OpenAI API. To
manage API costs, we use code-davinci-002
(Codex) via free researcher access, for the agent
LLM. As Codex is token-rate limited, for QuBE
components, we use gpt-3.5-turbo-0301,
due to its low cost. We note that QuBE is agnostic
to the choice of in-context-learning LLM, and does
not rely on any zero-shot/chat capabilities.

A.4 Details of Smaller LLMs

For experiments with smaller LLMs, we lever-
age Llama3-8B (AI@Meta, 2024)10 and Mistral-

10https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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NFCorpus TREC-COVID (v2) Webis-Touche2020 FiQA SCIDOCS SciFact

Total # of Test Query 323 50 49 648 1000 300
Total # of Documents 3.6k 171.3k 382.5k 57.6k 25.6k 5.2k

Avg. Word Length of Query 3.3 10.6 6.55 10.77 9.38 12.37

Table 5: Number of queries in BEIR datasets studied.

Model Trial 0 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9

Llama3-8B
Reflexion 0% 1% 2% 2% 2% 2% 2% 2% 2% 2%
QuBE (Ours) 7% 10% 18% 24% 27% 28% 30% 33% 37% 39%

Mistral-7B
Reflexion 2% 3% 4% 7% 7% 10% 10% 10% 10% 10%
QuBE (Ours) 3% 8% 10% 10% 13% 13% 16% 18% 20% 20%

Table 6: Experiment results with smaller language models on ALFWorld, using task success rate as the evaluation
metric. The best results are highlighted in bold.

NFCorpus TREC-COVID (v2) Touché FiQA SCIDOCS SciFact Average

Llama3-8B
ReAct/Reflexion 35.2±0.1 77.1±0.5 26.9±0.3 35.6±0.0 16.1±0.1 69.4±0.1 43.4±0.0

QuBE (Ours) 36.4±2.1 78.0±1.2 28.5±0.3 35.9±0.4 16.3±0.1 69.7±0.4 44.1±0.0

Mistral-7B
ReAct/Reflexion 34.9±0.1 76.8±0.4 27.0±0.4 35.6±0.1 15.9±0.1 68.8±0.6 43.2±0.0

QuBE (Ours) 35.3±0.2 76.8±1.2 29.3±0.5 36.1±0.2 16.2±0.1 69.6±0.5 43.9±0.0

Table 7: Experiment results with smaller language models on BEIR, using nDCG@10 as the evaluation metric. For
the LLM-based systems, we conduct 3 runs and report the average and variance of performance. The best results for
each dataset are highlighted in bold.

7B (Jiang et al., 2023)11.

A.5 Trigger Mechanism for Efficiency

We can equip QuBE to enhance the efficiency in
terms of API calls, by selectively activating QuBE
with a derailment detection mechanism. In GE, we
leverage the following easily detected signals avail-
able from the AlfWorld environment: 1) The agent
repeats the same action Ω12 times in succession 2)
issuing an action command to the engine leads to
the observation “Nothing happens”, which is the
engine’s indicator that the action failed to execute.
In SE, since the search engine does not provide
explicit success or failure signals, and the number
of LLM calls are small, we always activate QuBE.

A.6 QuBE Implementation Details in SE

To obtain keywords from documents, following
ColBERT-PRF (Wang et al., 2023), we leverage

11https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.
3

12We set Ω to 2, following Shinn et al. (2023).

centroid terms within retrieved documents by per-
forming k-means clustering on term vectors en-
coded by a BERT encoder13.

We extract relevant terms and non-relevant terms
from top-3 and top-30 documents, respectively,
based on the intuition that the top-3 documents are
more likely to be relevant to the query compared
to top-30 documents. For extracting non-relevant
terms, when performing clustering, we assign uni-
form weights on terms in the top-30 documents. By
doing so, the extracted centroid terms, when used
as a search query, will likely return non-relevant
documents as search results.

In contrast, for extracting relevant terms, we al-
low each term to contribute differently based on
its relevance to the given query. Specifically, we
employ weighted k-means clustering, where the
weight for each term is set by the product of the rel-
evance score of the term and the document where

13For the k value, we set the number of relevant terms
smaller than that of non-relevant terms, setting k as 10 and 24,
for relevant and non-relevant terms, respectively.
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the term appears. For the document score, we lever-
age the relevance score returned by the search en-
gine, ColBERT. For the term score, we employ
DeepImpact (Mallia et al., 2021), which produces
an impact score of each term within a document in
identifying the document as relevant. We use Deep-
Impact due to its empirical superiority reported
in Dai and Callan (2019), though others are equally
applicable.
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A.7 Prompts

A.7.1 Game Engine - ALFWorld

ReAct Prompt For ReAct, we use the original prompts which can be found in Yao et al. (2023).

QuBE Prompt For QuBE, we use the prompts shown below. All demonstrations used are identical to
the original ones utilized in ReAct.

QuBE (Belief State Generation) Prompt

System:
You are an agent acting in a virtual household environment, operating by following goals at any
given time.

Input:
As a world model, your job is to accurately provide information about the current environment.
Here is your current trajectory: {Current Trajectory}.
Answer the following questions. Here are the questions:
1) Where am I now?
2) What is my inventory?
3) Which receptacles are available?
4) Which receptacles do not need to be checked again?
For each question, repeat the question itself, then answer it.
If you do not know an answer, answer I don’t know.

QuBE (Rationale Generation) Prompt

System:
You are an agent acting in a virtual household environment, operating by following goals at any
given time.

Input:
You are solving a task in a virtual household environment.

Here are demonstrations from randomly selected successful instances of a similar environment,
followed by the current task: {Demonstrations and Current Trajectory}.
This is what you know so far: {Belief State}
Your next trajectory originally was {Failed Trajectory Portion}, but it led to a failure. Write a new
thought that is more likely to lead to a successful trajectory, and only base your answer on what
you know.

A.7.2 Search Engine - BEIR

ReAct Think Prompt We present the prompt used for ReAct, which interleaves reasoning (i.e., think
about the query and documents) and action (i.e., generating missing query terms), denoted by “Think:”
and “Expand[Query]:” in the prompt, respectively. For clarity, we divide each interaction step in the
agent’s trajectory, into its own box.
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ReAct Instruction and Fewshot example Prompt

System: You are an intelligent assistant that can help users to write better queries.

Input: ▷ Task instruction with examples
Solve a query expansion task with interleaving Observation, Thought, Action steps.
Observe[Query, Doc]: observe the query and document.
Think: reason about the current situation.
Expand[query]: extracts terms from given document to expand query.
Here are two examples. ▷ Few-shot examples
###
{Example1}
###
{Example2}
Do you understand the task?

ReAct: Yes.

ReAct Think Prompt

Input:
Observe[Query]: {query}
Observe[Doc 1]: {top-1 ranked document}
Observe[Doc 2]: {top-2 ranked document}
Observe[Doc 3]: {top-3 ranked document}

ReAct:
Think: {thought}

ReAct Action (Query Expansion) Prompt

Input:
Extract relevant terms from the documents, that are missing in the original query.
Return only expansion terms, do not give any other explanations.
Total number of terms to be extracted is at most 10.

ReAct:
Expand[Query]: { [expansion term 1, . . . ] }

QuBE Prompt We present the prompt used for QuBE, which builds upon the prompt for ReAct with
minor modifications. Unlike GE, SE utilizes Q-Env without LLM, directly using the environment-attached
tool, as described in Sec.A.6. We show the prompt for rationale generation below, highlighting the portions
related to the belief state in orange. For clarity, we divide each interaction step in the agent’s trajectory,
into its own box.
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QuBE Instruction and Fewshot example Prompt

System: You are an intelligent assistant that can help users to write better queries.

Input: ▷ Task instruction with examples
Solve a query expansion task with interleaving observation, thought, action steps.
Observe[Query, Doc, Relevant Terms in Doc, Non-relevant Terms]: read the query, the top-k
documents retrieved by the search engine, and the retrieved document keywords.
Think[Intent]: think about the intent of the query. What would be the purpose of this query?
Expand[Query]: extract the terms from given documents and document keywords to expand the
query.
Here are two examples. ▷ Few-shot examples
###
{Example1}
###
{Example2}
Do you understand the task?

QuBE: Yes.

QuBE (Rationale Generation) Prompt

Input:
Now here is the actual task.
###
Observe[Query]: {query}
Observe[Doc 1]: {top-1 ranked document}
Observe[Relevant Terms in Doc 1]: {relevant terms in document 1}
Observe[Doc 2]: {top-2 ranked document}
Observe[Relevant Terms in Doc 2]: {relevant terms in document 2}
Observe[Doc 3]: {top-3 ranked document}
Observe[Relevant Terms in Doc 3]: {relevant terms in document 3}
Observe[Non-relevant terms]: {Non-relevant terms from document 1-3}

QuBE:
Think[Intent]: {query intent}

QuBE Action (Query Expansion) Prompt

Input:
Extract relevant terms from the documents, that are missing in the original query.
Return only expansion terms, do not give any other explanations.
Total number of terms to be extracted is at most 10.

QuBE:
Expand[Query]: { [expansion term 1, . . . ] }

A.8 Qualitative Examples

A.8.1 Game Engine - ALFWorld
In this example, the baseline ReAct agent fails to complete the task, “clean some soapbar and put it in
cabinet”, due to reasoning derailment, in which it continuously tries to take a soapbar 1 from various
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locations. QuBE repairs this error, by constructing a belief state through question answering, which aids
its subsequent reasoning, guiding it to check other locations. The soapbar 1 is found on the countertop 1,
which eventually leads to success on the task.
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ReAct

Task
Your task is to: clean some soapbar and put it in cabinet.

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a
cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder 2, a
handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and a towelholder
1.
> think: To solve the task, I need to find and take a soapbar, then clean it with sinkbasin, then put
it in cabinet. OK.
> think: First I need to find a soapbar. A soapbar is more likely to appear in sinkbasin (1-2),
garbagecan (1), cabinet (1-4), toilet (1), toiletpaperhanger (1), towelholder (1), handtowelholder
(1-2). I can check one by one, starting with sinkbasin 1.
OK.
. . .
> open cabinet 3
You open the cabinet 3. The cabinet 3 is open. In it, you see nothing.
> go to cabinet 4
The cabinet 4 is closed.
> open cabinet 4
You open the cabinet 4. The cabinet 4 is open. In it, you see a candle 1, and a cloth 2.
> go to toilet 1
On the toilet 1, you see a spraybottle 1, and a toiletpaper 2.
> go to toiletpaperhanger 1
On the toiletpaperhanger 1, you see a toiletpaper 1.
> go to towelholder 1
On the towelholder 1, you see a towel 1.
> go to handtowelholder 1
On the handtowelholder 1, you see a handtowel 1.
> go to handtowelholder 2
On the handtowelholder 2, you see a handtowel 2.
> think: Now I find a soapbar (1). Next, I need to take it.
OK.
> take soapbar 1 from handtowelholder 2
Nothing happens.
> take soapbar 1 from handtowelholder 1
Nothing happens.
> take soapbar 1 from towelholder 1
Nothing happens.
> take soapbar 1 from toiletpaperhanger 1
Nothing happens.
> take soapbar 1 from toilet 1
Nothing happens.
> take soapbar 1 from cabinet 4
Nothing happens.
> take soapbar 1 from garbagecan 1
Nothing happens.
> take soapbar 1 from sinkbasin 2
Nothing happens.
> take soapbar 1 from sinkbasin 1
Nothing happens.
> think: Now I take a soapbar (1). Next, I need to go to sinkbasin (1-2) and clean it.
. . .

(TASK FAILURE)
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QuBE

Task
Your task is to: clean some soapbar and put it in cabinet.

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a
cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder 2, a
handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and a towelholder
1.
. . .
> go to toiletpaperhanger 1
On the toiletpaperhanger 1, you see a toiletpaper 1.
> think: Now I find a soapbar (1). Next, I need to take it.
OK.
> take soapbar 1 from toiletpaperhanger 1
Nothing happens.

QuBE [Belief State]
1) Where am I now?
You are facing the toiletpaperhanger 1. Next to it, you see nothing.
2) What is my inventory?
You are not carrying anything.
3) Which receptacles are available?
a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder
2, a handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, a towelholder
1
4) Which receptacles do not need to be checked again?
cabinet (1-3), garbagecan (1), handtowelholder (1-2), sinkbasin (1-2), toiletpaperhanger (1),
towelholder (1)

QuBE [Rationale]
> think: Since I couldn’t find a soapbar in the locations I checked, I need to expand my search. A
soapbar could also be in/on the countertop (1) or in the cabinet (4). I will check the countertop (1)
first.
OK.
> go to countertop 1
On the countertop 1, you see a soapbar 1, and a soapbottle 1.
> think: Now I find a soapbar (1). Next, I need to take it.
OK.
> take soapbar 1 from countertop 1
You pick up the soapbar 1 from the countertop 1.
> think: Now I take a soapbar (1). Next, I need to go to sinkbasin (1) and clean it.
OK.
> go to sinkbasin 1
On the sinkbasin 1, you see nothing.
> go to sinkbasin 2
On the sinkbasin 2, you see nothing.
> clean soapbar 1 with sinkbasin 2
You clean the soapbar 1 using the sinkbasin 2.
> think: Now I clean a soapbar (1). Next, I need to put it in/on cabinet 4.
OK.
> go to cabinet 4
The cabinet 4 is open. In it, you see a candle 1, and a cloth 2.
> put soapbar 1 in/on cabinet 4
You put the soapbar 1 in/on the cabinet 4.
(TASK SUCCESS)
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A.8.2 Search Engine - BEIR
In this example, the query is “AMP-activated protein kinase (AMPK) activation increases inflammation-
related fibrosis in the lungs.”. Compared to the ColBERT baseline, QuBE successfully improves the
retrieval results (higher nDCG@10), while ReAct experiences a drop in nDCG@10.

During the reasoning step, QuBE contemplates the query and refines its reasoning based on the
environment feedback, which constitutes the retrieved document, and enhanced via the constructed belief
state. On the other hand, ReAct focuses on the specifics of the provided documents, reducing focus on
the intent of the query. Consequently, QuBE incorporates important information from key terms into
its estimate of the query intent, while ReAct expands terms based solely on its contemplation of the
documents.

ReAct

[Think]:
It appears that the query is asking about the relationship between AMP-activated protein kinase
(AMPK) activation and inflammation-related fibrosis in the lungs. The given documents talk about
the role of AMPK in regulating metabolism and suppressing inflammation, and how activation
of AMPK inhibits the Janus kinase (JAK)–signal transducer and activator of transcription
(STAT) pathway in various cells. Also mentioned are how AMPK activators like metformin and
salicylate can enhance the inhibitory phosphorylation of endogenous JAK1 and inhibit STAT3
phosphorylation. Therefore, one possible way to expand the query could be by adding terms
related to JAK-STAT pathway and its association with lung fibrosis.

Query Expansion:
[JAK1, STAT, phosphorylation, metformin, salicylate, endogenous, V658F-mutant, fibrosarcoma
cells, vascular endothelial cells, inflammatory signaling]

QuBE

[Belief State]:
Relevant Terms in Doc 1: [ser515, ser518, enhanced, jak1, ampk]
Relevant Terms in Doc 2: [ampk, cardiovascular, homeostasis]
Relevant Terms in Doc 3: [ho, ampk, nrf2]
Non-relevant Terms: [fibrosarcoma, show, pharmacological, phosphorylation, signaling,
phosphorylated]

[Think]:
The intent of the query is to find information about the relationship between AMP-activated
protein kinase (AMPK) and inflammation-related fibrosis in the lungs, and how AMPK activation
affects anti-inflammatory signaling and Nrf2/HO-1 signaling in cardiovascular tissues.

Query Expansion:
[inflammation, fibrosis, lungs, Nrf2, HO-1, cardiovascular, anticontractile, anti-inflammatory,
energy homeostasis, redox]

A.9 Use of AI Assistants
We used ChatGPT for grammatical corrections.
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