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Abstract

Large Multimodal Models (LMMs) have
achieved strong performance across a range
of vision and language tasks. However,
their spatial reasoning capabilities are under-
investigated. In this paper, we construct a
novel VQA dataset, Spatial-MM, to compre-
hensively study LMMs’ spatial understanding
and reasoning capabilities. Our analyses on
object-relationship and multi-hop reasoning re-
veal several important findings. Firstly, bound-
ing boxes and scene graphs, even synthetic
ones, can significantly enhance LMMs’ spa-
tial reasoning. Secondly, LMMs struggle more
with questions posed from the human perspec-
tive than the camera perspective about the im-
age. Thirdly, chain of thought (CoT) prompt-
ing does not improve model performance on
complex multi-hop questions involving spa-
tial relations. Lastly, our perturbation analysis
on GQA-spatial reveals that LMMs are much
stronger at basic object detection than complex
spatial reasoning. We believe our new bench-
mark dataset and in-depth analyses can spark
further research on LMMs spatial reasoning. 1

1 Introduction

Large Multimodal Models (LMMs) have shown
impressive generalization ability on several vision
and language tasks. Several recent works, however,
showed that these models lack spatial understand-
ing (Tong et al., 2024; Li et al., 2023a; Liu et al.,
2023e; Lei et al., 2024a; Prasad et al., 2023). As
can be seen in Figure 1, multimodal LLMs, includ-
ing GPT-4o, often fail to answer questions from a
human perspective within an image. The focus of
this work is to study the understanding of spatial
relations by top-performing LMMs. Moreover, we
go beyond evaluating only the final answers to di-
rectly analyzing the intermediate reasoning steps

1Spatial-MM benchmark is available at: https://github.
com/FatemehShiri/Spatial-MM

Where is the bicycle from the woman’s 
perspective?
A. Front
B. Behind
C. Right
D. Left

Is there a bicycle on the left side of the image 
from camera's perspective?
A. No
B. Yes

Figure 1: benchmarking the spatial reasoning capabil-
ities of GPT-4o (Achiam et al., 2023) (Date accessed:
June 12, 2024). Text in red and green signifies an in-
correct and ground-truth answers, respectively. The
accuracy of GPT-4o in answering questions related to
the human’s viewpoint in the image is only 27.5%.

generated by chain of thought (CoT) prompting in
multi-hop visual question-answering (VQA) tasks.
We ground LMMs ’ reasoning steps into a scene
graph format and verify whether they form a valid
path.

More specifically, we ask the following ques-
tions: (i) What spatial relations are missed by mod-
els, and why it happen? (ii) How can additional
symbolic visual information, such as bounding
boxes or scene graphs, improve the performance
of LMMs? Which of these symbolic information
is more useful, and how can they be integrated in
the reasoning process effectively? (iii) How does
the questions complexity affect LMMs in handling
spatial relations? (iv) How does the reasoning path
of LMMs behave when they fail to answer a multi-
hop question? Is the failure due to incorrect spatial
reasoning or non-spatial reasoning?

To address these questions, we construct
Spatial-MM, a novel, challenging dataset, and
comprehensively LMMs spatial reasoning capa-
bilities from different angles. We analyze four
top-performing LMMs on Spatial-MM and GQA-
spatial (Kamath et al., 2023) benchmarks to iden-
tify problems with visual question answering
(VQA) evaluation methodology. Our comprehen-
sive analyses reveal a number of important insights

21440

https://github.com/FatemehShiri/Spatial-MM
https://github.com/FatemehShiri/Spatial-MM


that point to future research directions. Our contri-
butions can be summarized as follows.
• We present a new, challenging spatial-aware
benchmark that incorporates a variety of spatial
relationship types, accounting for both human and
camera perspectives.
• Our coprehensive empirical analyses show that:
(i) bounding boxes and scene graphs, even synthetic
ones, can significantly enhance LMMs’ spatial rea-
soning, (ii) LMMs struggle more with questions
posed from the human perspective than the camera
perspective about the image, (iii) chain of thought
(CoT) prompting does not improve model perfor-
mance on complex multi-hop questions involving
spatial relations, and (iv) LMMs are much stronger
at basic object detection than complex spatial rea-
soning.

2 Related Work

2.1 Large Multimodal Models

Pre-trained on large scale of text corpus, Large
Language Models (LLMs) (Devlin et al., 2019; Liu
et al., 2019; Brown et al., 2020; Zheng et al., 2023b)
can easily reach more than billions of parameters
and show great capacity on natural language com-
prehension, text completion and generation, zero-
shot transfer and in-context learning. However,
traditional LLMs usually take text as input and
output, and lack the ability of understanding other
modalities, like image, video or audio.

To tackle this issue, connecting multimodal
encoder/decoder with LLMs, Large Multimodal
Models (LMMs) can integrate multiple data modal-
ities and overcome the limitations of text-only
LLMs. LMMs are utilized to address various dif-
ferent tasks: image-text understanding (Liu et al.,
2023c,a; Li et al., 2023c), video-text understand-
ing (Lin et al., 2023; Li et al., 2023d; Maaz et al.,
2023), and even multimodal generation (Peng et al.,
2023; Lv et al., 2023; Zheng et al., 2023a).

In this paper, image-text understanding is our
main focus, because it is already quite hard for
LMMs to understand the spatial relation in normal
images, not to mention videos.

2.2 Spatial relationship Benchmarks

Though LMMs have demonstrate remarkable per-
formance in various benchmarks, they still have
weaknesses on understanding spatial relationships,
such as distinguish “left” from “right” between two
objects presented in one image.

Kamath et al. (2023) curate a new What’sUP
benchmark to quantify model performance on un-
derstanding spatial relationships. The evaluation re-
sults show not only the pretraining corpus contains
little spatial-related data to learn from, but also
LMMs perform limited on this spatial benchmark.
Chen et al. (2024) identify the similar problem in
3D spatial relations. By generating a large scale
of spatial annotations, they increase the LMMs
spatial reasoning skill by a large margin. Instead
of increasing the scale of pre-training data, Lei
et al. (2024b) deal with spatial relationships from
the model perspective. They propose SCAFFOLD

prompting that overlays a dot matrix onto the image
as visual information anchors, which demonstrates
better performance in spatial reasoning over GPT-4
Vision with the textual CoT prompting.

In this paper, we propose a new spatial rea-
soning benchmark Spatial-MM, covering a diverse
spatial relationships more than What’sUP and con-
taining less noisy or ambiguous annotations.

2.3 Multi-hop Reasoning

Chain of thought prompting (Wei et al., 2022a)
demonstrates remarkable multi-hop reasoning capa-
bility of LLMs by eliciting step-by-step reasoning
paths. Least-to-most prompting (Zhou et al., 2022)
further shows the feasibility of conducting decom-
position and multi-hop reasoning, which happens
on the decoder side together with the answer pre-
diction procedure. Furthermore, Kil et al. (2024)
improves multimodal multi-hop reasoning in VQA.
Using answer prediction-guided CoT, the II-MMR
model finds a reasoning path to reach the answer.

Our new benchmark dataset Spatial-MM con-
tains spatial multi-hop reasoning questions, cover-
ing at least two reasoning steps for each ground-
truth reasoning path. To the best of our knowledge,
it is the first multimodal multi-hop benchmark that
pays attention to the evaluation on the reasoning
path.

3 The Spatial-MM Benchmark

We seek to study the spatial reasoning capabil-
ity gap between humans and LMMs. Based on
the observation that existing benchmarks only par-
tially investigate the spatial reasoning capabilities
of LMMs (Li et al., 2023b; Liu et al., 2023f), we
introduce a novel benchmark, Spatial-MM, which
includes two subsets: Spatial-Obj and Spatial-CoT.
Spatial-Obj features multiple-choice questions that
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focus on the spatial relationships between one or
two objects in an image, while Spatial-CoT offers
open-ended multi-hop questions.

3.1 Spatial-Obj
Spatial-Obj is a carefully curated benchmark that
contains 2,000 multiple-choice questions with the
aim of assessing LMMs’ spatial reasoning of one
or two objects in a given image. With natural im-
ages downloaded from the Internet, we carefully
selected images to construct diverse challenging
multiple-choice questions, including both yes/no
questions and wh-type questions.

The dataset is constructed with two rounds of
annotations. In the first round of annotation, we
divided the images among three annotators and
tasked them with selecting one or two objects in
each image and compose a question-answer (QA)
pair including a spatial relationship. Annotators
were provided with question templates with ob-
jects placeholders, which they could use or cus-
tomize according to their preference. In the second
round of annotation, we released batches of 200
QA pairs with their corresponding images. Another
10 annotators were tasked with reviewing these QA
pairs to verify whether they were correct or incor-
rect/ambiguous. Corrections were made based on
their feedback.

This dataset covers 36 of the most commonly
used spatial relationships (Marchi Fagundes et al.,
2021), including right, left, attached to, touching,
back, bottom, ahead, forward, backward, down,
facing towards, facing away, top, beneath, beside,
side, behind, under, on, in, front, below, above, over,
middle, between, inside, outside, bottom right, bot-
tom left, top right, top left, corner, close to, next
to, near. Moreover, we used GPT-4o to categorise
Spatial-Obj into visual patterns such as “object
localization”, “orientation and direction”, “view-
points” and “positional and relational context”,
which pose significant challenges for LMMs. The
prompt is listed in Appendix 7. Examples of these
patterns can be seen in Figure 2.

3.2 Spatial-CoT
Chain of Thought (CoT)-style prompting has been
demonstrated to significantly improve LLMs’ rea-
soning capabilities. However, recent investigations
on knowledge graph question answering and math-
ematical reasoning show that discrepancies exist
between the answer and the corresponding reason-
ing paths through CoT prompting (Nguyen et al.,

2024; Zhou et al., 2024). That is, while, by using
CoT to producing reasoning paths, the LLM can
produce the correct answer, the generated reason-
ing paths are not always correct. This disparity
is a form of hallucination, and renders the LLMs’
reasoning less trustworthy.

To enable the study of faithfulness in LMMs’
spatial reasoning in the CoT style, we curate
Spatial-CoT, a dataset of multi-hop question-
answer pairs. The QA pairs are generated by
prompting GPT-4o with a given image and a set
of in-context examples. Images are sourced from
Internet. In total, 800 multi-hop QA pairs were
generated, and we filtered out 178 that did not in-
clude at least one of the 36 spatial relationships
listed in Section 3.1 above. We then employed
human annotators to select reasonable and mean-
ingful multi-hop QA pairs that require at least two
reasoning steps to reach the final answer. An ad-
ditional 312 QA pairs were manually discarded
for lacking the complexity needed for multi-hop
QA pairs. Ultimately, Spatial-CoT includes 310
spatial-aware multi-hop QA pairs. The prompt, in-
cluding instructions for generating multi-hop QA,
is provided in Section A of the appendix.

Spatial-aware reasoning paths. In knowledge
graph question answering, triplets are considered
reasoning steps (hops) (Nguyen et al., 2024). Lever-
aging this idea, in VQA tasks, we utilize scene
graphs, including object relations or attribute, as
reasoning steps that lead to the answer. It is im-
portant to note that current VQA benchmarks (e.g.
GQA (Hudson and Manning, 2019)) with ground-
truth scene graphs lack diverse perspective informa-
tion and only incorporate spatial relationships from
the camera’s viewpoint. For Spatial-CoT, as no
ground-truth paths (or scene graph) exist, to eval-
uate the spatial reasoning abilities of LMMs, we
generate the reasoning paths for each question. We
carefully instruct GPT-4o with a set of in-context
examples to generate the initial draft of the spatial-
aware reasoning path. Subsequently, three anno-
tators were tasked with evaluating (i.e. keeping,
removing, adding, or modifying) the generated
steps for each question. Additionally, the anno-
tators were asked to tag the steps as S for spatial
hops such as “person in front of car” and NS for
non-spatial hops such as “woman holding a fork”,
respectively. In total, 67% of reasoning steps are
tagged as S and the rest 33% are tagged as NS,
suggesting that many questions require reasoning
of spatial relationships between key objects to be

21442



Orientation and Direction      

Object Localization    Positional & Relational Context       

Viewpoint                   

Where are the cows in from 
the man’s perspective?
 
A. behind  
B. left
C. front      
D. right

Is the giraffe with the shorter neck 
is facing his left? 

A: yes
B: no

From which viewpoint can the mug 
held by the person be seen?

A: side         B: top
C: bottom   D: front

A. yes

D. right

D. front

B. middle

Where is the dog from 
the camera’s perspective?

A. left.   
B. middle    
C. top   
D. right

Figure 2: VQA examples from our Spatial-MM that encompass a range of challenging visual patterns..

answered.
Each reasoning path includes two or more hops,

with at least one being a spatial hop. Figure 3 shows
some examples of multi-hop QAs with their cor-
responding Reasoning path. As shown in Table 3,
among the questions, 34% have a reasoning path
with two hops, 39% have three hops, and 27% re-
quire four or more hops to answer.

3.3 Human performance
We evaluated human performance using our bench-
mark to maintain the quality of annotations. We
sampled 300 data points from Spatial-Obj and 100
samples from Spatial-CoT. Annotators were con-
sulted to assess whether the correct option is clearly
identifiable or if there’s any potential for confusion.
This human performance assessment yielded scores
of 98% and 99% on Spatial-Obj and Spatial-CoT
datasets, respectively.

4 Data Enrichment to Improve Spatial
Reasoning

Intuitively, providing LMMs with additional
spatial-aware visual grounding data would help
improve their spatial reasoning performance. To
test this hypothesis, we describe two pipelines for
generating different types of visual grounding data.
The first pipeline consists of two stages: (I) key
object extraction and (II) bounding box generation.
The second pipeline consists of three stages: (I) key
object extraction, (II) spatial-aware caption gener-
ation related to the key objects, and (III) spatial-
aware scene graph generation. Please refer to Fig-
ure 6 in Appendix C for detailed illustrations of
our pipelines. Furthermore, we describe Reasoning

Question: Where is the pink bear from the 
perspective of the woman wearing the floral dress?
Answer:  right
Reasoning: [

{bear1 is pink}, 

{bear1 is on the left}, 

{woman1 wearing floral dress},

{women1's right is image's left}, 

{bear1 on the right from women1's 
perspective}]

Figure 3: An example of generated reasoning steps for
a multi-hop question.

path generation for the multi-hop questions.

Bounding box generation. The input of the
pipeline is an image I paired with a multiple-
choice question Q. We first extract key ob-
jects, [object1, object2, ..] from the given question.
Next, we prompt GPT-4o to provide the bound-
ing boxes of the key objects in the image. Each
bounding box is specifically represented as a tuple
[xmin, ymin, xmax, ymax], where xmin and ymin

are coordinates of the top-left corner and xmax and
ymax are coordinates of the bottom-right corner.
We present the prompt for bounding box genera-
tion in Appendix 7, and examples of synthesized
bounding boxes for the key objects along with the
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ground-truth bounding boxes in Appendix D.
Scene graph generation. Similar to the first stage
of bounding box generation, we extract key objects
from the given question. We then prompt GPT-4o
to generate a spatial-aware caption by considering
the location, direction, orientation, and spatial re-
lations of the key objects in the image. Finally,
given the question, spatial-aware caption, key ob-
jects, and image, GPT-4o is prompted to extract
spatial relation, orientation, and direction of the
key objects in the image. The prompt for scene
graph generation is listed in the Appendix 7.
Reasoning path generation. Previous research
on evaluating LMMs has solely focused on final
answer accuracy, neglecting the correctness of the
generated reasoning paths (Lei et al., 2024a; Kil
et al., 2024). In this work, we delve deeper into the
spatial reasoning path of LMMs in multi-hop VQA
by utilizing the ground-truth reasoning steps we
generated for multi-hop questions in Section 3.2.
To address the challenge of evaluating unstructured
reasoning steps, we carefully design a prompting
strategy to instruct LMMs to output the reasoning
steps in a scene graph format. This enables us
to validate against ground-truth reasoning steps.
Figure 3 shows an example of generated reasoning
paths for an image.

5 Experiments

5.1 Dataset
We use the following datasets in our experiments:
• Spatial-MM contains Spatial-Obj described in
§3.1 and Spatial-CoT described in §3.2.
• GQA-spatial (Kamath et al., 2023) is sourced
from GQA (Hudson and Manning, 2019), where
each image is paired with two caption options,
which contain opposite spatial relationships, i.e.
prepositions. Depending on the number of object(s)
identified in the image, GQA-spatial contains 1-
object and 2-object caption options. One instance
from GQA-spatial is shown in the “standard” row
of Figure 4: one image and two captions make use
of opposite prepositions: front and behind.2

5.2 LMMs
We evaluate the spatial reasoning capability of
the following four LMMs: LLaVA-1.5-7B (Liu
et al., 2023b), GPT-4 Vision (OpenAI, 2023), GPT-
4o (OpenAI, 2024), Gemini 1.5 Pro (Gemini Team,

2There are three pairs of opposite spatial relationships in
GQA-spatial: {left, right}, {front, behind} and {top, bottom}.

2024), and MiniGPT-v2 (7B) (Chen et al., 2023).
Please refer to Appendix A for details.

5.3 Evaluation Metrics

To evaluate model performance on final answer
prediction, we adopt the standard Accuracy met-
ric Hudson and Manning (2019). For evaluating
Spatial-CoT, the exact-match metric is insufficient
for measuring performance fully due to the open-
ended nature of the answers. LMMs frequently
produce paraphrases or alternative expressions that
convey the same underlying meaning. Therefore,
we initially verify if the predicted answer exactly
matches the gold answer. If it does not, following
(Lyu et al., 2024; Wang et al., 2023), we use GPT-
4o as a judge to determine whether the predicted
answer holds the same semantic meaning as the
gold answer.

5.4 The Effect of Bounding Boxes and Scene
Graphs

For both Spatial-Obj and GQA-spatial benchmarks,
the input is an image paired with a multiple-choice
question. Table 1 presents the results on Spatial-
Obj and GQA-spatial, comparing LMMs’ perfor-
mance on images only and with additional infor-
mation (i.e. bounding boxes and scene graphs). A
number of important observations can be made
from the table. (I) It shows that the additional
bounding box information serves as visual anchors
that enhance LMMs’ spatial reasoning performance
for LMMs. When given the synthesize bounding
boxes information on GQA dataset, the LMMs im-
prove their answer accuracy significantly, with the
average increase over “stan” of 33 points. However,
spatial related questions require a profound seman-
tic understanding of object relationships within the
scene. By incorporating spatial-aware scene graphs
of key objects, the performance of LMMs improves
significantly on both datasets. Specifically, by in-
cluding the synthesized SG in the prompt, GPT-4
vision’s accuracy increases by 9.28% and 8.92% for
one-object and two-object questions on the Spatial-
Obj dataset. (II) Surprisingly, the LMMs perform
better with synthesized bounding boxes than with
ground-truth bounding boxes. This may be at-
tributed to the high quality and diversity of synthe-
sized bounding boxes generated by GPT-4 vision.
(III) On Spatial-Obj, scene graphs further enhance
model performance, while on GQA-spatial, bound-
ing box information seems to be more useful. We
leave a deeper analysis of these two observations
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GPT-4 vision Gemini LLaVA-1.5 MiniGPT-v2
Prompt 1_obj 2_obj all 1_obj 2_obj all 1_obj 2_obj all 1_obj 2_obj all

Spatial-Obj
stan 50.80 52.85 52.18 46.63 41.53 43.18 51.59 43.58 46.18 45.73 35.83 39.99
stan+bboxsynth 71.34 60.21 63.82 50.81 45.55 47.26 56.97 44.62 48.63 53.61 40.87 44.93
stan+SGsynth 60.08 61.77 61.22 53.42 55.45 54.79 51.60 50.79 51.05 49.44 41.39 43.95

GQA-spatial
stan 66.46 15.81 56.30 19.40 16.35 18.79 27.16 15.12 24.75 22.14 8.63 19.43
stan+bboxgt 79.69 40.89 71.91 33.74 37.84 33.76 68.19 42.96 63.13 33.45 21.69 31.09
stan+bboxsynth 85.86 64.95 81.67 42.11 48.00 43.29 80.86 50.52 74.78 50.26 39.99 48.20
stan+SGgt 71.60 70.69 71.42 41.36 55.21 44.14 55.40 36.90 51.69 39.67 31.69 38.07
stan+SGsynth 64.90 55.40 62.99 24.77 49.25 29.68 36.99 46.55 38.91 51.77 33.9 48.19

Table 1: The accuracy of models in the Standard (stan) setting, augmented with synthesized bounding boxes
(bboxsynth), scene graphs (SGsynth), ground truth bounding boxes (bboxgt) and ground truth scene graphs(SGsynth ).
The synthetic bounding boxes and scene graphs are produced by GPT-4o. Bold: Best results within each dataset.

Human’s pers. Camera’s pers. Overall
Spatial-Obj

Distribution 31% 69% 100%
GPT-4o 43.75 73.6 64.89
GPT-4 vision 42.56 54.81 51.23
LLaVA 37.70 46.04 43.61
Gmini 32.92 44.07 40.82
MiniGPT-v2 31.67 40.75 37.94

Spatial-CoT
Distribution 46% 54% 100%
GPT-4o 27.50 63.25 46.81
GPT-4 vision 33.05 50.14 42.28
LLaVA 22.91 40.47 32.39
Gmini 25.81 46.29 36.87
MiniGPT-v2 22.08 39.77 31.63

Table 2: Results of human and camera perspectives.

to future work.
Finding 1: Bounding boxes and scene graphs
enhance LMMs ’s ability to excel in visual rea-
soning tasks. Bounding boxes are more effective
in one-object questions, while scene graphs are
more helpful in two-object ones.

5.5 The Effect of Human and Camera
Perspectives

Questions from previous benchmarks (Kamath
et al., 2023) are often evaluated from the camera’s
perspective, i.e., outside the image. How would
LMMs behave if the question is asked from other
angles, such as from the human perspective in the
image, i.e., inside the image, is under-explored.
This problem motivates us to generate different
questions with distinct prompts “from camera’s per-
spective”, “from human’s perspective” respectively,
from original questions, and further understand the
spatial reasoning capabilities of LMMs.

In Table 2, we show different model perfor-
mance from either human’s or camera’s perspec-
tive on Spatial-Obj and Spatial-CoT. Though all
these LMMs receive explicit prompt “from hu-
man/camera’s perspective”, they all show signif-

Num of hops 2-hop 3-hop ≥ 4-hop All
Hop Distribution 34% 39% 27% 100%

GPT-4o

stan 76.47 60.00 42.86 60.78
stan+COT 76.47 55.54 46.89 56.91
stan+bboxsynth 82.35 55.0 35.71 58.82
stan+SGsynth 73.33 75.0 35.71 63.27

GPT-4v

stan 58.82 55.0 50.0 54.9
stan+COT 50.0 60.0 60.0 56.86
stan+bboxsynth 56.25 50.0 50.0 52.0
stan+SGsynth 81.25 75.0 35.71 66.0

LLaVA

stan 47.06 50.0 50.0 49.02
stan+COT 35.29 55.0 21.43 39.22
stan+bboxsynth 47.09 50.0 35.71 46.14
stan+SGsynth 52.94 60.0 50.0 54.9

Gmini

stan 52.94 50.0 42.86 49.02
stan+COT 33.33 29.41 36.84 33.33
stan+bboxsynth 56.25 30.0 28.57 38.0
stan+SGsynth 68.75 55.0 57.14 60.0

Table 3: We evaluated the accuracy of LMMs on dif-
ferent numbers of hops on our challenging multi-hop
benchmark, Spatial-CoT.

icant performance drop on human’s perspective,
when compared to the camera’s perspective. Espe-
cially, while GPT-4o outperforms all other models
from camera’s perspective, it is still not able to un-
derstand from human’s perspective and show the
maximum drop on Spatial-CoT of more than 30
points.

Finding 2: LMMs excel at understanding the
scene from the camera’s perspective. However,
their performance declines significantly when
questions are posed from the human perspective
within the image.

5.6 Analysis based on Complex Multi-hop
VQAs

The effect of the number of hops to the answer.
Table 3 compares chain of thought prompting with
other approaches on the Spatial-CoT dataset. As
can be seen, the conventional CoT prompting (Wei
et al., 2022b) may not be as effective for complex
VQA tasks as it is for NLP tasks. Indeed, we can
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Reasoning type Spatial Non-spatial
Distibution of steps 67% 33%
Models Prompting P R F1 P R F1

GPT-4o
stan 79.28 63.77 70.28 90.48 95.02 92.68
stan+SGsynth 80.81 68.38 74.07 91.43 96.00 93.66

Gemini
stan 66.99 69.70 68.32 86.27 89.80 88.01
stan+SGsynth 80.21 64.38 71.43 90.10 92.86 91.46

LLaVA
stan 66.02 71.58 68.96 85.62 92.71 89.02
stan+SGsynth 77.23 67.83 72.22 82.41 93.68 87.68

Table 4: Evaluation of Spatial and Non-spatial reasoning
steps on our Spatial-CoT benchmark.

Reasoning Path Correct Incorrect
Reasoning Type None Spatial Non-spatal
GPT-4o 0.53 92.55 6.91
GPT-4 vision 1.18 91.76 8.24
LLaVA 1.99 89.40 12.58
Gmini 1.32 90.73 11.26
Average (%) 1.25 91.11 9.75

Table 5: Evaluation of reasoning path on multi-hop
questions which LMMs fail to answer correctly.

observe that even the strong LMMs such as GPT-4o,
Gemini-Pro and LLaVA-1.5 perform worse when
employing CoT reasoning, compared to standard
prompting. Therefore, the rationales produced by
the conventional CoT may not align well with the
reasoning path needed to arrive at the answer.

On the contrary, including visual grounded in-
formation such as bounding boxes information is
effective when the number of reasoning hops are
≤ 3. In particular, Table 3 highlights the effective-
ness of scene graphs in answering multi-hop spatial
questions across all the models. Multi-hop ques-
tions demand a deep semantic understanding of
object attributes and relationships within the scene.
Therefore, scene graphs are essential for enhancing
LLMs’ semantic visual understanding. Moreover,
across different models and various experiment set-
tings in Table 3, it can be seen that with the increase
in the number of the hops, accuracy of the final an-
swer drops. For instance, the average accuracy of
questions with ≥ 4 hops is 12% and 7.5% less than
that for questions with 2 and 3 hops, respectively.

Correctness of the reasoning path. We ground
LMMs ’ reasoning steps into a scene graph format
and verify whether they form a valid path. Given
the question and predicted answer, we carefully
design prompts to instruct LMMs to output the rea-
soning steps in a scene graph format, i.e., including
object relations and/or attributes. This enables us to
validate the LMMs’ reasoning steps against ground-
truth reasoning paths (Section 4). To evaluate the
reasoning path in multi-hop questions, computing

Perturbation Captions Answer

Standard
A. A photo of a cart to the front of  green trees
B. A photo of a cart to the behind of  green trees

A

Standard + None

A. A photo of a cart to the front of  green trees
B. A photo of a cart to the behind of  green trees
C. None of above

A

Relation Changed 
(Negation) + 
None

A. A photo of a cart not to the front of  green trees
B. A photo of a cart to the behind of  green trees
C. None of above

C

Relation Changed 
(Swapping) + 
None

A. A photo of green trees to the front of a cart
B. A photo of a cart to the behind of a green trees
C. None of above

C

Object Changed 
(Two options) + 
None

A. A photo of a boy to the front of a green trees
B. A photo of a boy to the behind of a green trees
C. None of above

C

Object Changed 
(Option A) + 
None

A. A photo of a boy to the front of a green trees
B. A photo of a cart to the behind of a green trees
C. None of above

C

cart

green trees

in front of

Figure 4: Examples of caption perturbation.

the semantic match for all the generated steps in
the path. We further analyze the types of reasoning
steps required in multi-hop questions.

Table 5 presents the results of analyzing the
reasoning paths for questions that LMMs fail to
answer correctly by stan prompting. The incor-
rect reasoning path could occur due to an incorrect
spatial step, an incorrect non-spatial step, or a com-
bination of both. On average, only 1% of questions
had the correct reasoning path but an incorrect fi-
nal answer. Moreover, 91% of questions included
at least one incorrect spatial reasoning step, while
only 9.75% contained at least one incorrect Non-
spatial reasoning step. Please note that an incorrect
reasoning step occurs when a reasoning step seman-
tically does not match the ground truth reasoning
steps or when a reasoning step from the ground
truth path is missing in the generated path.

The average scores for all Spatial and Non-
spatial reasoning steps in Spatial-CoT questions
are listed in Table 4, which shows that the average
gap between F1 scores for Spatial and Non-spatial
reasoning steps is significant by 21 point on stan
and 19 points on stan+SGsynth prompting.

Finding 3: Chain of thought prompt is not effec-
tive for multi-hop spatial reasoning.
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Model Gemini-Pro LLaVA-1.5
Data (GQA) one_obj two_obj one_obj two_obj
stan 19.40 16.35 27.16 15.12
stan+none 19.14 22.01 33.02 15.12
stan+none+bboxgt 30.98 39.24 37.16 15.46
rel_neg+none 1.75 2.176 41.38 8.93
rel_neg+none+bboxgt 0.43 0.35 16.98 2.41
rel_neg+none+SG 33.19 50.69 38.19 6.87
rel_swap+none _ 2.78 _ 1.37
rel_swap+none+bboxgt _ 2.07 _ 0.00
rel_swap+none+SGgt _ 64.58 _ 0.00
obj_change+none 91.87 69.10 90.69 54.98
obj_change_a+none 45.76 30.21 61.55 52.58

Table 6: Results of different types of analyses on GQA-
spatial dataset.

5.7 Analysis of Perturbations on GQA-spatial

Using GQA-spatial, we do a comprehensive un-
derstanding of the LMMs’ robustness when facing
spatial-related questions by applying five pertur-
bation settings on the caption options as follows:

• none: adding one extra option “None of above”;
the “Standard+None” row in Figure 4

• rel_neg: adding “not” to the correct option; the
“Relation Changed (Negation)” row in Figure 4

• rel_swap: Swapping the key objects in options;
“Relation Changed (Swapping)” row in Figure 4

• obj_change: replacing one of the key objects for
both options (A & B); the “Object Changed (Two
options)” row in Figure 4

• obj_change_a: replacing one of the key objects
in the correct option (A) with a none-existing
object in the image; the “Object Changed (option
A)” row in Figure 4

For the Standard setting, the model input is an
image paired with two caption options that differ
only by the preposition they contain, from which
LMMs should be able to select the caption option
with the correct preposition. For perturbation set-
tings, the image remains the same but caption op-
tions are changed with different difficulty levels.
Intuitively speaking, we posit that all perturbation
settings are more difficult than the Standard setting,
as they add noise (e.g., none) and create obstacles
(e.g., negation) for LMMs. Results are show in
Table 6, and analysis of each perturbation are dis-
cussed in detail below:
rel_neg. Adding not to the answer option A in-
creases the accuracy (7%) for 1-object only, mean-
while decreasing the accuracy (6%) for 2-objects.
Negating the relations in general decreases model
performance. Adding bounding boxes makes it

even worse. However, adding scene graphs is help-
ful, especially with Gemini.
rel_swap. Analysis is conducted with swapping
objects of answer option A and adding the “None”
option. From 288 two_obj questions, Gemini only
has 8 correct answers ( option E), 5 incorrect an-
swers(option A), and 275 incorrect answers(option
B), while 95% of generated answers are option B.

LLaVA shows similar results: from 291 2-
object questions, LLaVA only has 4 correct an-
swers (option E), 3 incorrect answers(option A),
and 284 incorrect answers(option B), while 97.59%
of generated answers are option B.
obj_change. When the same object in both options
A and B are swapped with an object that does not
exist in the image (row “obj_change+none” in Ta-
ble 6), both Gemini and LLaVA show the highest
accuracy scores in both one_obj and two_obj ((e.g.
91.87% and 69% respectively for Gemini). When
only changing the object in the correct option (A),
both models’ performance decreases significantly.
For instance, Gemini’s one_obj performance de-
crease from 91.87% to 46% and two_obj perfor-
mance from 69.10% to 30%.

Finding 4: LMMs are usually good at the object
detection task (recognizing objects present in
the image), but struggle with spatial reasoning
(distinguishing “left” from “right”).

We also conducted an additional analysis of
spatial propositions of front-behind, left-right and
top-bottom in Appendix F. Interestingly, Gemini,
GPT-4 vision and LLaVA show different perfor-
mance characteristics across the propositions.

6 Conclusion

Motivated by our observation that LMMs are not
able to distinguish spatial relationships, in this pa-
per, we propose a new benchmark to evaluate the
spatial reasoning capabilities of LMMs. Our bench-
mark consists of two subsets: Spatial-Obj contain-
ing 2,000 multiple-choice questions to evaluate the
spatial reasoning capabilities of one or two objects
in a given image, Spatial-CoT containing 310 multi-
hop questions to evaluate the spatial related CoT
and reasoning paths. We conduct comprehensive
experiments on our benchmark and GQA-spatial.
Experimental results show the deficiencies in spa-
tial reasoning of current LMMs, including GPT-4o,
Gemini and LLaVA-v1.5. We also find that bound-
ing boxes and scene graphs are helpful in some
cases to improve the LMMs’ prediction quality.
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7 Limitation

To set up the Spatial-CoT benchmark, we imple-
ment a two-step data collection process: initially us-
ing GPT-4 to generate multi-hop VQAs, followed
by manual filtering and modification. Though this
process can to some extend accelerate the over-
all annotation approach as human annotators don’t
need to write multi-hop VQAs from the scratch, it
is still limited and hard to create and generate large
scale of labelled data. Same limitations applies to
the generation of the ground-truth reasoning paths.
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A LMMs

In this paper, we evaluate the spatial reasoning
capability of the following four LMMs: • LLaVA-
1.5-7B (Liu et al., 2023b) is an open-source multi-
modal instruction-tuned model that achieves state-
of-the-art performance on 11 benchmarks, with just
simple modifications to the original LLaVA (Liu
et al., 2023d).
• GPT-4 Vision (OpenAI, 2023) is a closed-source
LMMs, which is an advanced capability of Ope-
nAI’s GPT-4 model. It is powerful to understand
visual inputs such as images, and generate textual
responses based on the content of images.
• GPT-4o (OpenAI, 2024), also known as GPT-4
Omni, is the latest and most advanced AI model.
Improved upon GPT-4, it is able to handle multi-
modal inputs and outputs, including text and im-
ages, with the enhancement of multimodal capabil-
ities and speedup over previous models.
• Gemini 1.5 Pro (Gemini Team, 2024) is a closed-
source LMMs from Google Deepmind. Gemini 1.5
Pro is designed to be highly capable and general,
excelling across various visual tasks with state-of-
the-art performance.
• MiniGPT-v2 (7B) (Chen et al., 2023) is an im-
proved version of MiniGPT, an open-source large
multimodal model that enhances the ability to com-
prehend and describe visual information by com-
bining a lightweight architecture with strong visual-
language reasoning capabilities.

B Spatial-MM Benchmark Samples

The Figure 5 shows sampled instances from Spatial-
MM benchmark.

C Pipeline

Figure 6 illustrates our pipelines for data enrich-
ment.

D Bounding Box Example

Figure 7 shows examples of synthesized bounding
boxes for the key objects along with the ground-
truth bounding boxes.

E Spatial Relationships Types

Figure 8 demonstrates the distribution of spatial
relationships in Spatial-MM.

Prepositions All front-behind left-right top-bottom
Number of instances 1451 26 1032 393
Gemini (stan) 18.52 15.38 19.16 17.05
Gemini (stan + bbox) 34.56 44.00 38.60 23.41
Gemini (stan + SG) 45.24 60.00 49.36 33.59
Gemini (stan + SG + bbox) 41.00 36.00 44.64 31.81
GPT-4v (stan) 23.71 79.17 18.18 63.10
GPT-4v (stan + bbox) 41.58 62.50 39.39 75.57
GPT-4v (stan + SG) 77.32 95.83 75.38 100.00
LLaVA (stan) 29.57 19.23 33.43 20.10
LLaVA (stan + bbox) 30.53 23.08 33.62 22.90
LLaVA (stan + SG) 41.83 46.15 48.93 22.90
LLaVA (stan + SG + bbox) 38.73 46.15 44.38 23.41

Table 7: Results categorized by different spatial prepo-
sitions on GQA-spatial dataset. We divided them by
opposite preposition pairs: front-behind, left-right, and
top-bottom.

F Preposition analysis

In Table 7, we present the model performance on
different spatial relationships.

Gemini-Pro. For the left/right relations, in-
cluding bounding boxes increases the accuracy(16-
18%). However, by including SG, the accuracy
increases significantly(26-37%)
For the bottom/top relations, while adding bound-
ing boxes of the objects increases the accuracy
slightly(one-obj only)(5%), adding SG increases
the accuracy for one-obj questions by 15%.
For the behind/front relations, additional bound-
ing box information does not change the accu-
racy or make it worse. however, including SG in-
creases the accuracy significantly(for two-obj ques-
tions)(42%).

GPT-4-Vision. For the left/right relations,
adding bounding boxes and SG increases the ac-
curacy by 29% and 65%, respectively. Regarding
bottom/top relations, while adding bounding boxes
does not change the accuracy, adding SG increases
the accuracy. For the behind/front, while includ-
ing the bounding box, drops the accuracy by 13%,
adding SG increases the accuracy by 28%.

Additional Finding: The three LMMs exhibit
different performance characteristics across the
three spatial propositions.

G Prompts
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Multi-hop QA Generation Prompt

Task: Given an image, please act as a linguistic master and write a complex multi-hop question that includes a spatial 
relationship (such as left, top, touching, behind, middle, front, etc.). Then, provide the answer.
Rules:
- The question should be limited to only one sentence. 
- The answer should be limited to one word or phrase.
Examples: 
<In context learning>
----------------
With these examples in mind, generate a multi-hop question including a spatial relationship between the objects and its 
answer for this <image>.
question: 

Bounding Boxes Generation Prompt

Task: Given an image and key objects,please generate a list of bounding boxes for ONLY key objects.
The bounding boxes, indicating the position of objects in the image, which are represented as [x_min, y_min, x_max, y_max] 
with floating numbers ranging from 0 to 1. x_minand y_min are coordinates of the top-left corner, and x_maxand y_max are 
coordinates of bottom-right corner of the bounding box.
Rules: 
- Identify the key objects and provide the bounding boxes in the form of {object: [x_min, y_min, x_max, y_max] 
- Include object names.
- Provide accurate and complete coordinates for each bounding box.
- The number of bounding boxes should be less than 10.

Here is an example:
<In context learning>
———————
With these examples in mind, please help me extract the bounding boxes of the given key objects in this <image>.
Input key objects: [object1,[object2, …]
Output bounding boxes: 

Scene Graph Generation Prompt

Task: Given the image and its caption and key objects, please act as a linguistic master and extract a set of words 
describing the location, orientation, directions and spatial or positional relations between key objects in the image.
Your answer should be a list of values that are in format of object1 relation with object2 with the relation being left, right, 
top, facing left, facing right, touching, behind, middle etc.
Rules: 
- Do not extract any relation that is a verb, replace it with simply which object is (touching or in front of or etc) the other
object or the image.
- Furnish the extraction enclosed within square brackets. If there are no relations found, please return an empty list.
Examples:
<In context learning>
———————
With these examples in mind, extract the relation based on the information of the caption and key objects  in this 
<image>.
caption: [caption]
Input key objects: [object1,object2, …]
Relations: : 

Prompts for QA with Scene Graph/Bounding boxes

Given the scene graphs, <SCENE Graphs>, and this <image>, answer this <question> with a single word or phrase.

Given the bounding boxes, <BOUNDING BOXES>, and this <image>, answer this <question> with a single word or 
phrase.

Visual Pattern Classification Prompt

Task: Please act as a linguistic expert and review the questions and options, aiming to identify common patterns that 
vision-language models find challenging. Emphasize the visual features and generalize patterns that are crucial for 
vision-language models.
----------------
[question], [answer]
Visual pattern: 
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Is the dog that is lying atop the table facing towards the 
window? 
A. no
B. yes

Which direction is this truck facing from the viewer’s 
perspective? 
A. left    
B. right    
C. front    
D. back

B. yes

Is this person using his right hand to hold the fork?
A. yes  
B. no

Is there a car under the tree?
A. yes
B. no

A. left

A. yes

B. no

Figure 5: Instances are identified where the spatial reasoning capabilities of GPT-4V (Achiam et al., 2023) fall short
(Date accessed: June 6, 2024) due to inaccurate spatial understanding. Text in red signifies an incorrect response.
All the images referenced are from our Spatial-MM benchmark which are sourced from Internet.

Question: where is the man 
holding a bowl in relation to the 
woman with purple hair seated?

Spatial-aware 
caption

Relations: [
{woman with purple hair to the left of man holding a bowl},
{man holding a bowl to the right of woman with purple hair}

]

Question: where is the man 
holding a bowl in relation to the 
woman with purple hair seated?

Key objects 
Extraction

Object1: man holding a bowl
Object2: woman with purple hair 

Bounding boxes : [
{man holding a bowl: [0.39, 0.25, 0.62, 0.65},
-{woman with purple hair: [0.23, 0.10, 0.40, 0.65}
]

Key objects 
Extraction

Object1: man holding a bowl
Object2: woman with purple hair 

Figure 6: The proposed pipelines for Bounding boxes generation (top) and Scene graph generation (bottom).
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Figure 7: A comparison between the ground truth
bounding boxes from GQA dataset on the left, and the
synthesized bounding boxes by GPT-4o on the right.
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Figure 8: Relation distribution of Spatial-MM dataset(sorted by frequency). Top 30 most frequent relations are
included.
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