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Abstract

Language models struggle in generating code
for low-resource programming languages,
since these are underrepresented in training
data. Either examples or documentation are
commonly used for improved code generation.
We propose to use both types of information
together and present retrieval augmented re-
trieval (RAR) as a two-step method for se-
lecting relevant examples and documentation.
Experiments on three low-resource languages
(Power Query M, OfficeScript and Excel for-
mulas) show that RAR outperforms indepen-
dent example and grammar retrieval (+2.81–
26.14%). Interestingly, we show that two-step
retrieval selects better examples and documen-
tation when used independently as well.

1 Introduction

Large language models (LLMs) struggle to gen-
erate low-resource programming languages from
natural language due to limited pre-training knowl-
edge (Luo et al., 2023; Wang et al., 2023b; Singh
et al., 2023). Previous work improves low-resource
code generation with LLMs using retrieval aug-
mented generation (RAG) with relevant examples
(Poesia et al., 2022; Khatry et al., 2023c) or docu-
mentation (Zhou et al., 2022; Ma et al., 2024).

There are several challenges in using documenta-
tion as context for code generation. First, documen-
tation often does not include how the components
are actually pieced together in the form of real code,
which makes it difficult for models to understand
the syntax and usage for new languages. Second,
documentation is weakly correlated to the natural
language utterance and specific parts of documen-
tation might not be related at all to the utterance but
crucial for the code generation. For example, the
Power Query M code to "Highlight top 5 projects
based on sales" requires a flag OrderByDescending

to be set, but this is not related to the utterance.
Third, documentation is often dense and flat, and

selecting the right subset of documentation is both
challenging and crucial to the success of these sys-
tems.

Similarly, using examples poses some additional
challenges. First, obtaining an example bank of
code and natural language pairs requires a lot of
manual effort. Second, models tend to overfit to ex-
amples provided in the prompt and do not properly
adapt them to the current problem.

To address these challenges, we propose Re-
trieval Augmented Retrieval (RAR) for code gen-
eration from both examples and documentation.
The examples provide specific information and the
documentation allows the model to generalize that
specific information to the current problem. Our
approach enhances the retrieval process by lever-
aging the outputs of an initial retriever, the driver
retriever, to guide a secondary retriever, the influ-
enced retriever. This sequential retrieval mecha-
nism ensures relatedness of the retrieved examples
and grammar entities, which is required for the
model to specialize and generalize accordingly.

We evaluate RAR on three low-resource lan-
guages: (Power Query) M, Excel formulas (Ex-
cel) and OfficeScript (OS). We compare depen-
dent example or documentation selection of RAR
to multiple existing documentation and example
retrieval techniques, showing improvements of
+25% on OS and +3% on M for documentation;
and +1.28% for OS, +3.5% for M and +2% on
Excel for examples. When combining examples
and documentation, RAR shows improvements of
+4% on OS, +2% on M and +4% on Excel over
independent retrieval. We also analyze the impact
of using two-step retrieval, including only relevant
and irrelevant context items in the prompt, and the
token length.

We make the following contributions:

• We use a two-step retrieval method, where the
influenced retriever leverages the findings and
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mistakes of the driver retriever.

• We demonstrate that publicly available docu-
mentation is sufficient for NL-to-Code gener-
ation tasks, even for low-resource languages.

• We show that retrieval-augmented retrieval
(RAR) works better for selecting either exam-
ples, documentation, or both, when compared
to independent retrieval.

2 Related Work

Multiple techniques have been developed to im-
prove code generation from natural language with
LLMs, including (1) retrieval augmented genera-
tion for adding contextually relevant examples to
the prompt (Khatry et al., 2023c; Poesia et al., 2022;
Khatry et al., 2023a); (2) execution-guided refine-
ment (Kroening et al., 2004; Chen et al., 2019); and
(3) reasoning involving chain-of-thought variants
adapted to programming tasks (Li et al., 2023; Le
et al., 2024).

These techniques often struggle in generating ac-
curate generations for low-resource programming
languages. Recent work focused on code genera-
tion for low resource languages has leveraged doc-
umentation as context instead of examples (Bareiß
et al., 2022; Zhou et al., 2022). CAPIR is one such
popular technique, which uses contextually rele-
vant parts of the documentation as inputs to code
models. Grammar prompting (Wang et al., 2023a)
also follows this paradigm. One drawback of these
techniques is that documentation, even though com-
plete, often does not provide the same signals to
the models as examples. Documentation nodes that
do not seem semantically aligned with the task also
tend to be ignored.

3 Documentation and examples

Documentation is the most comprehensive and
structured resource (Roehm et al., 2012) publicly
available (Forward and Lethbridge, 2002) for most
programming languages. The documentation con-
sists of a grammar (D) that describes how code
is built over entities (classes, methods, properties)
and examples (E) that depicts how to use and com-
bine elements from D. An example of grammar
and examples from a page of the OfficeScript doc-
umentation is shown in Figure 1.

The grammar (D) serves as a bank for gram-
mar elements over which retrieval is performed.
We consider each grammar element gi to be one

Figure 1: Illustrates how we extract the grammar (blue
marker) and examples (red marker) from the publicly
available documentation to build their respective cor-
pora for retrieval.

standalone function or class method. We can use
the path of each node in an abstract syntax tree
(AST) to extract elements ∈ D from a snippet of
code. For example, even if multiple classes have a
method getFormat, then following a path up the
AST allows us to disambiguate which class this
method is from. A full example of code and the
associated grammar entities is shown in Figure 2.

The example corpus (E) is composed of de-
scription (utterance) and code pairs (ui, ci). We
only consider examples present in the documenta-
tion, which consists of sample code illustrating the
usage of grammar elements. If a textual descrip-
tion of an example is not available, we use an LLM
(gpt-4) to generate it.

4 Retrieval Augmented Retrieval

RAR uses a two-step retrieval where the driver
retriever (RD) influences the influenced retriever
(RI ). There are two possible scenarios:

1. Example → grammar: RD retrieves from E
and RI retrieves from D.

2. Grammar → example: RD retrieves from D
and RI retrieves from E.

We first describe how to use and fine-tune embed-
dings for retrieval, and then show how this is ap-
plied in RD and RI in both these scenarios.
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Figure 2: Example code entities (1 to 5) extracted from
a sample OfficeScript program. The extracted enti-
ties are mapped to grammar nodes using the abstract
syntax tree of the node. (5) in figure is mapped to
TopBottomConditionalFormat despite the same property
being present in Image and Chart.

4.1 Embeddings for retrieval

Retrieval commonly relies on an embedding cosine
similarity

SM(s1, s2) = SC(M(s1),M(s2))

with M : string → Rn the embedding model
used to map a string onto an n-dimensional vector
and SC the cosine similarity.

Off-the-shelf embedding models struggle to link
user utterances and grammar elements. To counter
this, we fine-tune M∗ to predict whether a gram-
mar element g is used in the code c associated with
utterance u. In other words, the model is trained on

∥SM∗(u, g)− [g ∈ c]∥

to make the embedding of an utterance u similar to
the embedding of grammar element g if g is used
in the code associated with u. To select negative
labels, we find grammar entities g that are not used
in code c, but which are close to c according to
SM(u, gn) (with the pre-trained model). We also
select an equal number of grammar entities that are
used in c but have the lowest similarities SM(u, g).

4.2 Examples → grammar

In this setup, we retrieve examples first and then
use it to retrieve the grammar elements.

First, the driver retriever RD extracts the best k
examples (Ek) based on similarity SM(u, ui) with
u the target utterance. Second, the influenced re-
triever RI uses the selected examples Ek to select
relevant n grammar elements Dn. Grammar ele-
ments are selected in three ways:

• All grammar elements used in (u, c) ∈ Ek

(positively dependent).

• Grammar elements g with high similarity
SM∗(u, g) according to the fine-tuned embed-
ding model M∗ (independent).

• Grammar elements g with high similarity
Si = SM∗(u, g) and low similarity Sj =
SM∗(u′, g) to the already selected examples
(u′, c′) ∈ Ek (negatively dependent). This
case considers the possibility that the selected
examples were irrelevant. We combine both
as (1 − Si) + λE→D(1 + Sj) with λE→D a
hyperparameter.

4.3 Grammar → examples

In this setup, we first retrieve the grammar entities
and then use them to select examples.

First, the driver retriever RD extracts best
n grammar entities (Dn) based on similarity
SM∗(u, g) with u the target utterance. Second,
the influenced retriever RI uses these entities Dn

to select examples in two ways.

• With g(c) the grammar elements used in c and
idf(g) the inverse document frequency of g
with respect to E, we compute a score

1

|g(c)|
∑

g∈g(c)∩dn
idf(g) · SM∗(u, g)

that measures how relevant an example (u, c)
is to the selected Dn (positively dependent).
Scaling by idf lets us focus on unique gram-
mar elements.

• Similarly, we can compute the score Sb over
g(c) ∩ (D \Dn) to consider the case where
Dn has irrelevant elements (negatively depen-
dent). Examples are then selected according
to Sb+λD→ESM(u, u′) with λD→E another
hyperparameter.
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Figure 3: Overview of RAR. (G → E) The driver retriever independently (gray) selects grammar elements and
passes them to the influenced retriever, which uses them to select positively (green) and negatively (red) influenced
examples. (E → G) The driver retriever independently selects examples and passes them to the influenced
retriever, which uses them to select positively (green) and negatively (red) influenced grammar elements, as well as
independent (gray) grammar elements.

5 Experimental Setup

We describe the experimental setup and the con-
ditions set for a fair comparison between our ap-
proach and the baseline.

5.1 Datasets

We focus our experiments on three low-resource
programming languages: OfficeScript, (Power
Query) M and Excel formulas.

OfficeScript We use the InstructExcel bench-
marks (Payan et al., 2023) and filter them for con-
ditional formatting specific tasks, as we can com-
pute execution match for them (Singh et al., 2022).
Examples and grammar are scraped from its docu-
mentation.1

Power Query M We use the test split of bench-
marks used to evaluate TSTR (Khatry et al., 2023b).
Besides utterance and code, each test contains a ta-
ble to execute the code over, which is also provided
in the prompt. We scrape the examples and gram-
mar from the official documentation.2

Excel We use an existing dataset of derived-
column formulas (Singh et al., 2024). Each test
contains a spreadsheet table over which the formula

1https://github.com/OfficeDev/office-scripts
-docs-reference

2https://github.com/OfficeDev/office-js-doc
s-reference

is executed. Examples and grammar are scraped
from its official documentation. 3

Dataset n |E| |D|
Office Scripts 589 17 275
Power Query M 77 144 746
Excel formulas 100 663 505

Table 1: Summary of the datasets: n implies dataset
size, |E| implies #examples, |D| implies #doc pages.
We extract E and D from documentation which forms
the corpora for our approach.

5.2 Metrics
We use sketch and execution match as metrics for
all datasets.

OfficeScript For sketch match, we compute an
edit similarity that ignores constants, variable val-
ues or function arguments. For execution match,
we compare the formatted cells obtained after exe-
cuting the OfficeScript code.

M For sketch match we mask the constants and
identifiers and compute the character-level edit sim-
ilarity. We compute execution match by executing
the programs on the table and checking for table
equality.

3https://support.microsoft.com/en-us/office/e
xcel-functions-alphabetical-b3944572-255d-4efb-b
b96-c6d90033e188
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Model OfficeScript M Formulas

Sketch Execution Sketch Execution Sketch Execution

MPT 52.28 40.81 65.34 45.28 75.00 41.00
MFT 55.99 44.35 56.43 43.40 74.00 40.00
DocPrompting 50.17 38.68 73.64 50.94 75.00 41.00
CAPIR 51.69 41.06 71.07 55.68 70.00 44.00
RARD 86.68 70.49 74.27 58.49 75.00 44.00

Table 2: Comparing RARD against other grammar retrieval methods. Only grammar entities are used for helping
the LLM. Each value denotes match accuracy in % (higher is better)

Excel For sketch match we mask cell references
and constants and compute the character-level edit
similarity. We compute execution match by ex-
ecuting the formula on all rows in the table and
checking for equality of the resulting column.

5.3 Baselines and Versions

We define different variations of independent (Ret)
and dependent (RAR) retrieval.

• RetD uses M∗ to retrieve Dn from D. Only
Dn is included in the prompt.

• RetE uses M to retrieve Ek from E. Only Ek

is included in the prompt.

• RetE⊥D uses M∗ to retrieve Dn from D and
M to retrieve Ek from E. Both Dn and Ek

are included in the prompt.

• RARD: RD operates on E to give Ek and RI

on D to give Dn. Only Dn is included in the
prompt.

• RARE : RD operates on D to give Dn and RI

on E to give Ek. Only Ek is included in the
prompt.

• RARE→D: RD operates on E to give Ek and
RI on D to give Dn. Both Ek and Dn are
included in the prompt.

• RARD→E : RD operates on D to give Dn and
RI on E to give Ek. Both Dn and Ek are
included in the prompt.

5.4 Models

We use text-embedding-ada-002 as the pre-trained
embedding model MPT and SentenceBERT
(Reimers and Gurevych, 2019) for MFT . We use
GPT-4 (32K) (Brown et al., 2020) as the base LLM.

6 Evaluation

We aim to answer the following research questions:

RQ1 How does dependent retrieval for documen-
tation or examples compare against existing
(independent) documentation and example re-
trieval methods?

RQ2 Does dependent retrieval extract better con-
text than standalone retrieval of examples and
documentation?

RQ3 Are both positively and negatively dependent
retrieval necessary?

RQ4 How does the performance vary as a function
of increasing context length?

RQ5 Does RAR rely on the driver retriever for its
performance gain over independent retrievers?

6.1 Dependent documentation or example
retrieval (RQ1)

We evaluate RAR against other retrieval methods
over both examples and documentation. We use a
fixed number of retrieved examples and grammar
entities for each task. For OfficeScript, we extract
3 examples and 66 grammar entities. For M and
Formulas, we extract 10 examples and 20 grammar
entities.

6.1.1 Baselines
For grammar retrieval, we consider (1) retrieval by
calculating cosine similarity of pre-trained embed-
ding model (M), (2) retrieval by calculating cosine
similarity of fine-tuned embedding model (M∗),
(3) DocPrompting (Zhou et al., 2022), which uses
BM25 retriever, (4) CAPIR (Ma et al., 2024),
which is a divide-and-conquer and re-ranking based
strategy for retrieval.
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Models OfficeScript M Formulas

Sketch Execution Sketch Execution Sketch Execution

MPT 83.42 69.04 74.24 50.94 74.00 40.00
TST 64.76 52.95 70.21 51.16 75.00 42.00
TSTR 73.86 60.37 69.90 45.35 75.00 44.00
RARE 85.67 70.32 76.29 54.72 75.00 46.00

Table 3: Comparing RAR against other example retrieval techniques. Only methods are used here for helping the
LLM. Each value denotes match accuracy in % (higher is better)

For example retrieval, we consider (1) M, (2)
TST (Poesia et al., 2022) and TSTR (Khatry et al.,
2023c), which fine-tune SentenceBERT and a small
dense network on top of M to make utterance in-
tents reflect their respective code similarities.

6.1.2 Results

Table 2 and Table 3 show that RAR outperform the
baselines for both grammar and example retrieval.
RARD shows significant gain in grammar extrac-
tion for OfficeScript. It has an execution match
gain of 26.14% against the best performing base-
line (M with SentenceBERT). For M, we see an
execution match gain of 2.81% and 2% for Excel
over CAPIR.

We find RARE to retrieve better examples to aid
code generation. The respective baselines cover
both pre-trained and fine-tuned (TST and TSTR)
versions of retrieval. Our dependent retrieval strat-
egy performs better than either case. For M, we
find the improvement in both sketch and execution
match to be marginal. This implies that the gram-
mar elements retrieved by RD are able to guide
the extraction of relevant examples for those utter-
ances, which were difficult to extract using direct
similarity of embeddings.

We note that the fine-tuned models TST and
TSTR perform worse than the unsupervised embed-
ding model MPT . We attribute this to the fact that
our training set is only scraped from documentation
and thus smaller with low variations of the same
function, and fine-tuning can more easily overfit.

6.2 Dependent documentation and example
retrieval (RQ2)

We compare our dependent approach with base-
lines that operate independently on documentation
and examples.

6.2.1 Setup
For OfficeScript, we extract n ≈ 66 grammar en-
tities and k = 3 examples. We extract same num-
ber of positively and negatively dependent exam-
ples. We tune hyper-parameter λE→D = 20 and
λD→E = 10.

For M, we extract n ≈ 20 grammar entities
and k = 10 examples. RARE→D uses all pos-
itively influenced grammar entities (≈ 10). Set-
ting λE→D = 100, extracting 10 negatively in-
fluenced grammar elements for each example and
de-duplicating them yields another ≈ 10 grammar
elements. We set λD→E = 10 for RARD→E .

For Excel, we retrieve n ≈ 20 grammar enti-
ties and k = 10 examples. We set λE→D = 10
for RARE→D, where we approximately take 10
negatively dependent grammar elements out of the
final 20. For RARD→E , we take λD→E = 10 and
extract an equal split of positively and negatively
impacted examples.

6.2.2 Results
Table 4 shows that dependent retrieval (RAR) con-
sistently performs better than independent retrieval
(Ret) even if only a single type of context is pro-
vided.

Grammar Independent retrieval of grammar per-
forms significantly worse than retrieving grammar
through relevant examples (−25% for OfficeScript,
−15% for M and −4% for Excel). This shows
that RAR is able to pick more relevant documenta-
tion, without requiring examples to show how they
should be used in the context of a program.

Examples When independently retrieving exam-
ples, the difference between RAR and independent
retrieval is smaller. Still, RAR consistently per-
forms better. On M, retrieving only examples using
RAR achieves the highest sketch match, indicating
the similarity of the retrieved examples.
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Office Scripts M Excel

Context Method Sketch Exec Sketch Exec Sketch Exec

G
RetD 55.99 44.35 56.43 43.40 74.00 40.00
RARD 86.68 70.49 74.27 58.49 75.00 44.00

E
RetE 83.42 69.04 74.24 50.94 74.00 40.00
RARE 85.67 70.32 76.29 54.72 75.00 46.00

G + E
RetE⊥D 87.18 72.34 73.40 58.49 76.00 38.00
RARE→D 92.36 76.40 72.87 58.49 71.00 42.00
RARD→E 90.71 76.01 74.86 60.38 75.00 39.00

Table 4: Comparison of RAR with independent retrieval techniques. Context implies whether only grammar (D), or
examples (E), or both (D +E) have been included in the prompt for LLM. Methods with Ret are the independent
retrievers with the subscript defining their corpus. The values denote match accuracy in % (higher the better). RAR
outperforms its Ret counterpart for all context scenarios.

Grammar and examples Grammar + examples
together yields better results than separate (+6%
for OfficeScript and +2% for M). The examples
help the model in figuring out the general program
structure, and the documentation helps in figuring
out how to adapt these examples. This is high-
lighted in M where sketch match is highest when
only using examples (+1.5% over RARD→E), but
execution match is significantly higher for the lat-
ter (+5%). For Excel, we found that examples
alone gave better results than used along with gram-
mar. Grammar adds bias to necessarily use func-
tions for queries which can be solved without them,
eg. =[@Class]&": "&[@Assignment]. But gram-
mar includes CONCATENATE function in the prompt
which motivates the LLM to use it, eventually giv-
ing a different join of texts than what was expected.
Barring such scenarios, grammar helped with dif-
ferent overloading of formula functions when used
along with examples.

Recall in grammar Table 5 reports the recall
of retrieving relevant grammar entities for RetD
and RARD. RAR beats independent retrieval again
with a considerable margin (+25% for OfficeScript,
+46% for M and +55% for Excel). The relevance
of grammar extracted using RARD further explains
the jump in performance in Table 4.

6.3 Positive and negative influence (RQ3)

We evaluate whether the positive and negative in-
fluence assumption of the driver retriever helps us
select better context. In this setting, for influenced
retriever, we consider including only positive (+)
or only negatively (−) influenced elements in the

Method OfficeScript M Excel

RetD 50.04 24.83 16.53
RARD 76.36 67.16 82.86

Table 5: Comparison of retrieval quality when grammar
is extracted either independently or with RAR. We eval-
uate quality by taking average of recall Rate (in %) for
the occurrence of the retrieved grammar entity in the
actual code for comparison.

prompt. We compare them with our proposed ap-
proach where we use an equivalent count of pos-
itively and negatively influenced elements. The
number of examples and grammar is kept constant
across all scenarios for a fair comparison. Table 6
shows the results.

We find that combining positive and negative
elements, based on the result of the driver retriever,
output helps in obtaining better context. The re-
trieval of D− or E− is able to catch some important
context which get missed when we trust the driver
output to be good. For OfficeScript, we see a clear
improvement in performance. However, for M, we
find that sketch match is better for D− and E−,
while execution is better for D+ and E+. Using
both in equal proportion helps us attain a balance
when trying to improve both metrics.

6.4 Variation with token size (RQ4)

We vary the token size by changing the number
of retrieved examples and grammar entities in the
prompt. We use independent retrievers with the
same context count as RAR as baseline.

Figure 4 shows that RAR performs better at most
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RAR RI
Office Scripts M Excel

Sketch Exec Sketch Exec Sketch Exec

E → D
D+ 79.80 64.01 72.38 58.49 68.00 39.00
D− 83.47 69.98 74.22 52.83 73.00 37.00
D++D− 92.36 76.40 72.87 58.49 71.00 42.00

D → E
E+ 88.87 73.19 72.72 64.15 70.00 41.00
E− 72.51 58.68 75.70 58.49 76.00 40.00
E++E− 90.71 76.01 74.86 60.38 75.00 39.00

Table 6: Ablation to show importance of assuming RD output to be both good and bad while retrieving for RI . In
this setting, both example and grammar is used for grounding the LLM. We find clear majority for Office Scripts.
For M, we need both positive (+) and negative (−) influence to attain a balanced performance improvement in both
metrics.
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Figure 4: Performance as a function of increasing
prompt token length for different approaches. Plots
on the left show sketch match accuracy and on the right
show execution match accuracy. RAR outperforms its
baseline even for large token sizes. We find lower token
lengths are enough for accurate code generation.

token counts. The only exception remains with
RetE→D for M, where we find both sketch and
execution below baseline for larger token sizes This
happens because M has a larger example corpus
compared to OfficeScript. The influenced, even
while considering driver retriever output to be bad,
might be extracting functions from the same pool
of incorrect intent. As a result, the performance
is low. Moreover, even though the context size
increases, the performance remains steady and does
not increase further. This removes the notion of

models trying to populate the prompt with more
content rather than including only the relevant ones.
We find that the best context is achieved around the
∼3000 token size mark. Further additions simply
confuse (can be seen by a slight drop) or play no
role in improving the quality of generation.

6.5 Reliance on driver (RQ5)
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Figure 5: The impact on performance when the retrieved
context size from driver is increased. Both the baseline
and RAR in each setting have the same RD output. The
only thing which brings a performance difference is
the output from RI . This shows that RI is not entirely
reliant on RD. It adapts itself to keep the performance
above baseline with increasing context length.
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Method Embedding OfficeScript M Excel

Sketch Exec Sketch Exec Sketch Exec

RetE⊥D pre-trained 87.86 71.67 74.29 54.72 74.00 38.00
RARD→E pre-trained 88.17 73.48 75.52 54.72 77.00 39.00

RetE⊥D fine-tuned 87.18 72.34 73.4 58.49 76.00 38.00
RARD→E fine-tuned 90.71 76.01 74.86 60.38 75.00 39.00

Table 7: Shows that our approach performs better than the baseline even when different embeddings for retrieval is
used. This further consolidates that RI is independent of RD and can even improve performance with other retrieval
styles.

We compare independent retrievers RetE⊥D

with RARD→E and RARE→D, by altering the
driver retrieval (1) output size, and (2) method.
This helps us understand how RI behaves as RD

changes. Including RD’s output in the prompt also
enables us to understand the impact of RI alone
as we compare with the baseline, containing the
same RD output. This provides a clear view on the
impact RI has towards performance improvement.

Increasing driver output We find in Figure 5
that RAR is better than its baseline when both ex-
ample and grammar retrieved from the driver is
increased. There is a general trend of the match
accuracy declining as we increase the output size.
This implies that RI is unable to infer a specific
topic from RD’s output to make a positive or nega-
tive influence assumption. So the retrieval becomes
randomized, and it fails to converge to a particular
topic for a candidate solution. We also find the
performance for RAR going below its baseline for
M in E → D setting.

When RI retrieves grammar from an increasing
number of extracted examples, more similar gram-
mar elements are retrieved (like CONCATENATE and
CONCAT in Excel). The LLM now receives multiple
grammar elements very similar to the utterance,
which causes confusion while choosing the right
ones. On the other hand, independent retrieval ex-
tracts a more diverse grammar, because it does not
overfit on the examples. This makes identifying the
right grammar elements easier and hence results in
a better match numbers when compared with RAR.

Altering retrieval method We compare RetE⊥D

with RARD→E for two different settings: using
pre-trained embeddings M and using fine-tuned
embeddings M∗ (SentenceBERT) for retrieval. Ta-
ble 7 shows that RAR still holds its ground and
performs better than the baselines even when the

retrieval style for RD is changed. The positive and
negatively influenced retrieval assumption helps
the influenced retriever to adapt to the changing
driver, and eventually fetches context which is rele-
vant to the solution. This shows that our approach
can adapt and perform well even with other driver
retrievers.

7 Conclusion

We introduce RAR, a two-step retrieval technique
used to extract relevant context for code generation
over low-resource programming languages. Our
approach claims that off-the-shelf documentation
for a language is enough to help an LLM generate
syntactically and semantically correct programs.
We also show how grammar and example work
better together. Our approach establishes a work-
ing relationship between the two, capable of gen-
erating sound and reliable programs. The results
we outline opens gates for future research, where
grammar and example complement each other to
formulate unseen programming languages.

8 Limitations and ethical considerations

Despite showing that RAR performs best at dif-
ferent token counts, combining both grammar and
examples significantly increases the number of to-
kens and thus cost. Our method relies on extensive
documentation, which might not be available for
all low-resource languages.

We only scrape public documentation that is
openly accessible. We do not use any unethical
methods to extract data from sources that are pro-
tected by privacy policies.
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