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Abstract

Large language models (LLMs) often exhibit
excessive, random, and uninformative uncer-
tainty, rendering them unsuitable for decision-
making in human-computer interactions. In
this paper, we aim to instigate a heightened
awareness of self-uncertainty in LLMs, en-
abling them to express uncertainty more ef-
fectively. To accomplish this, we propose
an uncertainty-aware instruction tuning (UaIT)
method, aligning LLMs’ perception with the
probabilistic uncertainty of the generation. We
conducted experiments using LLaMA2 and
Mistral on multiple free-form QA tasks. Ex-
perimental results revealed a surprising 45.2%
improvement in the effectiveness of uncertainty
expression by LLMs, accompanied by reason-
ably good out-of-domain generalization capa-
bilities. Moreover, this uncertainty expression
can serve as a valuable real-time basis for hu-
man decision-making, e.g., retrieving external
documents and incorporating stronger LLMs1.

1 Introduction

Large language models (LLMs), such as ChatGPT
and GPT-4, are capable of generating fluent and
realistic responses tailored to diverse user require-
ments (Ouyang et al., 2022; OpenAI, 2023). How-
ever, LLMs do not consistently exhibit optimal
performance, as they can also generate unreliable
responses characterized by hallucinations or factual
errors. Effective uncertainty estimation is widely
recognized as a crucial step in establishing reli-
able AI systems, as it provides a foundation for
decision-making in human-machine interactions.

Unlike previously examined models with distinct
labels (e.g. classification), uncertainty estimation
for free-form LLM poses a significant challenge
due to the inherent flexibility in generation and the

* Co-corresponding Author
1Code and scripts can be found at: https://github.com/

NLP2CT/UaIT
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Figure 1: Our objective is to align the LLMs’ self-
generated probabilistic uncertainty estimation and ex-
press it. This uncertainty expression can then be applied
in real-time human decision-making, guiding judgment,
retrieval documents, and leveraging stronger LLMs.

unbounded nature of solution domains (Kadavath
et al., 2022; Duan et al., 2023; Kuhn et al., 2023).
Nevertheless, these methods mainly rely on model
probability and multi-sampling to derive uncer-
tainty, which entails substantial time and resources,
rendering them impractical for real-time interac-
tions. Moreover, natural language has emerged as
the predominant interface for human interaction
with AI systems encompassing various tasks (Zhou
et al., 2024). Recent research has been dedicated
to prompting LLMs to express verbalized confi-
dence (Tian et al., 2023; Xiong et al., 2024). How-
ever, LLMs, especially smaller ones, consistently
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exhibit a high and unvarying pattern of verbalized
confidence, indicating a poor level of competence
in uncertainty expression.

In this paper, we seek to elicit the capacity of
LLMs to effectively and accurately express uncer-
tainty. We employ advanced method (Duan et al.,
2023), based on probability and multi-sampling,
to assess the model’s uncertainty of its free-form
generation. Subsequently, we utilize these uncer-
tainty estimates as labels to construct instructions
and train LLMs to align with their own uncertainty.
The expressed uncertainty is applied in practical
decision-making scenarios, including determining
when to retrieve external documents and incorpo-
rate more powerful LLMs. We conduct experi-
ments using the LLaMA-2 (Touvron et al., 2023)
and Mistral (Jiang et al., 2023a) models on a range
of free-form question-answering tasks, spanning
domains such as reading comprehension, factual,
scientific, and medical. We make a remarkable dis-
covery that this simple method has led to a 45.2%
improvement in the ability of LLMs to express
uncertainty, while also demonstrating commend-
able cross-domain generalization capabilities. The
expressed uncertainty also provides a strong foun-
dation for downstream decision-making processes.

2 Improving Self-Uncertainty Expression

2.1 Uncertainty Estimation

We employ SAR (Duan et al., 2023), an advanced
approach based on multi-sampling and probabil-
ity fusion to estimate the uncertainty of free-form
generation. Given x as the input query, LLM gen-
erates a response y with the probability distribution
pθ (yt | x,y<t). Then the predictive entropy is:

PE(y,x) =
∑

t− log pθ (yt | y<t,x) . (1)

SAR claims that tokens are not equivalent in ex-
pressing sentence semantics and should be given
different attention in uncertainty estimation. There-
fore, SAR quantifies the relevance score of each to-
ken by comparing the semantic change upon its re-
moval from the generation. The token-level shifted
predictive entropy can be computed as:

TokenSAR (y,x) =
∑

t

− log pθ (yt | y<t,x)RT (yt) ,

(2)
where RT (yt) is the relevance weight for the to-
ken yt. Subsequently, this relevance score is also
extended to the sentence-level predictive entropy

under a multi-sampling setup:

SentSAR(Y,x) = 1
K

∑
k PE(y,x)RS (y) , (3)

where RS (y) is the relevance weight for sentence
y ∈ Y (1 ≤ k ≤ K). Ultimately, SAR combines
token-shifted and sentence-shifted predictive en-
tropy to obtain uncertainty scores. Actually, other
effective methods for quantifying uncertainty can
be employed as substitutes to obtain a fine-grained
uncertainty score in our method.

2.2 Uncertainty-aware Instruction Tuning
To construct the training set for uncertainty-aware
instruction tuning, we input the question to the
LLMs and obtain a confidence score in percentage
form using the above uncertainty estimation ap-
proach. Given the free-form nature of LLM outputs,
current uncertainty estimation methods still demon-
strate limited effectiveness. To enhance the quality
of the training set, as illustrated in Figure 1, we fil-
ter samples that exhibit consistency between accu-
racy and confidence scores. Specifically, we distill
samples with both correct answers and confidence
scores above a specific threshold, as well as sam-
ples with incorrect answers and confidence scores
below the threshold. The distilled dataset D can
be defined as D = {(pi, qi, ai, ci)}ni=1, where pi,
qi, ai, and ci represent the user’s prompt, question,
answer, and confidence level associated with the
answer respectively, and n is the dataset size. Then
the process of instruction tuning is represented as:

argmin
△θ

n∑

i=1

− log (p (ai, ci | qi, pi; θ +△θ)) ,

(4)
where θ and △θ are the original weights and up-
dated weights. We demonstrate that such a simple
fine-tuning approach effectively stimulates uncer-
tainty perception in LLMs. It is worth emphasizing
that our objective is to cultivate self-awareness in
LLMs rather than modifying their beliefs, as we
input the answers they themselves generate.

2.3 Uncertainty-aware Decision Making
To further validate the effectiveness of uncertainty
expressed by LLMs in practical interaction, we
leverage uncertainty as a basis for human decision-
making. Specifically, we demonstrate its effective-
ness in downstream tasks through three scenarios:
uncertainty-based human judgment (evaluated for
correlation with accuracy), retrieval of external doc-
uments, and leveraging more powerful LLMs for
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Model Method In-domain Out-of-domain

TriviaQA SciQA MedQA

Mistral

Verbalized 0.644 0.579 0.503
PE 0.705 0.585 0.569

SAR 0.762 0.672 0.564
UaIT 0.846 0.775 0.582

LLaMA2

Verbalized 0.536 0.507 0.499
PE 0.726 0.583 0.530

SAR 0.759 0.637 0.530
UaIT 0.867 0.730 0.574

Table 1: The AUROC scores on three QA datasets.

assistance. Since well-calibrated LMs tend to lack
knowledge when exhibiting low confidence/high
uncertainty (Kadavath et al., 2022; Jiang et al.,
2023b), we proactively trigger retrieval/stronger
LLM when the LLM’s confidence falls below a
specified threshold. Taking retrieval as an example,
decision-making can be formalized as:

yt =

{
LLM([x,y<t]) if Conf ≥ α,

LLM([Dx,x,y<t]) otherwise,
(5)

where Dx is the retrieval document and α is the
threshold. We demonstrate that LLMs, through
such simple fine-tuning, are capable of effectively
expressing meaningful uncertainty and can serve
as a real-time basis for human decision-making.

3 Experiments

3.1 Setup
Datasets and Metric In our experiments, we con-
sider TriviaQA (Joshi et al., 2017), SciQA (Welbl
et al., 2017), and MedQA (Jin et al., 2020), which
respectively represent fact-based, science-related,
and medical-related question-answering tasks. We
utilize RougeL (Lin, 2004) to measure the accuracy
of generation and AUROC to assess the effective-
ness of uncertainty. More details of the datasets
and metrics can be found in Appendix A.1 and A.2.

Baseline We compare our method with the fol-
lowing Uncertainty Expression/Estimation meth-
ods: (1) Verbalized (Tian et al., 2023; Xiong
et al., 2024) refers to directly querying the verbal-
ized confidence of LLMs, which has recently been
demonstrated as effective, particularly for large-
scale RLHF-LMs. (2) PE is the predictive entropy
of the model, as shown in Equation 1. It is the
most fundamental method of measuring uncertainty
based on probability. (3) SAR (Duan et al., 2023)
(Shifting Attention to Relevance) is one of the latest
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Figure 2: Effect of different thresholds on AUROC
during data distillation.

uncertainty estimation methods based on probabil-
ity, sampling and attention allocation.

Implementation Details We use the LLaMa-
2-Chat (Touvron et al., 2023) and Mistral-7b-
Instruct (Jiang et al., 2023a) as the backbone model.
We use greedy search for all the generations and
set the temperature as 0.5. The max length of each
generation is 64 tokens for all the datasets. More
implementation Details about inference and instruc-
tion tuning are shown in Appendix A.3. All the
experiments are run on NVIDIA H800 GPU.

3.2 Effective Uncertainty Expression
Effectiveness The results presented in Table 1
demonstrate that our approach significantly en-
hances LLMs’ awareness of self-uncertainty, ex-
pressing reliable and effective confidence within
the domain. In comparison to directly querying
verbalized confidence in vanilla LLMs, our method
achieves a notable 45.2% AUROC increase on av-
erage. In contrast to the SAR method based on
probability calculation and multiple sampling, our
approach consistently outperforms it by 12.6%, sur-
passing its own “teacher”. Moreover, such confi-
dence expression incurs negligible time and com-
putational costs during inference, as it is solely
dedicated to generating a few tokens.

Generalizability To demonstrate the efficacy of
our instruction tuning method beyond mere data
set distribution fitting, we extended our evaluation
to additional domains. Our findings indicate that
the confidence expression capability inspired in
LLMs exhibits a certain level of generalization
and proves effective in the other two domains as
well. LLMs demonstrate relatively better gener-
alization on SciQA compared to MedQA, which
may be attributed primarily to the high domain
specificity of the medical field. Furthermore, the
questions in MedQA were adapted from multiple-
choice questions and accompanied by longer dis-
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Model Type In-domain Out-of-domain

TriviaQA SciQA MedQA

Mistral Q 0.798 0.734 0.529
Q+R 0.846 0.775 0.582

LLaMA2 Q 0.777 0.702 0.567
Q+R 0.867 0.730 0.574

Table 2: AUROC for uncertainty expression. “Q” repre-
sents Query and “R” represents Response.

ease descriptions, imposing a significant challenge
for the model’s comprehension abilities.

Effect of Thresholds during Distillation We
explore the effect of distillation and different thresh-
olds on uncertainty expression, as shown in Figure
2. It can be observed that fine-tuning on distilled
data at all thresholds significantly improves per-
formance, thereby demonstrating the effectiveness,
robustness, and efficiency of this distillation pro-
cess. Notably, using thresholds above 50% often
yields more significant performance improvements.

Query vs. Query+Responce To investigate the
sources of uncertainty, we also employ the input
query as a basis for uncertainty assessment, train-
ing LLM to express uncertainty solely based on the
query. Table 2 demonstrates that individual queries
alone enable LLMs to express reasonable levels of
uncertainty, possibly due to LLMs assessing uncer-
tainty based on the similarity between the query
and their pre-trained knowledge. However, incor-
porating both the query and response to determine
uncertainty provides a more accurate assessment.

Accuracy vs. AUROC AUROC measures the
correlation between accuracy and uncertainty. Our
method fine-tunes the model on TriviaQA, utilizing
answers generated by the model itself. To minimize
the potentially significant impact of fine-tuning on
accuracy, we show the accuracy and AUROC in Ta-
ble 3. For fine-tuned models with equivalent accu-
racy, SAR results in only a slight improvement on
AUROC, whereas significant progress is achieved

Model Method Accuracy AUROC

Mistral
SAR 0.510 0.762

SAR w/ft 0.530 0.778
UaIT w/ft 0.530 0.846

LLaMA2
SAR 0.522 0.759

SAR w/ft 0.529 0.780
UaIT w/ft 0.529 0.867

Table 3: Effect of fine-tuning on accuracy and AUROC.

through UaIT due to its superior calibration.

3.3 Uncertainty-aware Decision Making

To validate the effectiveness of uncertainty expres-
sion in practical human decision-making, we con-
ducted experiments in two scenarios: knowledge
retrieval (Liu et al., 2023; Wang et al., 2024) and
stronger LLM assistance (Chen et al., 2023). We di-
vide all samples into four equal parts based on their
confidence levels and set corresponding thresholds,
to trigger retrieval or employ more powerful LLM
when LLM’s confidence falls below the thresholds.
Figure 3 presents the accuracy of incorporating re-
trieval document and LLaMa2-13b at different pro-
portions of low confidence levels. UaIT achieves
significant improvements by incorporating addi-
tional knowledge at the lowest 25% confidence
level, and relatively saturated performance is ob-
tained by incorporating additional knowledge at the
50% confidence level. Compared to the Verbalized
Confidence of vanilla model, UaIT better reflects
knowledge gaps in uncertainty expression. More
details and examples are in Appendix A.3 and C.

4 Related Work

Uncertainty estimation constitutes an essential step
in developing reliable AI systems, which are instru-
mental in detecting unreliable responses character-
ized by hallucinations (Zhang et al., 2023; Agrawal
et al., 2024) or factual errors (Bian et al., 2023;
Karpinska and Iyyer, 2023) generated by LLMs.
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Traditional uncertainty estimation methods have
mainly focused on text classification (Vazhentsev
et al., 2022; Ulmer et al., 2022; Jiang et al., 2021;
Desai and Durrett, 2020) or regression (Wang et al.,
2022; Glushkova et al., 2021; Zhan et al., 2023)
tasks with clear and distinct labels. However, for
free-form LLMs, multiple different but semanti-
cally equivalent generations can be considered cor-
rect. Recent research transformed the free-form
questions into multiple-choice form to align with
traditional categorical uncertainty estimation meth-
ods (Lin et al., 2022b; Shrivastava et al., 2023; Ye
et al., 2024). Some recent works estimated the
uncertainty by quantifying the consistency of mul-
tiple generations, computing predictive entropies
with generations, or incorporating paraphrase detec-
tion (Geng et al., 2023; Malinin and Gales, 2021;
Kadavath et al., 2022; Manakul et al., 2023; Sai
et al., 2023; Bakman et al., 2024). Semantic En-
tropy (SE) (Kuhn et al., 2023) proposes the notion
of “semantic equivalence” to aggregate generations
with similar semantics. SAR (Duan et al., 2023)
advocates assigning more attention to tokens and
sentences with higher relevance.

The research on estimating uncertainty with the
expression of LLM is still in its early stages. Recent
research has explored various prompt strategies to
enhance the uncertainty expression (Kadavath et al.,
2022; Zhou et al., 2023; Tian et al., 2023). Lin et al.
(2022a) group examples based on the mathemat-
ical computation type and fine-tune LLMs with
the empirical accuracy of each group to predict
the correctness of problem-solving. However, this
group-based method, where the answer comprises
solely a single numerical token, lacks generality in
applications. Xiong et al. (2024) further combine
direct expression and multi-sampling methods to
achieve more accurate assessment. Kumar et al.
(2024) analyze the correlation between internal
model probability and the verbalized uncertainty
expression. Another concurrent work develops a
comprehensive framework that incorporates sam-
pling, clustering, and the use of external LLMs
(GPT-4) to generate rationales, to enhance the un-
certainty expression (Xu et al., 2024). Our work fo-
cuses on enhancing uncertainty awareness in LLMs
by simply aligning powerful probabilistic uncer-
tainty estimation and utilizing output uncertainty
as a basis for real-time human decision-making.
We highlight that such a simplified approach that
avoids extensive multi-sampling and reliance on ex-
ternal commercial LLMs (e.g. GPT4 or ChatGPT),

is capable of demonstrating robust and immediate
uncertainty expression in real-time interactions.

5 Conclusion

Expressing uncertainty by LLMs poses a signif-
icant challenge that has not been thoroughly ex-
plored. In this paper, we address this challenge by
training the model to align the probabilistic uncer-
tainty of its own generation, thereby enhancing the
model’s ability to perceive and express uncertainty.
Experimental results demonstrate that the model
not only exhibits strong uncertainty expression ca-
pabilities within the domain but also showcases
promising generalization capabilities.

Limitations

Our study provides preliminary evidence of the ef-
fectiveness of uncertainty-aware instruction tuning.
In the future, we aim to investigate how uncertainty
perception is learned by incorporating different
prompts and analyzing the interplay of the model’s
probability and attention distributions. Addition-
ally, our fine-tuning process was conducted using a
limited amount of data from a single domain. Ex-
ploring the optimal data balancing across different
domains and scenarios, designing improved train-
ing strategies, incorporating more diverse prompts,
and utilizing full-scale fine-tuning to achieve reli-
able and robust uncertainty-aware LLM remains an
important avenue for further exploration.

It is also challenging and valuable to extend
our method to more general scenarios and tasks,
e.g. long-form QA and summarization, although
this kind of exploration is still in its nascent
stages (Huang et al., 2024). Most of the existing
uncertainty estimation studies primarily focused on
short-form generations. Applying our method to
long-form generation also requires obtaining prob-
abilistic uncertainty, e.g. assessing the uncertainty
using token probabilities of reasoning text, which
we leave as future work.
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A Experiment Details

A.1 Datasets

We follow Duan et al. (2023) to select 2000 ques-
tions from the validation set of TriviaQA for eval-
uation. For SciQA and MedQA, we utilize the
complete validation sets.

We only employ TriviaQA for instruction tun-
ing, evaluate the model’s in-domain performance
on TriviaQA, and assess its cross-domain general-
ization abilities on SciQA and MedQA. We utilize
the refined version of the TriviaQA dataset curated
by Wang et al. (2023), which consists of 78,785
question-answers. After distillation (2.2), we ul-
timately train the model with 31,391 and 25,362
samples on LLaMa-2 and Mistral, respectively.

A.2 Metric

We employ Rouge-L (Lin, 2004) to measure the ac-
curacy of the response generated by LLMs. Rouge-
L calculates the longest common subsequence be-
tween the generated content and reference answers
and considers it correct if it exceeds a predefined
threshold. We set the threshold at 0.5. For MedQA
with longer answers, we consider predictions that
contain the complete golden answer to be correct.

Consistent with prior work (Kuhn et al., 2023;
Duan et al., 2023), we evaluate the effectiveness
of uncertainty by assessing the reliability of the
model’s generated content, i.e., whether the an-
swer to a question is trustworthy. Specially, we
employ the AUROC metric, which is considered a
more suitable uncertainty evaluation measure for
free-form generations (Kuhn et al., 2023; Xiong
et al., 2024). The AUROC metric quantifies the
likelihood of a correct answer having a lower un-
certainty score compared to an incorrect answer.
Higher AUROC indicates superior performance,
with perfect uncertainty scoring 1 and random un-
certainty measuring 0.5.

A.3 Implementation Details

We follow Duan et al. (2023) to generate 1 most
likely generation with greedy search and 5 sen-
tences for each question with multinomial sam-
pling for uncertainty estimation in SAR. For PE,
we maintain the same configurations as SAR, with
the sole distinction being that the probabilistic av-
eraging in this method is unweighted.

During the data filtering process, we empirically
set the thresholds for LLaMa-2 and Mistral, as
mentioned in Section 2.2, to 80 and 70 respectively.

Configuration Value

Model
LLaMa2-7B-Chat
Mistral-7B-Instruct

Epochs 4
Batch Size 32 samples
Max Length 512

Optimizer
Adam (Kingma and Ba, 2015)
(β1 = 0.9, β2 = 0.98, ϵ = 1× 10−8)

Learning Rate 2× 10−5

LR scheduler cosine
Warmup Ratio 0.1
LoRA Dropout 0.05
lorar 64
loraα 16
Device 1 Tesla H800 GPU (80GB)

Table 4: Finetuning Details of LLaMa and Mistral.

This means that the confidence scores of all correct
and incorrect answers in the distilled training set
are set to be higher and lower than these thresh-
olds, respectively. After the distillation process,
47k and 53k samples are filtered out from the total
of 79k, leaving less than only 40% remaining for
instruction tuning.

For instruction tuning, the detailed parameters
are presented in Table 4. We finetune the model
by low-rank adaptation (LoRA) (Hu et al., 2022).
Uncertainty-aware instruction tuning achieves ex-
cellent results with training on a single GPU for
less than 3 hours.

In Experiment 3.3, our objective is to demon-
strate that models with uncertainty-aware instruc-
tion tuning (UaIT) are better calibrated. Expressed
uncertainty is considered truly reliable when it can
be used for decision-making regarding trustworthi-
ness and improving accuracy. Hence, we employ
accuracy (rather than AUROC) as our measurement
metric in this experiment. All the dashed lines and
bars in Figure 3 correspond to the model’s accu-
racy. Wang et al. (2023) provide five pertinent docu-
ments for each question in TriviaQA, and we utilize
the top-ranked document as an external knowledge
source to retrieve. For LLaMa-2-13b, we use its
Chat version to ensure high performance.

B Prompt List

B.1 Uncertainty-aware Instruction Tuning
The following is the input prompt and output in
uncertainty-aware instruction tuning (Session 2.2).� �
Please directly return the answer to the
following question without any

explanation and indicate your level of
confidence. Note that the confidence
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Question Which journalist first told the world about the My Lai massacre?

Reference Seymour Hers

Original Answer Ronald Haeberle

Confidence Level 49.7%

Retrieval Document

Seymour Hersh Seymour Myron "Sy" Hersh (born April 8, 1937) is an American
investigative journalist and political writer based in Washington, D.C.
He is a longtime contributor to "The New Yorker" magazine on national security
matters and has also written for the "London Review of Books" since 2013.
Hersh first gained recognition in 1969 for exposing the My Lai Massacre and its
cover-up during the Vietnam War, for which he received the 1970 Pulitzer Prize
for International Reporting. During the 1970s, Hersh covered Watergate for The
New York Times and revealed the clandestine bombing of Cambodia.

Corrected Answer Seymour Hersh

Table 5: An example of uncertainty expression and retrieval correction.

level indicates the degree of certainty
you have about your answer and is
represented as a percentage. For
instance , if your confidence level is
80.0% , it means you are 80.0% certain
that your answer is correct and there is
a 20.0% chance that it may be incorrect

.
Question: [QUESTION]

Answer and Confidence (1 -100): [ANSWER ];
[CONFIDENCE ]%� �

B.2 Direct Query for Verbalized Confidence

The following is the prompt in Verbalized uncer-
tainty expression.� �
Here are some examples.
Question: What type of organism is
commonly used in preparation of foods
such as cheese and yogurt?
Answer and Confidence (0 -100):
mesophilic organisms; 90%
Question: What phenomenon makes global
winds blow northeast to southwest or the
reverse in the northern hemisphere and

northwest to southeast or the reverse in
the southern hemisphere?

Answer and Confidence (0 -100): coriolis
effect; 70%
Question: Changes from a less -ordered
state to a more -ordered state (such as a
liquid to a solid) are always what?

Answer and Confidence (0 -100):
exothermic; 80%

According to the format of the above
examples , directly write the answer with
one or few words to the following

question without any explanation and
indicate your level of confidence. Note
that the confidence level indicates the
degree of certainty you have about your
answer and is represented as a

percentage. For instance , if your
confidence level is 80%, it means you
are 80% certain that your answer is
correct and there is a 20% chance that
it may be incorrect.
Question: [QUESTION]
Answer and Confidence (0 -100):� �
B.3 UaIT based on Query
The following is the input prompt and output in
uncertainty-aware instruction tuning based on the
query (Experiments 3.2).� �
Please directly give your confidence
level that you can answer the following
question correctly , and then directly
return the answer without any
explanation. Note that the confidence
level indicates the degree of certainty
you have about your answer and is
represented as a percentage. For
instance , if your confidence level is
80%, it means you are 80% certain that
your answer is correct and there is a
20% chance that it may be incorrect.
Question: [QUESTION]

Confidence (1 -100) and Answer :[
CONFIDENCE ]%; [ANSWER]� �
B.4 Decision Making with Retrieval
The following is the prompt using the retrieval doc-
uments.� �
Please directly return the answer to the
following question without any

explanation and indicate your level of
confidence. Note that the confidence
level indicates the degree of certainty
you have about your answer and is
represented as a percentage. For
instance , if your confidence level is
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80.0% , it means you are 80.0% certain
that your answer is correct and there is
a 20.0% chance that it may be incorrect

.
Question: "[ DOCUMENT ]" According to this
passage , [QUESTION]

Answer and Confidence (0 -100):� �
C Case Study

Table 5 illustrates an example of utilizing LLM-
expressed uncertainty as the basis for knowledge
retrieval. LLM exhibits low confidence in the given
question and its own answer, and subsequently cor-
rects the erroneous answer upon incorporating a
document containing external knowledge.

D Supplementary Information on the Use
of SAR

Given that our method employs SAR (Duan et al.,
2023) to provide uncertainty scores, we include
additional explanations to elucidate this approach.
The core idea of SAR is that tokens are not created
equally in presenting semantics and should not be
treated equally when estimating uncertainty. For
example, consider a given question, "What is the
ratio of the mass of an object to its volume?" and
a model generation "density of an object." Clearly,
"density" is the most relevant token in conveying
the semantics than the rest tokens. Therefore, rele-
vance weights (RT in Equation 2) are proposed to
measure the importance of each token by compar-
ing the semantic changes before and after removing
it from the generation. Formally, for an input x, an
output y, and a token yt within y, the relevance of
yt can be expressed as:

RT (yt,y,x) = 1−|g (x ∪ y,x ∪ y\ {yt})| (6)

where g(·, ·) represents any semantic similarity
measure, providing a similarity score between 0
and 1. A larger semantic change indicates higher
relevance weights for that token, and vice versa.
Relevance weights are then used to compute a
weighted average of log probabilities.

SAR also extends the aforementioned token-
level relevance weights to the sentence-level. Pre-
vious methods often generate multiple generations
for the same question (multi-sampling) and im-
prove performance by averaging the probabilities
of these generations. SAR claims that generations
(i.e. sentences) are more persuasive when they ex-
hibit semantic similarity with other generations.
Therefore, they define sentence-level relevance

weights (RS in Equation 3) as the probability-
weighted semantic similarity with other sentences:

RS (yi, Y,x) =
∑

j=1,j ̸=i

g (yi,yj) PE (yj | x)

(7)
Here, yi and yj represent two distinct responses
from the set of all responses Y , and PE(·) corre-
sponds to Equation (1) in the referenced paper. If
a generation is more semantically similar to other
generations, its relevance weight is higher.
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