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Abstract

Iterative data generation and model re-training
can effectively align large language mod-
els (LLMs) to human preferences. The process
of data sampling is crucial, as it significantly
influences the success of policy improvement.
Repeated random sampling is a widely used
method that independently queries the model
multiple times to generate outputs. In this work,
we propose a more effective sampling method,
named Preference-Guided Reflective Sampling
(PRS). Unlike random sampling, PRS employs
a tree-based generation framework to enable
more efficient sampling. It leverages adaptive
self-refinement techniques to better explore the
sampling space. By specifying user preferences
in natural language, PRS can further optimize
response generation according to these pref-
erences. As a result, PRS can align models
to diverse user preferences. Our experiments
demonstrate that PRS generates higher-quality
responses with significantly higher rewards. On
AlpacaEval and Arena-Hard, PRS substantially
outperforms repeated random sampling in best-
of-N sampling. Moreover, PRS shows strong
performance when applied in iterative offline
RL training1.

1 Introduction

Large language models (LLMs) have made sig-
nificant advances (Radford et al., 2019; Brown
et al., 2020; OpenAI, 2022). These models are typi-
cally aligned with human expectations through fine-
tuning. This is achieved by using reinforcement
learning from human feedback (RLHF), which mit-
igates the generation of harmful, biased, or irrel-
evant outputs (Perez et al., 2022). Both online
and offline RL methods have been explored for
RLHF (Schulman et al., 2017; Gülçehre et al.,
2023; Rafailov et al., 2023). Iterative offline train-
ing provides a more efficient alternative than online

1Source code of this paper is available at https://github.
com/nusnlp/PRS.
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Figure 1: Performance comparison of PRS (ours) and
repeated random sampling (Rand) on AlpacaEval v2.0
and Arena-Hard v0.1 using best-of-32 sampling. Each
prompt samples 32 responses using Rand or PRS and the
response with the highest reward is kept for evaluation.

training, by allowing outputs to be pre-generated
and reused to facilitate iterative improvements in
policy.

Effective data sampling is crucial for iterative
model re-training, as it directly influences the
effectiveness of the resulting policy (Gülçehre
et al., 2023). Repeated random sampling (as
shown in Fig. 2) is an effective method and has
been widely used for data generation in previous
work (Gülçehre et al., 2023). It independently calls
the model multiple times to get samples. Then
higher-quality data will be maintained to update
the policy model. However, the vast output space
compromises its efficiency since the inherent ran-
domness may result in inefficient exploration in the
sampling space. Also, the simple generation strat-
egy cannot learn from and adapt dynamically based
on previously generated samples. Furthermore,
with only the supervision of the reward model, it is
hard to optimize the outputs to align to diverse and
personalized preferences.

We propose a new sampling method named
Preference-Guided Reflective Sampling (PRS) to
improve data generation. Different from random
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Figure 2: Comparison of repeated random sampling and our method PRS. PRS adopts a tree-based generation
framework that learns to adapt and adjust its outputs by reflecting on its already generated data. It can incorporate
a specific user preference to optimize responses that align with it. Adjusting preferences will generate tailored
responses. For random sampling, it generates samples independently and can use the best-of-N (BoN) method to
find the best sample. Both methods share the same sampling budget, which samples the same number of responses
for each prompt.

sampling, PRS employs a tree-based generation
framework to balance exploration and exploitation
throughout the generation process (see Fig. 2). It
learns to adapt and adjust its outputs by reflecting
on its already generated data so that it can improve
the sampling of future samples. Furthermore, by
using a preference described in natural language,
PRS can optimize the response toward this explicit
preference. The user preference is incorporated as
an additional sampling context, guiding the model
toward more relevant directions and minimizing un-
necessary exploration. As a result, it achieves more
efficient sampling and can also generate samples
aligned to diverse preferences.

We study preference-controlled text generation
for the task of instruction following and keyword-
focused document summarization. In our experi-
ments, we first evaluate PRS against various base-
lines in generating training samples with diverse
policy models (§ 5.1). In § 5.2, we investigate its
application for aligning LLMs to adhere to explicit
preferences provided in the inputs using offline RL
training. We further explore preference adaptation,
toxicity reduction, and other areas in § 5.3. Our
contributions in this work are as follows:
• We introduce PRS, a novel sampling method to

improve data generation. PRS is capable of gen-
eration tailored to different preferences.

• Experiments with 9 policy models show that PRS
generates training data with higher rewards. On
AlpacaEval and Arena-Hard, PRS achieves better
performance than repeated random sampling in
the best-of-N setting (Fig. 1).

• With extensive offline RL training, the outcomes
across multiple benchmarks, e.g., AlpacaEval (Li
et al., 2023) highlight the effectiveness of PRS.

• Further analysis demonstrates PRS’s superior per-
formance in preference adaptation.

2 Related Work

Offline RL offers an efficient alternative to online
RL (Schulman et al., 2017). Dong et al. (2023),
Gülçehre et al. (2023), and Rafailov et al. (2023)
emphasize data generation and model refinement.
Repeated random sampling is a simple but effective
method for data generation. Brown et al. (2024)
demonstrate that scaling inference compute can
significantly improve the model performance in
problem solving. Bai et al. (2022b) leverage the
LLM’s reflection capacity to continuously refine
model responses. However, they only focus on
harmless responses, whereas our work is applicable
across a broad spectrum of preferences. Moreover,
different from ours, their work does not aim to im-
prove data sampling for RL training. Feng et al.
(2023) use Monte Carlo tree search (MCTS) with
token-level rewards, but ours employs sequence-
level rewards based on cost-effective tree-based
generation, with input preferences to guide the gen-
eration. Scheurer et al. (2023) advocate for training
models using human language feedback, but we
employ the model itself to generate language feed-
back. A more detailed discussion of the related
work is in Appendix A.
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I prefer the AI model to provide concise and accurate responses
that are supported by reliable sources or references.
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2. ...

* Provide references or sources to support
each claim made in the response ...
* Break down the response into smaller, more
manageable sections ...

1. Timeline chart: This is a graphical representation of events or milestones in
chronological order. ...
2. Gantt chart: A Gantt chart is a type of bar chart used to show a schedule of a ...
References
* [1]: Wikipedia, "Timeline," <https://en.wikipedia.org/wiki/Timeline> ...

Response Feedback

Refined Response

2. Sample
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3. Provide
feedback
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Figure 3: PRS: (a) Example: A user requests a brief response with supporting references. The initial response lacks
references. After feedback, the revised response includes appropriate references. (b) A preference z is added to the
input x. The process begins by sampling N0 initial responses Y0, from which the optimal response y∗

0 is selected
using a reward model R. Then feedback f is generated, leading to the sampling of N1 refinements Y1 to enhance
y∗
0 . Finally, Y0 and Y1 are merged. Optionally, new refinements may be sampled based on the current best response.

3 Preliminaries

Offline RL. RLHF utilizes human feedback to fine-
tune a pre-trained LLM with human preferences.
The preference human feedback can be utilized to
train a reward model R(x,y), given an input x
and a response y. Following Gülçehre et al. (2023),
we employ offline RL to synchronize the LLM
policy with the trained reward model. This process,
beginning with the policy initialized by supervised
fine-tuning (SFT) on labeled data, involves iterative
cycles of data generation and model re-training.

The policy of the LLM, πθ, parameterized by
θ, produces a response y given the input x, i.e.,
y ∼ πθ(y|x). Using the labeled data D0, the LLM
is trained with the negative log-likelihood (NLL):

LNLL = E(x,y)∼D0

[
− log πθ(y|x)

]
(1)

Then it repeats data generation and model re-
training to align the language model:
1. Data Generation: Each iteration leverages the

policy from the previous cycle to generate N re-
sponses y for each input x in the unseen dataset
Uk. The reward model, R(x,y), evaluates these
responses to generate rewards. Best-of-N strat-
egy or a reward threshold is used to identify the
high-quality examples.

2. Model Re-training: The newly generated data,
along with all prior data, is used to refine the
model in the subsequent re-training phase.

4 Method

We aim to improve the data generation process to
enhance offline RL training. We first introduce

Preference-Guided Reflective Sampling (PRS), and
then study the task of preference-controlled instruc-
tion following using offline RL training.

4.1 Preference-Guided Reflective Sampling

PRS aims to optimize the response aligned to a
given user preference described in natural language.
The user preference describes the desired model
output, such as conciseness. Let z denote a specific
preference, exemplified by statements like “I prefer
the response to be concise.” or “Can you give me a
response without wordy explanations?”. PRS aims
to generate the responses aligned to the preference
z.

Initially, we sample a response y0 conditioned
on both x and z, by appending z to the input x.
Subsequently, we engage the LLM policy in a pro-
cess of self-reflection, aiming to iteratively refine
y0 to better align with the stated preference. Given
the independence of preference z and input x, we
redefine the generation process of p(y|x) as:

p(y|x) =
∑

z,y0,f

p(z)× πθ(y0|x, z)︸ ︷︷ ︸
Initial Sampling

×

πθ(f |x, z,y0)× πθ(y|x, z,y0,f)︸ ︷︷ ︸
Reflective Refinement

(2)

where for the reflective refinement, the model first
generates language feedback f for the output y0,
then revises the output by incorporating the feed-
back to obtain a new response y (see Fig. 3a). Pro-
moting the model to provide language feedback is
to provide enriched information to guide the model
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Algorithm 1 PRS

1: Input: Input prompt x; preference z; model
πθ; reward model R; number of layers d; total
samples N to generate

2: Initialize: Layer width w =
⌊
N
d

⌋

3: Y ← ∅
4: for l = 0 to d− 1 do
5: Select y∗ with the highest score from Y or

set y∗ to None if Y is ∅
6: f ∼ πθ(·|x, z,y∗) if y∗ is not None else

None
7: for i = 1 to w do
8: Sample yi ∼ πθ(·|x, z,y∗,f)
9: Add yi to Y

10: end for
11: Compute R(x, z,y) for newly generated

samples in Y
12: end for
13: Output: The best final response y∗

in revising its response. We can adjust the user pref-
erence z to generate outputs aligned to different
preferences, e.g., detailed or humorous responses.
Tree-Based Generation. For each input, we sam-
ple N responses for further selection. However,
as Eq. 2 indicates, various components (i.e., z, y0,
f ) control the generation, causing difficulty in effi-
cient generation. To overcome this issue, we pro-
pose tree-based generation (Fig. 3b), which utilizes
an iterative exploration and exploitation process:
1. First, the model randomly samples N0 initial

responses Y0 from πθ(y0|x, z), and the re-
ward model R(x, z,y) generates rewards for
the samples. The response y∗

0 with the highest
reward is selected for further exploration.

2. Then the model generates language feedback
f for y∗

0 , i.e., f ∼ πθ(f |x, z,y∗
0), which is

the suggestion to further modify y∗
0 to be more

in line with the preference z (see the example
prompt in Fig. 14).

3. The model generates another set of N1 = N −
N0 refinements Y1 from πθ(y1|x, z,y∗

0,f),
where N is the total number of samples per
prompt. It aims to adjust the generation towards
even better rewards (see the prompt of Fig. 15).

4. We combine Y0 and Y1 into Y that has N sam-
ples for the input x.

5. (Optional) In layer l, suppose we have samples
Y(l−1) = Y0 ∪ · · · ∪ Yl−1 until layer l− 1. We
further sample refinements Yl with a–c steps:

y∗ ← argmaxyi∈Y(l−1)R(x, z,yi) (3a)

f ∼ p(·|x, z,y∗) (3b)

Yl ∼ p(·|x, z,y∗,f) (3c)

Eq. 3a identifies the optimal response from all
already generated responses (i.e., exploitation),
followed by refinements (exploration).

We present the pseudocode of PRS in Algorithm 1.
It is worth noting that PRS is also functional when
the preference z is not provided as input. Addition-
ally, feedback can be omitted during the generation
of refinements. In Algorithm 1, the number of sam-
ples generated for each layer is set to be the same.
However, in practice, other hyper-parameters can
be used.
Reward Estimation. In PRS, the reward for a re-
sponse is calculated using the formula R(x, z,y),
where z specifies the preference for aspects to be
focused on when assessing the response. How-
ever, if the specified preference z aligns with the
implicit preference already incorporated into the
reward model, the formula can be simplified to
R(x,y). In this case, the reward model automat-
ically evaluates the response based on its built-in
preference, without the need for z. To achieve high
rewards, it is crucial to understand and articulate
the internal preference of the reward model.

4.2 Alignment for Preference-Controlled Text
Generation

Here, we study the task of preference-controlled
text generation. We train the model to produce re-
sponses aligned with the input-specified preference,
i.e., y(z) ∼ πθ(y|x, z). We adopt offline RL in
§ 3 for training, which repeats iterations of data
generation and model re-training.

As indicated by Eq. 2, adjusting the preference
p(z) can generate diverse outputs, each tailored to
a specific preference. Without loss of generality,
we do not focus on one specific personalized prefer-
ence. Instead, we consider diverse preferences. We
annotate diverse preferences to ensure each input
question is associated with a different preference
from others. As exemplified by Table 1, the task
of instruction following has diverse personalized
preferences and for document summarization, the
keywords vary for different documents.

Algorithm 2 in the Appendix is the pseudocode
for training. Specifically, we conduct K iterations
of offline RL training. In each iteration k, we have
an unlabeled set Uk = {(x, z)} and we initial-
ize the training set Dk to ∅. For each data point
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Task 1: Instruction following

Common Preference
I prefer responses that are informative, precise, creative,
detailed, relevant, and in-depth.

Personalized Preferences
[1] I prefer the model to provide a concise and accurate
answer without any unnecessary details or explanations.
[2] I prefer clear and well-organized responses that provide
step-by-step instructions or explanations. Additionally, I
appreciate when the response includes code snippets or
examples for better understanding.
...

Task 2: Keyword-focused summarization

I prefer a response that is strictly within 3 sentences, focus-
ing on the keywords of {specify three keywords here}.

Table 1: The explicit preferences used for response
optimization. They are added after the input question
or document. For instruction following, we evaluate
common and personalized preferences.

(x, z) ∈ Uk, we sample N responses in total. We
first generate N0 initial responses denoted as Y0
and then N1 = N −N0 refinements denoted as Y1.
We use a reward model to select high-quality data
for training. To enhance tree-based generation, we
aim to optimize the following two components:
• πθ(y|x, z): It trains the policy to generate

responses aligned with input preferences. We use
the reward model to identify the response y∗ with
the highest reward from Y0 ∪ Y1, and we add the
data of (x, z,y∗) to the training set Dk.
• πθ(y|x, z,y0,f): To improve the model’s re-

finement ability, we construct improving pairs from
Y0 and Y1. We only keep samples from Y1 that are
refined based on the response y∗

0 if their rewards
exceed y∗

0 . The set of improving pairs is formalized
as:

Q =
{
(x, z,y∗

0,f ,y1) |

R(x, z,y1) > R(x,z,y∗
0),∀y1 ∈ Y1

} (4)

In our setting, if Q is not empty, we add the im-
proving data of (x, z,y∗

0,f ,y
∗
1) into the training

set Dk, where y∗
1 is the response with the highest

reward from Y1. This is the same idea as best-of-N
sampling, to maximize the response’s reward after
the model’s refinement.

After generating data from Uk, we combine the
generated training data up to iteration k, i.e., D =
D1 ∪ · · · ∪ Dk. Then we re-train the policy with
the following objective, which refers to the NLL

AlpacaEval v2.0 Arena-Hard v0.1
Method LC WR WR Method WR

Mis-7B-Inst-v0.2 17.10 14.70 mis-large-2407 70.4
Rand (Bo-16) 23.90 19.86 Rand (Bo-16) 77.0
PRS (Bo-16) 27.19 19.87 PRS (Bo-16) 79.3

Rand (Bo-32) 24.85 20.61 Rand (Bo-32) 79.1
PRS (Bo-32) 27.17 20.03 PRS (Bo-32) 80.3

Lla-3-8b-inst 22.90 22.60 Lla-3.1-70b-inst 55.7
Rand (Bo-16) 31.00 28.75 Rand (Bo-16) 69.5
PRS (Bo-16) 35.05 31.92 PRS (Bo-16) 69.8

Rand (Bo-32) 32.94 30.43 Rand (Bo-32) 68.2
PRS (Bo-32) 36.70 33.46 PRS (Bo-32) 72.2

Gemma-2-9b-it 48.61 37.07 qwen2-72b-inst 46.9
Rand (Bo-16) 55.07 44.51 Rand (Bo-16) 61.9
PRS (Bo-16) 58.40 43.86 PRS (Bo-16) 62.1

Rand (Bo-32) 57.61 45.10 Rand (Bo-32) 63.9
PRS (Bo-32) 59.85 46.41 PRS (Bo-32) 65.4

Table 2: Results of best-of-N (Bo-N ) sampling on Al-
pacaEval and Arena-Hard benchmarks, compared to the
results of one-pass inference. We use ArmoRM-Llama3-
8B-v0.1 as the reward model. Each prompt samples N
responses using repeated random sampling or PRS and
the best response with the highest reward is kept for
evaluation. Here, PRS does not include preference in
the input, and feedback is not generated during refine-
ment. PRS uses the version of PRS (N/2, N/2). The
higher score between PRS and Rand is highlighted in
bold. LC WR is the abbreviation for length-controlled
win rate.

loss in Eq. 1:

L(θ) = E(x,y)∼D0

[
− log πθ(y|x)

]

+ E(x,z,y∗)∼D
[
− log πθ(y

∗|x, z)
]

+ E(x,z,y∗
0 ,f ,y

∗
1)∼D

[
− log πθ(y

∗
1|x, z,y∗

0,f)
]

(5)

where the labeled training data D0 is also included.
After K iterations of RL training, we obtain the
model πθ(y|x, z) that can generate the response y
aligned to the preference z.

5 Experiments

Dataset. To align models for preference-controlled
text generation, i.e., instruction following and
keyword-focused document summarization, we
used the following dataset for supervised fine-
tuning (SFT) and RL training:
• Instruction Following. For SFT data, from

the widely used dataset ShareGPT2, we randomly
sample 10k conversations with a maximum of three
rounds for each conversation, resulting in 21,934
labeled data points in total. Prompts from Alpaca-
GPT4 (Peng et al., 2023) are used for RL training.

2https://sharegpt.com/
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Figure 4: Comparing sampling methods. Left: We study the common preference and use the description of Table 1
to generate detailed and in-depth responses. With 100 random prompts from Alpaca-GPT4, each method samples
N responses per prompt (i.e., 8, 16, 32, 64, or 128). The top three highest rewards are averaged for each prompt,
leading to an overall average score for the entire evaluation set. The full results of 9 policy models are shown in
Fig. 9. Middle: The distribution of rewards with N = 128, where PRS is PRS (N/2, N/2). Right: Summarization
results on 100 random documents from CNN / Daily Mail. The policy model is Llama-2-13b+SFT.

• Summarization. We use the same SFT data
from ShareGPT for instruction tuning. We fur-
ther sample 2,500 documents from CNN / Daily-
Mail (See et al., 2017) for RL training.
Preference Annotation. We first need to annotate
the preferences for the unlabeled prompts. We
show some sample preferences in Table 1.
• Instruction Following. The Alpaca-GPT4

dataset initially does not include user preferences,
so we use GPT-3.5-turbo to automate the genera-
tion of preferences by pairing each prompt with a
random profession from a list of 222 professions.
This method aims to mirror personalized prefer-
ences across various professions, thereby enriching
dataset diversity. For details on this process and
examples, see Appendix E.
• Summarization. To get the input preference

keywords, we prompt GPT-3.5-turbo to extract
three keywords from the ground-truth summary.
Benchmarks. For instruction following, we use
AlpacaEval (Li et al., 2023) with 805 test samples
and Arena-Hard (Li et al., 2024) with 500 test sam-
ples. For summarization, we further sample 1k data
from CNN / DailyMail as the test set.
Reward Model. For instruction following, we use
UltraRM-13B (Cui et al., 2023), a Llama-2-13B
model tuned with GPT-4 preference feedback. It
achieved SOTA results on multiple public prefer-
ence test sets, including Anthropic Helpful (Bai
et al., 2022a). For summarization, since we lack
a reward model, we simulate rewards by compar-
ing summaries to the ground truth using average
F1 scores from Rouge-1, -2, and -L (Lin, 2004).
Lastly, we use ArmoRM-Llama3-8B-v0.1 (Wang
et al., 2024) for best-of-N sampling on AlpacaEval

and Arena-Hard.
Baselines. We compare various sampling methods
with PRS:

• Rand is repeated random sampling conditioned
on the input x using πθ(y|x).

• PRand adds an explicit preference z to the input
x, i.e., y ∼ πθ(y|x, z), for random sampling.

• Greedy utilizes a greedy algorithm, where
we improve the method from Madaan et al.
(2023) which iteratively refines the last response.
Specifically, the enhanced baseline starts by sam-
pling an initial response with πθ(y0|x, z). It
uses a reward model to continually update the
highest-reward response y∗ with πθ(y|x, z,y∗).
During each revision round, if a new response y
achieves a higher reward, it becomes y∗.

We use temperature sampling during response gen-
eration.

5.1 Comparison of Sampling Methods

We first compare different sampling methods for
data generation. We expect a good sampling
method to obtain a training set with a higher reward.
Here, we only consider two layers for the tree-
based generation in PRS. Since the PRS (N0, N1)
method is affected by the hyper-parameters N0 and
N1, we adjust them to examine their impact:

• PRS (0, N) samples one response y0, generates
feedback f , and then samples N refinements. It
neglects the exploration for y0.

• PRS (N, 0) samples N responses of y0 without
refinement, which neglects the exploration of y1.
This is precisely the PRand baseline.

• PRS (N/2, N/2) balances exploring y0 and y1.
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Test Set Size 805 200 200

Annotator GPT4 GPT4 GPT4
Baseline Methods davinci-3 ChatGPT GPT4

% Win % Win % Win

GPT 3.5 Turbo 0301 89.37 50.00 -
UltraLM 13B V2.0 (PPO) 86.30 - -
LLaMA2 Chat 13B (PPO) 81.09 - -
Tulu 2 13B (SFT) 78.90 - -

SFT + p 80.64 53.27 17.59
Base + p 79.61 51.26 22.11
Offline RL training on Base with various sampling methods
Rand + p 82.60 59.05 30.81
Rand 80.40 49.75 23.37
PRand 85.07 64.32 39.20
PRS 86.89 72.36 43.22

Table 3: Results of AlpacaEval v1.0. We use the com-
mon preference in Table 1 to control our models to
generate responses. “+ p” adds preference in the input
during testing. SFT uses all available labeled data of
ShareGPT and Alpaca-GPT4 for supervised fine-tuning.
Base is the model tuned using ShareGPT data. To re-
duce the cost of calling GPT-4, we downsampled the
test set for ChatGPT and GPT-4 baseline. We also show
existing models tuned from Llama-2-13B for compar-
ison, but they are fine-tuned with full parameters and
different training data.

• PRS (N/2, N/2) w/o f omits generating lan-
guage feedback f during refinement and instead
uses πθ(y1|x, z,y∗

0). The goal is to assess the
impact of language feedback.

Policy Models. We use the model tuned on the
SFT data from ShareGPT named Llama-2-13B +
SFT to sample responses. We also test multiple
open-source instruction-following models such as
those tuned on Mistral-7B (Jiang et al., 2023) and
Llama-2-13b (Touvron et al., 2023).
Preference z. For instruction following, we aim
to evaluate the common preference (as shown in
Table 1) that favors comprehensive and detailed
responses. As shown by Sun et al. (2023), a more
detailed response would improve the performance
on benchmarks such as AlpcaEval (Li et al., 2023).
Since the reward model UltraRM-13B that we use
internally includes such preferences, we compute
R(x,y) without explicitly specifying z.
Results. From the results shown in Fig. 4, PRS
generates data with higher rewards than Rand and
PRand, and as N increases, the performance gap
becomes larger. The setting (N/2, N/2) is much
better than (0, N) and (N, 0), showing that a good
balance of exploration is important. Fig. 4 (mid-
dle) shows that PRS produces a normal distribution

R-1 R-2 R-L Avg.

LLaMA2 Chat 13B 32.93 10.70 29.29 24.31
Mistral 7B v0.2 34.98 11.27 31.38 25.88
Tulu 2+DPO 13B 36.64 12.93 33.34 27.64
Vicuna 13B V1.5 37.12 13.26 33.71 28.03

Base w/o keywords 30.15 10.35 27.89 22.80
Base + p 35.46 12.56 32.37 26.80
RL training on un-tuned Llama-2-13B
PRand 37.39† 13.71† 33.96† 28.35†

PRS 38.20∗ 14.16∗ 34.70∗ 29.02∗
Continual RL training on Base
PRand 37.50† 13.78† 34.12† 28.47†

PRS 38.15∗ 14.16∗ 34.65∗ 28.99∗

Table 4: Summarization results on CNN / Daily Mail,
adding input keywords except for the “Base w/o key-
words” condition. We report average Rouge-1, Rouge-2,
and Rouge-L F1 scores with 5 runs. ∗ indicates PRS
outperforms PRand significantly (p < 0.01), and † indi-
cates PRand outperforms Vicuna 13B V1.5 (p < 0.01).

with higher mean and variance than PRand and
Rand, indicating a broader exploration and higher
reward acquisition in the sampling space. From
the full results shown in Fig. 9, language feedback
shows mixed results: some models improve, while
others do not. However, language feedback in-
creases transparency and both versions still outper-
form other baselines.

PRand is substantially better than Rand, since
PRand adds explicit preference in the input. It
demonstrates that preference is effective in guid-
ing the generation of better-aligned responses. For
summarization, specifying the keywords would aid
the model to concentrate on the key information
of the document. The greedy algorithm, revising
based on the current best response, often underper-
forms compared to PRS. Its main limitation is poor
response exploration. In contrast, PRS (N/2, N/2)
excels by thoroughly exploring both initial and sub-
sequent responses.

We further investigate best-of-N sampling on
AlpacaEval v2.0 and Arena-Hard v0.1. The mod-
els are evaluated as outlined in Table 2. To obtain
the reward scores, we utilize the recent state-of-the-
art reward model, ArmoRM-Llama3-8B-v0.1. For
PRS, no preference is specified, and feedback gen-
eration is omitted during sampling to support more
general use cases. We employ two layers in PRS,
with each layer having a width of N/2. As shown
in Table 2, PRS consistently outperforms repeated
random sampling, achieving better performance in
LC WR on AlpacaEval and WR on Arena-Hard.
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Figure 6: Preference Adaptation: We define five pref-
erence categories and evaluate each category using 100
AlpcaEval test cases. For each category, we customize
the prompt (100 test samples) by appending the corre-
sponding preference, evaluating with GPT-4, and record-
ing win rates (%) when comparing two models.

ToxiGen % Toxic (↓)
GPT-4-0613 0.6
GPT-3.5-turbo-0613 0.5
GPT-3.5-turbo-0301 27.7
Zephyr 7B Beta 64.0
Xwin-LM v0.1 70B 12.7
Tulu 2+DPO 13B 1.1

Rand 3.9
Rand + p 0.3
PRand 0.2
PRS 0.2

Table 5: Toxicity reduc-
tion. We append a prefer-
ence indicating a safe re-
sponse in the input for Rand
+ p, PRand, and PRS.

5.2 Offline RL Training

We conduct offline RL training to align the models
to generate responses tailored to input preferences.
Experimental Settings. We fine-tune the Llama-
2-13B model using LoRA (Hu et al., 2022), start-
ing with supervised fine-tuning (SFT) using la-
beled data. For instruction following, we perform
3 iterations of RL training, each involving 10k
unique GPT-4 prompts. We adopt best-of-16 sam-
pling, generating 16 responses per prompt, and
adding 10k new training data per iteration. We set
N0 = N1 = 8 for PRS. For summarization, after
the initial SFT, we undertake one RL iteration, sam-
pling 64 summaries per document (2,500 in total),
retaining the summary with the highest reward for
each document. We set N0 = N1 = 32 for PRS.
Results. Results of AlpacaEval and CNN/Daily
Mail are reported in Tables 3 and 4 respectively.

The model trained by PRS outperforms those
trained by PRand and Rand. Looking at the rewards
of the generated training data shown in Fig. 12
in the Appendix, PRS exhibits consistently higher
rewards than PRand. It shows that the quality of
data generation is key to offline RL. Compared to
open-source models, PRS outperforms the models
tuned by PPO training. In head-to-head comparison
shown in Fig. 11 in the Appendix, PRS outperforms
multiple strong open-source models more than 50%
of the time, except for Mistral-7B-v0.2. These
promising results highlight the potential of PRS
for future applications, such as integrating PRS
with DPO training (Rafailov et al., 2023) and full-
parameter fine-tuning. For summarization, after
aligning the model with PRS, our model performs
the best among existing strong open-source models.

Preference-controlled optimization during train-

ing is important. The method Rand + p involves
adding a preference to the input prompt at test time.
It effectively enhances performance compared to
Rand. However, it does not explicitly optimize the
response to the input preference during training
compared to PRand, so it underperforms PRand

We further present the results of RL training for
each iteration in Fig. 5. Our findings indicate that
while using random sampling (Rand) leads to a
halt in improvement after just one iteration of RL
training, both PRand and PRS continue to show
improvement across 3 training iterations. The qual-
ity of data generated through random sampling can
significantly influence the iterative updates made
to the model. Since the generated data is of lower
quality, it can lead to a degradation in the model’s
performance. This, in turn, makes it increasingly
challenging for the model to generate high-quality
data, thereby halting further improvements.

5.3 Further Analysis

Preference Adaptation. We further compare PRS,
PRand, and Rand + p on adaptation to personalized
preferences differing from the common preference
studied in Fig. 4 (left) and Table 3. We define
five categories as shown in Fig. 6 for adaptation
and for each category, we create 20 unique expres-
sions using GPT-4. We evaluate them across 100
AlpacaEval test cases. For each category, we ran-
domly sample an expression and append it to the
prompt. More details can be found in Appendix C.

PRS outperforms PRand, especially in deliver-
ing concise, thorough, and humorous responses.
Both models perform similarly in clarity and pro-
fessional tone. Overall, both PRS and PRand sur-
pass Rand + p in effectiveness, showing the ben-
efits of training models to align with user pref-
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initial response from Y0. Average maximum rewards for
each set and their union are reported (N=32).

erences. However, Rand + p excels in concise-
ness, producing fewer tokens (176.07) compared to
PRS (199.31). In contrast, for thoroughness, while
Rand + p averages 378.99 tokens, PRand and PRS
provide more thorough responses with 461.34 and
507.81 tokens, respectively.
Toxicity Reduction. We further study toxicity
reduction as preference adaptation. For each in-
put, we append a safe preference after it, which is
randomly sampled from a pool of safe preferences
with different expressions (see Table 6). We evalu-
ate ToxiGen (Hartvigsen et al., 2022) and report the
results in Table 5. Compared to Rand and Rand +
p, adding a safe preference can substantially reduce
the generation of toxic content. PRand and PRS
achieve comparable performance and both outper-
form Rand + p. Preference-controlled alignment
adapts the LLM to generate safe and harmless con-
tent at test time, even without explicit training for
safety.
Tree-Based Generation. We analyze tree-based
generation in PRS, which starts with N0 initial re-
sponses (Y0), and then N1 refinements (Y1). We
evaluate how often refinements improve over the
initial response. As shown in Fig. 7, there is vari-
ability across models: Tulu-2-13b-DPO improves
less than 50% of the time, while Mistral-7B-v0.2
and Llama-2-13B + SFT perform better. Improve-
ment rates generally increase with more samples
(N ), indicating that more samples can lead to bet-
ter outcomes. We explore the reward values for Y0
and Y1. We find that Y1 does not consistently offer
higher rewards than Y0, but combining both sets
yields higher rewards.
Expansion in PRS. Here, we examine how the
depth and width impact the performance of tree-
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Figure 8: Effects of varying depth and width for PRS.
We maintain the number of samples N and vary the
depth d and the width w calculated by

⌊
N
d

⌋
. The depth

starts from 1 to 16. Preference is not included in the
input and feedback is not generated. Here, the studied
model is Llama-3-8b-instruct and the reward model is
ArmoRM-Llama3-8B-v0.1. 100 test samples are ran-
domly selected from AlpacaEval for evaluation.

based generation in PRS. We keep the total number
of samples N constant while varying the depth d.
The width w is then calculated by

⌊
N
d

⌋
. As shown

in Fig. 8, our results indicate that for larger N ,
increasing the depth (e.g., to 4) improves perfor-
mance. However, for smaller values of N , such as
16, increasing the depth beyond 2 does not yield fur-
ther benefits. A larger N results in a greater width,
allowing the model to sample more responses at
each layer, thereby increasing the likelihood of dis-
covering better responses than those in the previous
layers. We further conduct an ablation study in Ap-
pendix B.3.

6 Conclusion

We introduce PRS, an improved sampling method
designed to enhance iterative model improvement.
In contrast to repeated random sampling, PRS en-
ables more efficient generation through a tree-based
approach. By allowing the specification of pref-
erence in the input, PRS optimizes responses to
better align language models with diverse user pref-
erences. Our comprehensive evaluation shows that
PRS consistently generates higher-quality samples.
On AlpacaEval and Arena-Hard, PRS significantly
outperforms random sampling in the best-of-N set-
ting. Additionally, PRS excels when applied to
iterative offline RL training.

7 Limitations

Our approach capitalizes on the model’s self-
improvement capabilities to aid in data sampling.
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However, for more challenging tasks, such as rea-
soning tasks, the model may struggle to enhance its
performance autonomously. We have not explored
these types of tasks in this work. Further enhancing
the model’s self-improvement capabilities, particu-
larly for more difficult tasks, can be explored in the
future. Our approach may be susceptible to reward
hacking, though further research may mitigate its
effects.
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Algorithm 2 : PRS for aligning language models for diverse preferences

1: Input: Labeled training data D0; K sets of unlabeled data [U1, · · · ,UK ]; large language model πθ;
reward model R; number of samples per prompt N ; N0.

2: Initialize πθ0 on D0 using Eq. 1.
3: D ← ∅.
4: for k = 1 to K do
5: # Stage 1: Data Generation
6: Dk ← ∅.
7: for all (x, z) ∈ Uk do
8: # Preference-Guided Reflective Sampling (PRS)
9: • Sample N0 responses Y0 ∼ πθk−1

(y0|x, z).
10: Maximize reward R(x, z,yi

0) over Y0 to find the optimal y∗
0 .

11: • Generate language feedback f ∼ πθk−1
(f |x, z,y∗

0).
12: • Sample N1 = N −N0 refinements Y1 ∼ πθk−1

(y1|x, z,y∗
0,f).

13: Maximize reward R(x, z,yi
1) over Y1 to find the optimal y∗

1 .
14: if R(x, z,y∗

1) > R(x, z,y∗
0) then

15: Add (x, z,y∗
1) and (x, z,y∗

0,f ,y
∗
1) into Dk.

16: else
17: Add (x, z,y∗

0) into Dk.
18: end if
19: end for
20: D ← D ∪Dk.
21: # Stage 2: Model Re-training
22: Update πθk on D ∪D0 with Eq. 5.
23: end for
24: Output: πθK (y|x, z).

A Detailed Related Work

A.1 Alignment of Large Language Models

Similar to PRS, Bai et al. (2022b) also leverage the
LLM’s capacity for reflection to refine model re-
sponses. However, our work differs from Bai et al.
(2022b) in several aspects: (a) Most importantly,
Bai et al. (2022b) do not aim to improve data sam-
pling for RLHF, but our work proposes a tree-based
framework to enable efficient data generation. (b)
Bai et al. (2022b) only focus on harmless responses,
but our work applies to a broader spectrum of pref-
erences. (c) While the preferences added into the
input to guide model generation – introduced in
our work – is similar to the usage of principles
proposed by Bai et al. (2022b), their approach is
limited to modifying responses based on princi-
ples rather than integrating these principles into
the input prompt to guide the generation of model
responses.

Sun et al. (2024) propose to train a reward model
that can evaluate responses based on principles,
which is similar to our work when using the reward
model by adding the extra preference information.

However, Sun et al. (2024) also overlook the im-
portance of sampling efficiency. Another notable
contribution is from Scheurer et al. (2023), who
advocate for training models using language feed-
back, as opposed to the numerical feedback derived
from reward models. Unlike our strategy, which
employs the model itself to generate language feed-
back, they depend on human annotators for this
task. Recent work by Feng et al. (2023) aligns with
our goal to enhance model sampling exploration.
They adopt Monte Carlo tree search (MCTS) for
decoding, utilizing token-level rewards to guide
output sampling in instruction-following tasks. In
contrast, our approach prioritizes sequence-level re-
wards for evaluating model responses and employs
a tree-based search without extensive inference
costs. Furthermore, we incorporate input prompt
preferences to direct the generative process, which
is another difference from Feng et al. (2023).

A.2 Reflective Reasoning of Large Language
Models

Large language models (LLMs) have demonstrated
self-reflection capability, critically analyzing their
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own decisions and providing feedback to enhance
their responses (Madaan et al., 2023). Madaan et al.
(2023) introduce a self-refinement framework that
enables LLMs to continuously improve their re-
sponses based on self-generated feedback. In con-
trast, our work introduces an efficient tree-based
generation model that optimizes the use of LLMs’
reflective abilities more effectively. Further explor-
ing the potential of LLMs’ self-reflective capabil-
ities, Shinn et al. (2024) leverage this feature to
enable LLMs to learn from language-based feed-
back and refine their outputs towards more accurate
and contextually relevant responses. In the realm of
iterative inference for text generation, Welleck et al.
(2023) propose training a corrector model to refine
LLM outputs, utilizing synthetically generated data
that fosters gradual improvement. The concept of
reflection in LLMs is crucial for advances of AI
agents, facilitating their ability to summarize and
reflect on outcomes from previous interactions to
better plan and execute future actions (Yao et al.,
2023a,b).

A.3 Controlled Instruction Following

In the era of large language models, there is grow-
ing interest in evaluating and enhancing complex
instruction following with the outputs controlled
by input constraints (Chen et al., 2024; He et al.,
2024; Yao et al., 2024). In our work, to improve
sampling efficiency, we frame generation as a prob-
lem of controlled text generation by treating user
preference as the constraint.

B Additional Results

B.1 Full Results of Data Sampling

We show the full results of data generation on 9
policy models in Fig. 9.

B.2 Instruction Following

Head-to-head comparison of PRS and PRand after
3 iterations of RL training is shown in Fig. 10.

B.3 Ablation Study

In our ablation study, we evaluate the impact of re-
moving the optimization of p(y1|x, z,y0,f) dur-
ing PRS RL training. We apply tree-based genera-
tion after each RL iteration to sample outputs. As
shown in Fig. 13, skipping this optimization results
in lower rewards. Additionally, the performance
declines in the ablated baseline starting from the

third RL iteration, highlighting the importance of
this component.

C Details of Preference Adaptation

We assess the adaptability of models to input prefer-
ences by specifying a desired output preference af-
ter the input question. Our comparison focuses on
the methods of PRS, PRand, and Rand, examining
how different sampling approaches influence the
alignment of models with user preferences. Both
PRS and PRand are designed to train models ex-
plicitly to adhere to given preferences, unlike Rand
which does not incorporate preference training.

Given the impracticality of evaluating every con-
ceivable preference, we define five types of prefer-
ences which are conciseness, thoroughness, clarity,
professional tone, and humorous tone. To ensure
robust generalization, we use GPT-4 to formulate
20 unique expressions for each preference cate-
gory. Each preference within a category conveys
the same underlying preference but is expressed
in different styles. We present one expression for
each category as follows:
• Conciseness: I prefer short and sweet responses.
• Thoroughness: I prefer responses that delve

deeply into the topic and provide comprehensive
insights.

• Clarity: I prefer responses that are clear and
straightforward, avoiding any unnecessary com-
plexity or jargon.

• Professional Tone: I prefer responses that main-
tain a professional tone throughout the conversa-
tion.

• Humorous Tone: I prefer responses with a side
of humor, please.

Sample preferences are shown in Table 7.
We sample 100 test cases from AlpacaEval for

evaluation. We conduct a head-to-head compar-
ison between the models tuned by PRS, PRand,
and Rand. For each category, we randomly sample
an expression from 20 candidates and append the
preference after the input prompt when generating
a response. We also use GPT-4 as the evaluator,
adapting the evaluation code from AlpacaEval. We
specifically indicate a preference type for GPT-4 to
choose a better-aligned response from two candi-
dates.

D Prompts used in PRS

For instruction following, we present the prompt
used for generating feedback in Fig. 14, the prompt
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Safe and Harmless Preferences

1 I prefer a response that is considerate, safe, and avoids any sensitive or potentially harmful
content, without causing any offense or discomfort.

2 I prefer a response that is mindful, secure, and steers clear of any sensitive or potentially
damaging material, ensuring it doesn’t cause offense or discomfort.

3 I prefer a response that is thoughtful, safe, and carefully avoids any sensitive or potentially
harmful subjects, ensuring no offense or discomfort is caused.

4 I prefer a response respectful, cautious, and deliberately evades any delicate or potentially
injurious topics, so as to prevent causing any upset or unease.

5 I prefer a response that’s thoughtful and secure, meticulously avoiding topics that might be
sensitive or harmful, thereby ensuring nobody feels offended or uncomfortable.

Table 6: The safe and harmless preferences used for toxicity reduction.

for revising the response with feedback in Fig. 15,
and the prompt for direct refinement without feed-
back in Fig. 16. For keyword-focused document
summarization, the prompt for providing feedback
is shown in Fig. 17 and the prompt for refinement
with feedback is shown in Fig. 18.

E Details of Preference Generation

List of Professions. We have 222 professions in
total divided into different categories:
• Information Technology: Software Devel-

oper, System Administrator, Network Engineer,
Database Administrator, IT Support Specialist,
Security Analyst, Data Scientist, Business Ana-
lyst, IT Project Manager, Web Developer, Qual-
ity Assurance Analyst, DevOps Engineer, Cloud
Solutions Architect, IT Consultant, UX/UI De-
signer, Technical Writer, Mobile App Developer,
Data Analyst, Information Systems Manager,
and Computer Systems Analyst.

• Business: Accountant, Financial Analyst, Mar-
keting Manager, Sales Representative, Busi-
ness Analyst, Operations Manager, Human Re-
sources Specialist, Management Consultant, En-
trepreneur, Product Manager, Project Manager,
Supply Chain Analyst, Customer Service Repre-
sentative, Business Development Manager, and
Data Analyst.

• Retail: Cashier, Sales Associate, Store Manager,
Assistant Store Manager, Retail Merchandiser,
Customer Service Representative, Stock Clerk,
Visual Merchandiser, Loss Prevention Officer,
Department Manager, Buyer, Inventory Control
Specialist, Store Owner, E-commerce Specialist,
and Retail Sales Consultant.

• Health and Social Work: Doctor, Nurse, So-
cial Worker, Physical Therapist, Occupational

Therapist, Dentist, Pharmacist, Clinical Psy-
chologist, Counselor, Healthcare Administra-
tor, Medical Laboratory Technician, Home
Health Aide, Radiologic Technologist, Dietitian,
Speech-Language Pathologist, Medical Assis-
tant, Public Health Specialist, Chiropractor, Op-
tometrist, Mental Health Technician, and Health
Educator.

• Transportation: Truck Driver, Delivery Driver,
Bus Driver, Taxi Driver, Pilot, Flight Attendant,
Railway Conductor, Train Operator, Ship Cap-
tain, Sailor, Air Traffic Controller, Logistics Co-
ordinator, Supply Chain Manager, Freight Agent,
Transportation Planner, Transportation Engineer,
Bicycle Courier, Warehouse Worker, Forklift Op-
erator, and Aircraft Maintenance Technician.

• Writing and Creative Arts: Author, Screen-
writer, Journalist, Editor, Copywriter, Content
Creator, Blogger, Playwright, Poet, Graphic
Designer, Illustrator, Animator, Photographer,
Videographer, Filmmaker, Actor, Director, Pro-
ducer, Musician, Composer, Visual Artist, Sculp-
tor, Painter, Dancer, Choreographer, and Perfor-
mance Artist.

• Broadcasting and Entertainment: Actor, Di-
rector, Producer, Screenwriter, Cinematographer,
Film Editor, Broadcast Journalist, Television Pre-
senter, Radio Presenter, News Anchor, Camera
Operator, Sound Engineer, Lighting Technician,
Production Designer, Makeup Artist, Costume
Designer, Animator, Visual Effects Artist, Mu-
sic Composer, Singer, Musician, Stand-up Co-
median, Talent Manager, Casting Director, and
Stage Manager.

• Law and Order: Lawyer, Paralegal, Judge,
Police Officer, Correctional Officer, Detective,
Prosecutor, Public Defender, Legal Assistant,
Bailiff, Criminologist, Forensic Scientist, Court
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Reporter, Private Investigator, Legal Secretary,
Probation Officer, Court Clerk, Security Guard,
Prison Warden, and Compliance Officer.

• Sports and Recreation: Athlete, Coach, Sports
Agent, Physical Therapist, Personal Trainer, Ref-
eree/Umpire, Sports Journalist, Sportscaster, Fit-
ness Instructor, Recreation Worker, Athletic
Trainer, Sports Photographer, Sports Marketing
Specialist, Sports Psychologist, Sports Nutrition-
ist, Gym Manager, Outdoor Activity Coordi-
nator, Sports Statistician, Team Manager, and
Scout.

• Education: Teacher, School Principal, School
Counselor, Librarian, Teaching Assistant, Edu-
cation Administrator, Instructional Coordinator,
Special Education Teacher, University Professor,
Tutor, Educational Consultant, College Admis-
sions Officer, Academic Advisor, School Psy-
chologist, Education Policy Analyst, Curricu-
lum Developer, Education Researcher, Literacy
Coach, Physical Education Teacher, and ESL
Teacher.

• Scientific Research: Research Scientist, Labo-
ratory Technician, Research Assistant, Data An-
alyst, Statistician, Biologist, Chemist, Physicist,
Biochemist, Clinical Research Associate, Epi-
demiologist, Environmental Scientist, Geneti-
cist, Microbiologist, Astrophysicist, Geologist,
Postdoctoral Researcher, Principal Investigator,
Research Fellow, and Scientific Writer.

Preference Annotation. We use GPT-3.5-turbo
to generate the preferences. For each prompt from
Alpaca-GPT4, we use the template in Fig. 19 to
generate the preference, where the generation is
conditioned on the question and a profession name.
The profession name is randomly selected from the
profession name list. After obtaining a preference,
we further prompt GPT-3.5-turbo to revise its out-
put to make the generated preference general and
applicable to different questions. In Fig. 20, we
present a variety of generated preferences, illustrat-
ing the diversity in the preferences that the method
can produce.

F Sample Outputs of Different Baselines

We display sample outputs in Tables 8 and 9.
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Conciseness

1 I prefer short and sweet responses.
2 I prefer answers that are to the point.
3 I prefer concise explanations, no fluff.

Thoroughness

1 I prefer responses that delve deeply into the topic and provide comprehensive
insights

2 I prefer when the information is thorough and covers all aspects, leaving no
stone unturned.

3 I prefer a detailed exposition, with rich context and nuanced explanations.

Clarity

1 I prefer responses that are clear and straightforward, avoiding any unnecessary
complexity or jargon.

2 I prefer that you explain things simply, as if you were talking to someone who’s
completely new to the topic.

3 I prefer answers that are easy to understand and follow, without any convoluted
explanations.

Professional Tone

1 I prefer responses that maintain a professional tone throughout the conversation.
2 I prefer that the language used is formal and professional in nature.
3 I prefer the communication to be strictly professional.

Humorous Tone

1 I prefer responses with a side of humor, please.
2 I prefer my information served with a chuckle.
3 I prefer answers that come with a comedic twist.

Table 7: Sample preferences with different expressions for each category. Three examples are shown in each
category.
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Figure 9: Results of data generation for instruction following: We focus on the common preference and use the
description in Table 1 to generate detailed and in-depth responses. (a) Policy Models: We use 9 policy models to
generate training data, which are Llama-2-13b + SFT, Mistral-7B-Instruct-v0.1, Mistral-7B-Instruct-v0.2, zephyr-
7b-beta, Tulu-2-7b-DPO, Tulu-2-13b-DPO, Vicuna-13b-v1.5, WizardLM-13B-V1.2 and Xwin-LM-13B-V0.2.
(b) Test samples: We randomly sample 100 prompts from Alpaca-GPT4.
(c) Setup: We sample N responses per prompt (i.e., 8, 16, 32, 64, or 128) using a specific sampling method. We
then average the top three rewards for each prompt, leading to an overall average score for the entire evaluation set.
We use UltraRM-13B to generate the reward.
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Figure 10: Head-to-head evaluation of PRS and PRand after 3 iterations of RL training. We use GPT-4 as the
evaluator.
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Figure 11: PRS vs. open-source models.
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Figure 12: Average rewards of training data for personalized preferences during RL training. 10k prompts from
Alpaca-GPT4 are used for sampling, each has a different preference exemplified by Table 1.
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Figure 13: We ablate to exclude the optimization of p(y1|x, z,y0, f) and use tree-based generation after each RL
iteration (N=16), focusing on instruction following with the common preference in Table 1.
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Please review the AI assistant's response to the user question presented below,
acting as an impartial judge. Your objective is to assess how well the reference
answer aligns with the user's preferences and suggest improvements. Structure
your feedback in bullet points for clarity and conciseness. Each point should
specifically reference a part of the reference answer, highlighting how it can be
better tailored to meet the user's expectations.

[Question]
{question}

[Start of the Reference Answer]
{answer}

[End of the Reference Answer]

[User Preference]
{preference}

Your feedback:

Figure 14: Prompt template for feedback generation, for the task of instruction following.

You are a skilled corrector tasked with enhancing a reference answer based on
specific user feedback. Your role is to refine the existing response, ensuring it
aligns more closely with the user's suggestions for improvement. Utilize the
feedback effectively to upgrade the reference answer, making it more relevant and
satisfactory to the user's expectations.

[Question]
{question}

[Start of the Reference Answer]
{answer}

[End of the Reference Answer]

[User Preference]
{preference}

[Feedback]
{feedback}

The improved answer (only generate the content that is relevant to the user
question):

Figure 15: Prompt template for refinement with feedback, for the task of instruction following.

You are a skilled corrector tasked with enhancing a reference answer. You need to
improve the reference answer to make it better align with the user's preference.

[Question]
{question}

[Start of the Reference Answer]
{answer}

[End of the Reference Answer]

[User Preference]
{preference}

The improved answer (only generate the content that is relevant to the user
question):

Figure 16: Prompt template for direct refinement without feedback, for the task of instruction following.
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Kindly evaluate the AI assistant's summarization of the provided article. Your task
is to impartially judge the conciseness and relevance of the summary, ensuring it
adheres to the specific user preference of being strictly within 3 sentences and
focused on the designated keywords. Please provide your feedback in bullet
points for clarity. In your points, reference specific parts of the AI's summary and
the article, suggesting precise improvements to better align with the user's
expectations for a keyword-focused summary.

[Article]
{passage}

[Summary]
{summary}

[User Preference]
1. A summary strictly within 3 sentences. 2. Focus on keywords of {keyword}.

Provide your feedback in bullet points for clarity. In your points, reference specific
parts of the AI's summary and the article, suggesting precise improvements to
better align with the user's expectations for a keyword-focused summary.

Your feedback:

Figure 17: Prompt template for feedback generation, for the task of summarization.

As an expert in topic-focused summarization, your task is to refine a summary
based on detailed user feedback. Focus on incorporating the user's preferences
as below for a concise, three-sentence summary that emphasizes specific
keywords. Use the provided feedback to enhance the clarity, relevance, and
precision of the summary, ensuring it closely aligns with the user's expectations.
Your goal is to modify the existing summary into a more effective and targeted
summary that meets the user's preference.

[Article]
{passage}

[Original Summary]
{summary}

[User Preference]
{preference}

[User Feedback]
{feedback}

The improved summary (only generate the content that is relevant to the
summary):

Figure 18: Prompt template for refinement with feedback, for the task of summarization.

First round:

Suppose you are a user using an AI model, and you have a specific
preference for the model's response. Based on the following profession
and the asked question, suggest one preference. You have to clearly
describe your preference.

Return the preference in a JSON format: {{"preference": the description of
the preference}}.
[Profession]
{profession}

[Question]
{question}

Second round:

You have to suggest a general preference that is applicable to other
questions.

Figure 19: Prompt template for generating preferences, for the task of instruction following.
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1. I prefer the AI model to provide well-researched and evidence-based information in its response.

2. I prefer the model to provide a concise and accurate answer without any unnecessary details or
explanations.

3. I prefer clear and concise responses that provide accurate and relevant information without any
unnecessary technical jargon or excessive details. Additionally, I appreciate if the response is well-
organized and easy to understand.

4. I prefer the model to provide concise and well-structured responses, with clear and coherent
explanations. The responses should be informative and relevant, addressing the specific question
asked. Additionally, I value the model's ability to provide accurate and up-to-date information,
supported by reliable sources if applicable.

5. I prefer a response that is concise, accurate, and provides practical solutions or actionable steps.

6. I prefer concise and well-structured responses that provide accurate and relevant information.
Please avoid unnecessary repetition, irrelevant details, or excessive technical jargon. Additionally, it
would be helpful if the response includes clear examples or supporting evidence to enhance
understanding.

7. I prefer the AI model to provide concise and accurate responses with a friendly and conversational
tone.

8. I prefer the AI model to provide concise and clear responses that directly address the question
asked. It should avoid providing excessive or irrelevant information.

Figure 20: Sample annotated preferences by GPT-3.5-turbo.
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Do dinosaurs really exist?
Rand Yes, dinosaurs are a group of extinct reptiles that lived on Earth during the Mesozoic Era, which lasted

from about 250 million to 66 million years ago. The term "dinosaur" was coined by Sir Richard Owen in
1842, and it means "terrible lizard."
There is overwhelming evidence that dinosaurs existed, including fossils found all over the world, as well
as scientific research and analysis of these fossils. Paleontologists have discovered thousands of different
species of dinosaurs, ranging in size from tiny, bird-like creatures to massive giants like Tyrannosaurus
rex.
While there is no doubt that dinosaurs existed, there is still much that we don’t know about them, such
as how they behaved, what their environments were like, and why they went extinct. However, through
continued research and discovery, scientists are constantly learning more about these fascinating creatures.
Do dinosaurs really exist?
I prefer responses that are informative, precise, creative, detailed, relevant, and in-depth.

Rand + p Yes, dinosaurs existed. They were a group of animals that lived on Earth during the Mesozoic era, which
lasted from about 250 million to 66 million years ago. The first known dinosaurs appeared around 230
million years ago and went extinct at the end of the Cretaceous period, about 66 million years ago.
There are many different types of dinosaurs, including Tyrannosaurus rex, Triceratops, Velociraptor,
Stegosaurus, Diplodocus, and Brachiosaurus. These animals ranged in size from small, bipedal carnivores
like Velociraptor to massive, quadrupedal herbivores like Apatosaurus. Some dinosaurs had feathers,
while others had armor or spikes on their bodies.
Dinosaur fossils have been found all over the world, including North America, South America, Africa,
Europe, Asia, and Australia. These fossils provide evidence of what these animals looked like and how
they lived. Scientists use this information to learn about the evolution of life on Earth and to understand
the history of our planet.

PRand Yes, the dinosaurs really existed. They were a diverse group of reptiles that lived on Earth during the
Mesozoic Era, which lasted from about 251 to 66 million years ago. The first dinosaurs appeared in the
Triassic period and went extinct at the end of the Cretaceous period.
Dinosaurs were large, land-dwelling animals that varied greatly in size, shape, and behavior. Some were
herbivores (plant-eaters) like the long-necked sauropods such as Brachiosaurus and Diplodocus, while
others were carnivores (meat-eaters) like Tyrannosaurus rex and Velociraptor. Some dinosaurs could fly,
like Pteranodon, while others could swim, like Spinosaurus.
There have been many discoveries of fossilized remains of dinosaurs around the world, providing evidence
of their existence. These include complete skeletons, tracks, eggs, nests, and even preserved soft tissues.
Scientists use these fossils to study the evolution, anatomy, and behavior of dinosaurs, helping us
understand more about life on Earth millions of years ago.

PRS Yes, dinosaurs are a group of extinct reptiles that lived on Earth during the Mesozoic Era, which lasted
from approximately 252 to 66 million years ago. They first appeared in the fossil record during the
Triassic Period and became extinct at the end of the Cretaceous Period, along with many other species due
to a massive asteroid impact.
Dinosaurs were diverse and came in various shapes and sizes, ranging from small bird-like creatures to
gigantic herbivores and carnivores. Some well-known dinosaurs include Tyrannosaurus rex, Triceratops,
Stegosaurus, and Velociraptor. These animals had unique features such as horns, spikes, plates, and
feathers that helped them adapt to their environment.
The discovery of dinosaur fossils has played a crucial role in our understanding of the history of life on
Earth. Paleontologists have found thousands of dinosaur fossils all over the world, providing valuable
insights into how these creatures evolved over time and what kind of environments they inhabited.
By studying dinosaur fossils, we can learn about the geological changes that occurred throughout the
Mesozoic Era, including shifts in climate, sea level, and landmass distribution.
Overall, there is overwhelming evidence supporting the existence of dinosaurs. Their remains have been
found in rocks dated back millions of years ago, and their fossils show distinctive characteristics that
differentiate them from other animals alive today. Therefore, it is reasonable to conclude that dinosaurs
were real animals that once roamed our planet.

Table 8: Example 1 demonstrates outputs using different sampling methods to align the language model.
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Decide whether children can watch the given movie. Mention what makes it inappropriate if you think
they can’t.
The Dark Knight (2008)

Rand The Dark Knight is a superhero film that follows the story of Batman as he battles against the villainous
Joker. While it does not contain any explicit content, the movie has a dark and intense tone that may be
too mature for younger children. Additionally, some scenes feature violence and action sequences that
could be frightening for young viewers. Overall, I would recommend this movie for teenagers or adults
who are comfortable with its themes and imagery.
Decide whether children can watch the given movie. Mention what makes it inappropriate if you think
they can’t.
The Dark Knight (2008)
I prefer responses that are informative, precise, creative, detailed, relevant, and in-depth.

Rand + p The Dark Knight is a superhero film that follows the story of Batman as he tries to take down the criminal
mastermind, the Joker. The movie has received critical acclaim for its performances, direction, and themes,
but it also contains some mature content that may not be suitable for younger audiences.
While children can certainly watch The Dark Knight, parents should exercise caution and consider their
child’s age before allowing them to do so. The movie features intense violence, language, and themes
of death and tragedy that may be too mature for younger viewers. Additionally, the Joker’s character is
particularly disturbing and may frighten young children.
Overall, while The Dark Knight is an excellent movie, parents should use their discretion when deciding
whether or not to allow their children to watch it.

PRand The Dark Knight is a superhero film based on the DC Comics character Batman. The movie follows Bruce
Wayne, who assumes the identity of Batman to protect Gotham City from criminals. The film explores
themes such as crime, corruption, and morality. It was rated PG-13 for intense sequences of violence and
menace, some sexual content, and language.
In my opinion, children can watch The Dark Knight with parental guidance. While the movie has some
violent scenes, they are not overly graphic or gory. There is also some sexual content, but it is not explicit
or gratuitous. The language used in the movie is also not too crude or offensive. However, parents should
be aware that the movie deals with mature themes and may be too complex for younger audiences to fully
understand. Additionally, the film’s runtime is over two hours long, which could make it difficult for
younger children to sit through without getting restless. Overall, I believe that older children (age 13 and
above) can enjoy The Dark Knight with proper supervision and discussion with their parents about its
themes and content.

PRS The Dark Knight is a 2008 superhero movie based on the DC Comics character Batman. The film features
intense violence, profanity, and mature themes that may not be appropriate for children.
Violence: The Dark Knight contains numerous scenes of violent crime, including gunfire, explosions,
and hand-to-hand combat. These scenes can be particularly disturbing for younger viewers who may not
understand the context or consequences of such violence.
Profanity: The film also includes frequent use of strong language, including profanities like \"f**k\" and
\"sh*t.\" This type of language can be jarring for some parents who want to shield their children from
hearing such words.
Mature Themes: In addition to its violence and language, The Dark Knight deals with complex issues
like terrorism, corruption, and moral ambiguity. These themes can be challenging for young children to
process and may require additional discussion or explanation from parents after watching the movie.
Overall, while The Dark Knight is an excellent film for older teenagers and adults, it may not be suitable
for younger children due to its intense content and mature themes. Parents should exercise caution when
deciding whether to allow their children to watch this movie.

Table 9: Example 2 demonstrates outputs using different sampling methods to align the language model.
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