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Abstract

This paper introduces the concept of actionabil-
ity in the context of bias measures in natural
language processing (NLP). We define action-
ability as the degree to which a measurement’s
results enable informed action and propose a
set of desiderata for assessing it. Building on
existing frameworks such as measurement mod-
eling, we argue that actionability is a crucial
aspect of bias measures that has been largely
overlooked in the literature. We conduct a com-
prehensive review of 146 papers proposing bias
measures in NLP, examining whether and how
they provide the information required for ac-
tionable results. Our findings reveal that many
key elements of actionability, including a mea-
sure’s intended use and reliability assessment,
are often unclear or absent. This study high-
lights a significant gap in the current approach
to developing and reporting bias measures in
NLP. We argue that this lack of clarity may im-
pede the effective implementation and utiliza-
tion of these measures. To address this issue,
we offer recommendations for more compre-
hensive and actionable metric development and
reporting practices in NLP bias research.

1 Introduction

As the landscape of bias measures in natural lan-
guage processing (NLP) has expanded, so too has
the literature examining and interrogating these
measures (e.g., Blodgett et al., 2021; Goldfarb-
Tarrant et al., 2021; Delobelle et al., 2022; Orgad
and Belinkov, 2022; Selvam et al., 2023; Goldfarb-
Tarrant et al., 2023c; Tokpo et al., 2023). In particu-
lar, increasingly rich reflections within and beyond
NLP have offered vocabularies and frameworks for
navigating this landscape; for example, the frame-
work of measurement modeling from the quantita-
tive social sciences disentangles what is measured
(a theoretical construct) from how it is measured
(its operationalization), and offers the vocabulary

*Joint first authors.

of validity and reliability for assessing measures
(Jacobs and Wallach, 2021; Blodgett et al., 2021).

Across the literature proposing and examining
bias measures, talk about measures is often infor-
mally tied to talk about what can be done with
results produced by measures—i.e., measures’ re-
sults are often used in decision-making, and good
measures should not only exhibit characteristics
such as validity and reliability, but should also
facilitate decision-making or intervention. For
example, natural language generation practition-
ers use the results of automated metrics to select
which models should undergo human evaluation
(Zhou et al., 2022b), while other measures’ results
might guide policies for model release and deploy-
ment (Solaiman, 2023). Together, this suggests
another piece of vocabulary with which we might
assess bias measures. In this paper, we seek to
formalize this intuition by introducing actionabil-
ity—the degree to which a measure’s results enable
informed action—and outlining a set of desiderata
for actionability—what information is required of
a bias measure in order to act based on its results.

At the same time, while the measurement mod-
eling literature has shown the importance of clearly
conceptualizing bias and establishing bias mea-
sures’ validity and reliability, it has also shown that
the NLP literature routinely fails to do so. For ex-
ample, bias in the NLP literature is often underspec-
ified (Blodgett et al., 2020), and measures are often
poorly matched to the constructs they are intended
to measure (Gonen and Goldberg, 2019; Blodgett
et al., 2021) or lack sufficient description to es-
tablish a match altogether (Goldfarb-Tarrant et al.,
2023c). Hypothesizing that the literature may simi-
larly seldom assess what bias measures can be used
for, and whether enough information is provided to
facilitate that use, we conduct a review of 146 pa-
pers proposing bias measures, examining whether
and how papers provide the information required
to act based on the proposed measures’ results.
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We find that many desiderata for actionability,
such as a bias measure’s intended use or an assess-
ment of its reliability, are often not clearly provided
or go unstated altogether. We argue that this lack of
clear information may hinder bias measures’ effec-
tive implementation and use, and offer suggestions
for improving the development and dissemination
of bias measures in NLP research.

2 Actionability

In this section, we introduce and formalize action-
ability, draw connections between actionability and
other concepts related to the trustworthy NLP lit-
erature, and provide an example of a bias measure
and the actions it facilitated.

We introduce actionability in order to answer
the question: What is required of a bias measure
in order to take informed actions based on its
results? Following Dev et al. (2022), we define
a bias measure as an “evaluation standard that
includes a metric(s) applied to a dataset” which
is applied to measure “bias,” itself a contested
and often underspecified construct (Blodgett et al.,
2020). Throughout the paper we use “bias” to
refer expansively to the wide range of concerns,
impacts, and harms that work in the NLP literature
has sought to measure under the term “bias.”

Actionability refers to the degree to which a mea-
sure’s results enable decision-making or interven-
tion; that is, results from actionable bias measures
should facilitate informed actions with respect to
the bias under measurement. Such results might
communicate aspects of the measured bias such
as who is impacted or harmed by a system, the
degree and scale of impact or harm, or potential
sources of the issue. In turn, the decisions or in-
terventions that these results enable might include
targeted improvements to training or fine-tuning
processes (e.g., Talat and Lauscher, 2022; Lauscher
et al., 2021; Delobelle and Berendt, 2023; Bartl
et al., 2020; Attanasio et al., 2022), deployment of
appropriate safeguards (e.g., Tamkin et al., 2023;
Suau et al., 2024; Bauer et al., 2024), decisions to
re-design or not to deploy (Birhane et al., 2024), or
changes in regulation or policy (Kolkman, 2020;
Sztandar-Sztanderska and Zieleńska, 2022).

The ability to act on bias measure results may
not be equally distributed among stakeholders,
as power or organizational dynamics can shape
their ability to intervene. For example, while
some results may suggest that retraining a model

or delaying a system’s deployment would be
effective interventions, stakeholders might not
be equally empowered to take such actions.
Stakeholders such as consumers may only be in
a position to opt out of using or providing data for
a system (Gangadharan, 2021), while regulators
may choose to sanction—e.g., by issuing fines or
outright banning uses that are not compliant with
regulation—or allow particular applications.

To better situate actionability, we consider
it against other concepts the responsible NLP
literature—specifically, accountability, trans-
parency, interpretability, and validity—beginning
with accountability. Evaluations or audits of AI
systems are often conducted (implicitly or explic-
itly) with the goals of “establish[ing] informed
and consequential judgments of... AI systems”
(Birhane et al., 2024)—e.g., whether a system’s
behavior is legally compliant—and holding AI
providers accountable—i.e., “responsible or an-
swerable for a system, its behavior and its potential
impacts” (Raji et al., 2020). However, as Birhane
et al. write, in practice “AI audit studies do not
consistently translate into more concrete objectives
to regulate system outcomes.” Thus, we see the
actionability of a bias measure as a component
for ensuring that results from bias measures can
translate into action that shapes system outcomes
and policy and holds providers responsible.

Research on the transparency of AI systems has
argued for the importance of “develop[ing] more
trustworthy AI” (Larsson and Heintz, 2020). Using
Liao and Wortman Vaughan’s (2024) definition of
(informational) transparency as “what informa-
tion about a model [or system] should be disclosed
to enable appropriate understanding,” we see trans-
parency as required for actionability. That is, it is
impossible for stakeholders to act upon the results
of a bias measure without crucial knowledge about
a system’s design and deployment.

The interpretability of a model attends to
whether we understand the process by which the
model produces an output (Ribeiro et al., 2016;
Doshi-Velez and Kim, 2017). Analogously, the in-
terpretability of a bias measure attends to whether
we understand the process by which a bias mea-
sure arrives at a result. Unlike actionability, inter-
pretability does not attend to whether that result
enables informed interventions—even if under-
standing why a measure produces a result can help
facilitate interventions (Attanasio et al., 2023).

The aspects of validity most closely related to
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actionability are the three addressing the use and
utility of a measure’s results: consequential validity,
predictive validity, and hypothesis validity.1 Con-
sequential validity involves “identifying and eval-
uating the consequences of using the measurements
obtained from a measurement model” (Jacobs and
Wallach, 2021). For bias measures, for example,
using a certain measure may make harm to some
populations more visible than others, depending on
which populations the measure was designed for,
or else a measure’s uptake—and the subsequent
optimization of models towards it—may have un-
intended effects. Thus, consequential validity is
related to actionability, as one consequence of us-
ing a bias measure’s results is precisely the deci-
sions or interventions that might be made on the
basis of those results; therefore, in developing ac-
tionable metrics, practitioners should consider the
consequences of the decisions and interventions
that those metrics facilitate.

Meanwhile, predictive validity captures “the
extent to which measurements obtained from a
measurement model are predictive of measure-
ments of any relevant observable properties...
thought to be related to the construct purported
to be measured,” while hypothesis validity
captures “the extent to which the measurements
obtained from a measurement model support
substantively interesting hypotheses about the
construct purported to be measured” (Jacobs and
Wallach, 2021).2 We argue that for bias measures,
actionability is very closely related to predictive
and hypothesis validity, as bias measure results that
enable decisions or interventions also implicitly or
explicitly support a particular type of hypothesis—
i.e., a hypothesis that some decision(s) or
intervention(s) can meaningfully address the bias
under measurement. While actionability can thus
be understood as a narrower form of hypothesis
validity, we propose it as its own concept to draw
attention to the specific types of hypotheses—i.e.,
about meaningful decisions or interventions—that
we argue bias measures should support.

While other types of validity—face, content,
convergent, and divergent validity—appear less di-
rectly related to actionability conceptually, we see

1Validity has been conceptualized in several ways; we use
the conceptualization from Jacobs and Wallach (2021).

2We consider predictive and hypothesis validity together
because, as Jacobs and Wallach (2021) point out, “the
main distinction between predictive validity and hypothesis
validity hinges on the definition of ‘substantively interesting
hypotheses,”’ and that “distinction is not always clear cut.”

them as no less important; bias measures that do not
capture all relevant aspects of the bias to be mea-
sured, or whose results are implausible or fail to cor-
relate with other measures’ results (Jacobs and Wal-
lach, 2021), are unlikely to enable informed action.

Similarly, measures that are not reliable are un-
likely to be actionable, as their results may not pro-
vide a sufficient basis for making well-informed de-
cisions. In this desideratum we include test-retest
reliability—i.e., whether similar inputs yield simi-
lar results (Jacobs and Wallach, 2021)—as well as
the reporting of a measure’s margins of error; statis-
tical tests used to assess results’ significance (Good-
man et al., 2016); and other analyses of possible
sources of uncertainty of results (Barrainkua et al.,
2023; Black et al., 2024), such as variation due
to choices of seed words (Antoniak and Mimno,
2021) or templates (Delobelle et al., 2022).

Example. In 2014, Amazon sought to develop an
AI system for screening candidate resumés, which
was ultimately discontinued in 2018 because it
ranked female candidates lower than male candi-
dates (Anonymous, 2016). While we do not know
the exact details of the bias measure(s) Amazon
used to assess the system, the results did facilitate
understanding of who might have been impacted—
people who had attended women’s colleges used
the word “women’s” on their resumés, or did not
use words “more commonly found on male engi-
neers” resumés, such as ‘executed”’—all dispro-
portionately women and gender minorities (Dastin,
2018). We also know that the results enabled at
least three actions: first, Amazon attempted to mit-
igate the issue, “edit[ing] the programs to make
them neutral to [the terms mentioned]”; second,
Amazon discontinued the use of the system for
ranking candidates and “disbanded the team [build-
ing the system]”; and finally, Amazon moved to-
wards using a “‘much-watered down version”’ for
to help with ‘rudimentary chores,’ including culling
duplicate candidate profiles” (Dastin, 2018).

This example illustrates how results from bias
measures can facilitate various actions from vari-
ous stakeholders, including mitigation attempts by
system developers and decisions to discontinue or
to use alternate versions for different purposes by
(presumably) Amazon leadership. It further illus-
trates the importance of transparency—specifically,
the lack of external transparency with respect to re-
sults of Amazon’s bias measures, and to the active
use of the system between 2015 and 2018. Had
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the biases of the system been public knowledge,
stakeholders outside the project team and Amazon
leadership would have been able take action—e.g.,
individuals would have been able to withdraw ap-
plications or choose not to apply, while regulators
would have the ability to sanction the use of a sys-
tem that was in breach of regulation around gender
discrimination in hiring. Insofar that the results of
a bias measure of the system are not disclosed to
the public and regulators, both are precluded from
informed and meaningful action.

3 Desiderata for Actionability

What, concretely, makes a bias measure action-
able? In this section, we outline desiderata for bias
measures—i.e., information that a measure should
provide and justify to enhance its actionability. We
draw these desiderata from prior literature related
to responsible NLP, including work on fairness in
machine learning and NLP (Mitchell et al., 2021;
Czarnowska et al., 2021), measurement (Blodgett
et al., 2021; Jacobs and Wallach, 2021), and AI
auditing and algorithmic accountability (Raji et al.,
2020; Birhane et al., 2024). We will also use these
desiderata as the basis for our taxonomy and survey
in the remainder of this paper.

Motivation. The motivation for a proposed bias
measure specifies what need the measure is in-
tended to address, e.g., measuring direct discrimi-
nation (Sweeney and Najafian, 2019), adapting to
new socio-cultural contexts (Bhatt et al., 2022), or
extending to new languages (Huang et al., 2020).

A clearly described motivation can increase a
measure’s actionability by helping people using
the measure to assess whether the bias they seek
to measure and the system and context of use for
which they seek to measure bias are well-matched
to the need the measure is intended to address.

Underlying bias construct. Drawing on
measurement modeling, we view bias as an unob-
servable theoretical construct operationalized via
bias measures (Jacobs and Wallach, 2021). Under
this view, a proposed bias measure is always accom-
panied, implicitly or explicitly, by an underlying
theoretical understanding of what constitutes bias.
However, these theoretical understandings are not
always clearly specified or conceptualized; Blod-
gett et al. (2020) illustrate that “bias” in the NLP
literature is often underspecified, and Jacobs and
Wallach (2021) argue that disagreements in the AI

fairness literature often arise because authors rarely
make explicit their theoretical understandings of
fairness, which has many “context-dependent, and
sometimes even conflicting” understandings.

We argue that clarity in the conceptualization
of a bias measure’s underlying construct can
increase the measure’s actionability, as a bias
construct articulates the measure’s scope—e.g.,
what impacts or harms the measure is intended
to capture, for which populations those impacts
or harms are intended to be captured, or what
constitutes impact or harm. If the bias construct
is not clearly specified and conceptualized, it
becomes unclear how the measure’s results speak
to any impacts or harms, and is therefore unlikely
that those results can facilitate informed action.

Interval and ideal result. Understanding, and
therefore acting, on the results of a measure
requires clearly articulated information about the
values a result can take on; these values inform
the statistical analyses that can be performed and
the interpretations that can be made. Minimally,
actionability requires descriptions of: first, the
numerical domain of the result (natural, real, or
rational);3 second, the interval a measure operates
on—i.e., the values the result can take on—which
may or may not be bounded (log-likelihood-based
measures being an example of the latter (Webster
et al., 2021)); and third, the scale of the interval—
for example, for measures on a logarithmic scale
a result of 10 might be much worse than 3, but
not that much better than 20. The numerical
domain and the bounds and scale of the interval
are necessary for interpreting the result, as they
allow people using the measure to estimate how
far the result is from the interval bounds and what
it might mean relative to other possible results.

Proposed bias measures should also specify an
ideal result. The choice of an ideal result is inher-
ently normative, as it reflects a measure creator’s
perspective on what constitutes desired system be-
havior and how that is expressed in the measure’s
result.4 Specifying an ideal result can facilitate
a measure’s actionability by providing people us-
ing the measure with a clear goal or requirement,
particularly if the choice is explicitly connected to
the underlying bias construct and its wider socio-

3The interval might also not exist, e.g., in the case of results
taking on binary values.

4Setting ideal scores can be a difficult task that requires
taking into account social context, risks and desired outcomes.
See Kearns et al. (2018) for further discussion.
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historical context—e.g., for hiring, an ideal result
might be adherence to the four-fifths rule, a guide-
line for assessing what constitutes discrimination
in employment in the U.S. (Ajunwa et al., 2016).5

Intended use. Proposed bias measures should
specify under what circumstances or conditions the
measure should be expected to produce meaningful
results. This can include, for example, what types
of models or additional data are required to be used
in conjunction with the measure or which hyper-
parameters govern the behavior of the measure.
Broadly, intended use seeks to describe a wide
variety of conditions that may be mechanistic—-
e.g., models, data, or hyper-parameters—or social,
e.g., particular social settings in which the result of
a measure is considered meaningful.

For example, in some measures, the metric
is closely tied to a specific dataset or dataset
format—e.g., StereoSet’s (Nadeem et al., 2021)
stereotyping score aggregates a model’s prefer-
ences for stereotypical versus anti-stereotypical
completions and therefore requires a dataset
containing such stereotype/anti-stereotype pairs.
Moreover, StereoSet’s particular construction—i.e.,
its use of log-likelihood and pseudo-perplexity
to measure stereotyping—are designed for use
with masked language models and auto-regressive
language models respectively. By contrast,CrowS-
Pairs (Nangia et al., 2020), a similar measure, only
uses pseudo-perplexity and can therefore only
be used with masked language models.Thus, the
construction of StereoSet and CrowS-Pairs limits
their applicability to certain dataset and model
characteristics, and they may therefore be poorly
matched with other settings.

Providing descriptions of the mechanical condi-
tions and socio-historical context and that render
the result of a measure meaningful facilitates ac-
tionability by bounding a measure’s application
space, thereby giving potential users of a measure
the information needed to assess whether the mea-
sure is appropriate for their use cases. In particular,
when metrics and datasets are introduced together
to propose a new measure, specifying the intended
use can help to clarify how the dataset and metric
together make the measure fit-for-purpose, as well
as what other data the metric might potentially be
appropriately applied to, and vice versa.

5Ideal results are also often used in the standards identifi-
cation phase of AI audits (Birhane et al., 2024), to “effectively
articulat[e] the requirements for an ideal AI audit outcome.”

Reliability. As we discusss in Section 2, we view
the reliability of a bias measure as a prerequisite for
actionability. Thus, proposed bias measures should
explain how their reliability was assessed.

4 Literature review and analysis

To identify current trends and existing gaps in the
field, we conduct a literature review, examining
how papers proposing bias metrics engage with our
desiderata for actionability. While previous stud-
ies (e.g., Blodgett et al., 2020; Sheng et al., 2021;
Goldfarb-Tarrant et al., 2023c; Liu et al., 2023)
have explored how responsible NLP concerns (in-
cluding bias) and measures of those concerns are
described in the NLP literature, to the best of our
knowledge, this is the first review specifically fo-
cused on the actionability of bias measures.

Search methodology. Our search and paper se-
lection processes follow the PRISMA 2020 guide-
lines (Page et al., 2021) for systematic reviews and
meta-analyses (see Figure 1 in Appendix A for an
overview diagram).

We used the ACL Anthology API to identify
all papers whose title or abstract contains at least
one of the keywords “fair,” “bias,” or “stereotyp*”
and which co-occur with either “eval*” or “met-
ric.”6 Our search included all work published be-
fore April 2024. We augmented the initial set by
adding four papers from Delobelle et al. (2022) and
one paper from Orgad and Belinkov (2022), two
comprehensive surveys of recent bias evaluation
approaches. This yielded a total of 1181 papers.

Paper selection. Two of the authors filtered the
papers for relevance by reading titles and ab-
stracts,7 removing papers not written in English
or not proposing a new bias measure. As we de-
scribe in Section 2, we define a bias measure as
an “evaluation standard that includes a metric(s)
applied to a dataset” (Dev et al., 2022) which is
applied to measure bias. We use an intentionally
expansive definition to include a wide range of mea-
sures for a wide range of biases to capture as broad
a view of the literature as possible.

The two authors conducting the screening ini-
tially examined a shared pool of 140 papers, yield-

6We acknowledge that there might be papers that introduce
bias metrics for NLP models outside of the ACL community.
See Limitations (§7) for a discussion.

7If the title and abstract did not provide sufficient details to
decide, we read the full paper. In the few cases where it was
not readily apparent whether a paper introduced a new metric,
the authors all met to discuss the paper.
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ing an inter-annotator Fleiss kappa of 𝜅 = 0.76.
Disagreements during this initial screening arose
due to lack of clarity with respect to several in-
clusion criteria, including what constitutes “bias”
(e.g., caricatures (Cheng et al., 2023)) and a new
measure (i.e., a new dataset, a new metric, or both).
After discussion among the authors, we chose to re-
solve these as expansively as possible: we include
any papers that self-describe as engaging with bias
or stereotyping, regardless of how those terms are
conceptualized, and we included not only papers
introducing both a new dataset and a new metric
but also papers introducing just one or the other—
e.g., a paper adapting a measure from one language
variety to another by introducing a dataset in the
second language variety, to which the original met-
ric is intended to be applied. The authors then
screened the full set of 1181 papers, obtaining a
final set of 146 papers.8

Annotation. We annotate each paper in our final
set for whether and how it provides the information
required by our desiderata for actionability (Sec-
tion 3). Nearly all of the desiderata require open-
ended descriptions—e.g., of the bias construct to
be measured. We annotate for each desideratum by
extracting all directly relevant passages—e.g., the
passage(s) describing the bias construct—noting if
no passages match. For the ideal result and relia-
bility desiderata, we extracted two binary values:
whether each is described in the paper, and if so
whether each was clearly justified or assessed.

5 Threats to Actionability

Measures’ stated motivations rarely linked to
their use. We read and categorized all free-form
text passages describing motivations into a categor-
ical schema using an inductive process. For 20%
of papers, we were unable to identify any text pas-
sage with a clear motivation for introducing a new
measure. In all other cases, we were able to identify
clear motivations such as extending the measure to
another language, setting, or modality. A subset
of papers providing a motivation are motivated by
improving existing measures, e.g., Dinan et al.’s
(2020b) measure that “allow(s) for better identifi-
cation of gender bias,” or by addressing reliability
or reproducibility concerns.

8From a qualitative analysis, among excluded papers we
found i) papers mentioning inductive, lexical, or syntactic
bias, and ii) other papers related to social bias that that did not
introduce a bias measure, e.g., debiasing methods.

Although 80% of the papers provide a motiva-
tion, the degree to which that motivation is clear
and specific varies, leaving a large subset of papers
either vaguely gesturing towards a motivation. For
example, Yeh et al. (2023) motivate their work on
measuring bias in LLMs due to the existence of
“LangChain,” an underspecified “threat.”

“Although a plethora of research has been
dedicated to identifying bias in LLMs and
formulating debiasing techniques, there re-
mains an under-examined threat capable of
directly impacting LLMs using external data
without necessitating significant computa-
tional training resources. This hazard is
termed ‘LangChain.”’ – Yeh et al. (2023)

Similarly, while introducing a new debiasing
method for contextualized representations, Basu
Roy Chowdhury et al. (2021) introduce the use of
MDL as a bias measure as it is “finer grained,” how-
ever it is unclear why the granularity of accuracy
is unsatisfactory in their use case, or why other
measures, e.g., non-probing-based methods, were
not considered.

“We extend previous evaluation methodol-
ogy for debiasing by measuring Minimum
Description Length (MDL) [...] of labels
given representations, instead of probing ac-
curacy. MDL provides a finer-grained eval-
uation benchmark for measuring debiasing
performance.” – Basu Roy Chowdhury et al.
(2021)

Vague or non-existing motivations present a bar-
rier to the use of a measure, as readers are forced
to infer what need or use case a measure addresses
and whether a measure is appropriate for their use
case. Providing a clear motivation can be a simple
task. For instance, papers might introduce aspects
of bias that are not represented in other measures
but which they argue to be important:

“However, one aspect of bias that has re-
ceived less attention is offensive stereotyping
toward marginalised groups. For example,
using slurs to describe non-white or LGBTQ
communities or using swear words to de-
scribe women.” – Elsafoury et al. (2022)

Even for papers that do provide a concrete moti-
vation (see Table 1 for a breakdown), those motiva-
tions are routinely disconnected from the measures
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that are ultimately proposed. For example, Li et al.
(2022) motivate the work by referring to alloca-
tional harms in a resume classification system:

“Bias in NLP applications makes distinct
judgements on people based on their gen-
der, race, religion, region, or other social
groups could be harmful, such as automat-
ically downgrading the resumes of female
applicants in recruiting” – Li et al. (2022)

However, their measure quantifies stereotypical
group representations instead of the performance
differences or impacts on job seekers that this mo-
tivation alludes to.

Missing construct definition. For 25% of pa-
pers, it was impossible to understand what theo-
retical bias construct the authors intended to mea-
sure. For these papers, we were either unable to
identify a text passage describing the underlying
construct, or the construct definition was highly
underspecified—e.g., “immigrant bias” (Goldfarb-
Tarrant et al., 2023b). This finding is particularly
surprising considering recent critiques. For exam-
ple, about one-third of this set of papers cite Blod-
gett et al. (2020) explicitly, who argued for the
importance of clearly defining “bias.” As 72% of
all papers in our sample were published after 2020.
We therefore echo the argument presented by Blod-
gett et al. in 2020: that without a well-defined
theoretical bias construct “techniques are poorly
matched to their motivations, and are not compara-
ble to one another”, and that without a well-defined
theoretical bias construct, assessing the match be-
tween construct definition and operationalization
is impossible. Moreover, we believe that such a
lack forecloses meaningful analysis or action on
the basis of a measure’s result.

On a more positive note, we observe that 36%
of the papers include an explicit “Bias statement”
(Hardmeier et al., 2021). Such statements range
from brief descriptions relying on existing litera-
ture (e.g., Jeoung et al. (2023), or on theory about
stereotyping developed in Fiske (2018)), to more
detailed descriptions (e.g., Malik et al.’s (2022) ex-
planation of the caste system in India). Another
15% of the papers discuss downstream harms and
the risks of biased behaviors that the proposed met-
ric is intended to capture.

Mismatch between construct and its operational-
ization. We found that in 24% of the papers the

theoretical bias construct and operationalization
choices for the metric are conflated. Most often,
these papers do not discuss an underlying construct
and instead rely on other bias measures—often
WEAT (Caliskan et al., 2017)—to define “bias.”
Such choices, omitting a description or conflating
the definition and operationalization, present chal-
lenges to actionability. Similarly, we identified
instances where the construct and the operational-
ization were not aligned. For example, España-
Bonet and Barrón-Cedeño (2022) (vaguely) con-
ceptualized bias as social cultural biases, including
racism, ageism, sexism. Then, they operationalize
the measure using a WEAT test (Caliskan et al.,
2017). However, they measure two WEAT tests9

that are unrelated to the described bias construct

Reporting of interval and ideal result. Our anal-
ysis shows most papers (82%) report an interval or
variation of the measure they propose. Of these pa-
pers, 58% use a bounded range (e.g., [−1, 1], [0, 1]),
or their percentage equivalents. Other papers (12)
use logarithmic or other operators thatwresult in un-
bounded intervals on one or both sides.10 However,
even when evaluated against a reference, the rela-
tionship between the score and the impacts, e.g.,
the amount of stereotypical associations made in
generated text, remains opaque. It is, therefore,
necessary to measure against some external refer-
ence which is grounded in measuring the severity
of a model’s generations or predictions.

Many papers (77%) explicitly indicate the ideal
result a model should attain when assessed with
their proposed measure. Yet, only 32% of those
papers engage in discussions around the ideal result
or offer insights into its interpretation. One method
for discussing the ideal outcome is to explicitly
describe the behaviour of an ‘ideal’ model, e.g.,

“IDEALLM We define this hypothetical
model as the one that always picks correct
associations for a given target term context.
It also picks equal number of stereotypical
and anti-stereotypical associations over all
the target terms. So the resulting lms and
ss scores are 100 and 50 respectively.” –
Nadeem et al. (2021)

9Pleasant/unpleasant versus flowers/insects (WEAT1) and
musical instruments/weapons (WEAT2).

10Unbounded intervals are often a natural consequence of
likelihood-based evaluations, but they are ill-suited for evalua-
tion without a reference point, e.g., another model or an ideal
score.
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Without a discussion of the ideal score for a
measure—which the creators of a measure are best
suited to provide—users of the measure are left
with an insufficient basis to determine if it is de-
sirable to act on outcomes of the measure, and are
thus inhibited from acting.

Unstated intended use. Almost half of all papers
(47%) in our sample do not mention any intended
use of their measure. Of the remaining papers,
there are also cases where the intended use is only
discussed in terms of future work that may be en-
abled by the paper, e.g.,

“Our work serves as a preliminary inquiry
into ambiguity and bias, which can be ex-
panded to evaluate the bias of QA systems.”
– Mao et al. (2021)

A small subset of measures—from 34 papers—
are more concrete and mention constraints that
scope the use of the measure, by stating that their
measure is to be used with one task or domain, e.g.,

“We propose new methods to evaluate and
mitigate gender bias for languages with
grammatical gender and bilingual word em-
beddings [. . . ]” – Zhou et al. (2019)

By providing this information, potential users of
the measure can more easily determine whether it
suits their use case.

Missing discussion around reliability. Surpris-
ingly, we found that only 28 of the papers discuss
any aspect of reliability, implicitly—i.e., by pro-
viding interval ranges or significance scores with-
out accompanying discussion—or explicitly. Some
work also uses reliability as a motivation to intro-
duce a new measure (e.g., Nadeem et al., 2021;
Alnegheimish et al., 2022; Kwon and Mihindukula-
sooriya, 2022; Pikuliak et al., 2023)), for example,
by focusing on measures’ robustness:

“In this paper, we conduct an empirical
study to investigate the robustness of the
log-likelihood-based bias measure by para-
phrasing the test sentences as in Figure 1 and
analysing if they produce consistent results.”
– Kwon and Mihindukulasooriya (2022)

However, motivations around building more reli-
able measures do not necessarily translate into actu-
ally studying it. Only 42% of the papers that use re-
liability as a motivation for their work study the reli-
ability of their methods. See Table 1 for full details.

Motivation R𝑌 R𝑁
Lack of reliability of existing measures 8 11
Measuring a missing or new bias 8 6
Measuring in a new setting or modality 14 16
Adjusting existing measures11 10 10
Measuring in a new language 12 15
No or unclear motivation 7 26

Total 59 84

Table 1: Motivations provided for new measures. Ab-
solute counts in our collection (n=146) split into whether
the authors discuss reliability (R𝑌 ) or not (R𝑁 ).

6 Discussion

A considerable number of papers fail to provide
crucial details about what motivates a bias mea-
sure and how it should be used. Therefore, we
offer several suggestions for the development and
dissemination of new bias measures.▶ Be clear about motivations, intended uses,
and bias constructs. Why is a new bias measure
needed? How does it differ from existing measures,
and which issue(s) does it address? What is the bias
construct being operationalized? Without explicitly
answering such questions, it is impossible to assess
whether a measure addresses the need it is implic-
itly aimed at, or to which use cases it is well-suited.

Indeed, any proposed measure is accompanied,
implicitly or explicitly, with an intended use; most
papers introduce measures in the context of their
use for some model or system. What many papers
leave unstated is to which other settings a measure
may be applied—e.g., other models, domains, or
(social) contexts, if any. Therefore, practitioners
are, more often than not, unable to assess a mea-
sure’s suitability for their use cases.

Similarly, providing explicit reasoning about the
the construct a measure is intended to capture can
help prevent conflation between the conceptualiza-
tion and the operationalization of a construct (e.g.,
Jacobs and Wallach, 2021; Blodgett et al., 2021).
We argue that clearly articulating the underlying
construct can additionally help in defining the mea-
sure’s intended scope and use. This is particularly
important given that recent work has shown that
bias measures are often so closely tied to specific
use cases that they cannot be reused across tasks,
datasets, or languages (Delobelle et al., 2022; Or-

11By “adjusting” we understand measures which were cre-
ated by modifying existing measures, e.g., using a different
statistical test.
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gad and Belinkov, 2022).
Lack of clarity in motivation, intended use, or

bias construct may lead practitioners to adopt mea-
sures that are poorly matched to their own use cases
(e.g., without realizing that some of the design
choices for the measure are tied to particular in-
tended uses), or forego measures that would have
been appropriate due to insufficient knowledge of
their applicability.▶ Relate measures’ results with impacts or
harms arising from models or systems. Most
papers in our sample report either an interval of
variation, an ideal result, or both. Values for an
interval or ideal result represent some subjective
assessment of the desirability of model or system
behaviors at those values (Waseem et al., 2021).
However, we find that most papers only implicitly
relate measures’ results and model or system be-
haviors. We therefore encourage the creators of
measures to ground the values their measure can
take—at least for the ideal result and extrema—in
the expected behaviors, and resulting impacts or
harms, that a model or system might produce. Such
information can help future users determine the ap-
propriateness of a measure for their purposes, and
how to act in cases of deviation from ideal results
or relative distances from the extrema.▶ Always assess reliability. Only a very small
number of papers presenting bias measures for-
mally assess their reliability. Although this is-
sue has been raised before (e.g., Delobelle et al.,
2022; Orgad et al., 2022), it remains concerning.
Measurement processes that provide a basis for
informed decision-making by their nature rely on
reproducibility and predictable variation in mea-
sures’ results for their external justification. The
lack of information on reliability may ultimately
lead users of a measure to conclude that they cannot
act on it due to a lack of trust in the outcome.▶ Consider the target audience. When develop-
ing a bias measure, it is important to also consider
the stakeholders that might be using the measure,
and which actions are afforded to each stakeholder.
For example, while unbounded measures can be
useful for system developers, they may not be
very useful to regulators, decision-makers within a
company, or individuals potentially using a system
if they are not grounded in actual impacts or harms.

Moreover, although stakeholders may be—in
principle—equally able to take an action on the ba-
sis of some bias measures, which actions they are
afforded may differ based on their ability to directly

intervene in the system. For instance, individuals’
actions may be limited to refusal (Gangadharan,
2021) and collective action as means for changing
a system, while developers, companies, and regula-
tors can engage in more direct processes. Develop-
ers can address biases in models and systems; com-
panies can allocate resources for addressing them,
delay deployment, or retire models and systems
entirely; and regulators can engage in regulatory
processes to develop new regulation or apply exist-
ing regulation. When developing a bias measure,
it may therefore also be appropriate to consider
which stakeholder(s) the measure should enable to
take action.

7 Conclusion

We introduce actionability of bias measures,
identify several desiderata for the actionability, and
annotate 146 papers in the NLP literature for these
desiderata, finding that much information required
for actionability is under-specified or unstated.
This finding suggests that current measures may
not enable practitioners to meaningfully act
on their results. We provide recommendations
for future work that we hope can support the
development of actionable bias measures, and
believe that our desiderata can serve as a starting
point for broader discussions on how we assess
bias in models and systems, and more broadly help
minimize the disparity between research artifacts
and their practical uptake. Moreover, although
bias measures have been the focal point of our
intervention, further work could explore how our
framework might extend to other measurement
instruments. Such measurement instruments may
facilitate different possible actions or interventions
than bias measures, and actionability for those
instruments may demand different desiderata.

Limitations

This paper comes with several limitations.

Perspectives. When selecting our desiderata, we
reviewed literature within NLP and related fields,
which could limit the breadth of the desiderata for
actionability that we identified. Therefore, it is
possible that we overlooked potential desiderata
for actionable bias measures or provided a
definition of actionability that is too loose or too
stringent Moreover, depending on the context of
use, our desiderata might be “necessary” but not
“sufficient”—i.e., even if all desiderata are met,
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measures’ results might still not provide actionable
insights. We view this work as another point in a
longer discourse on the conceptual and practical
lack of clarity around bias measures (see also Blod-
gett et al., 2020, 2021; Jacobs and Wallach, 2021).

Methods. Our procedure of sampling papers
from the ACL Anthology has inherent limitations.
Although we incorporate some papers from other
sources, as discussed in Section 4, we primarily
focus on the ACL community, which prevents the
inclusion of significant contributions and perspec-
tives from machine learning venues. However, our
primary objective was to examine how authors dis-
cuss bias measures in the NLP literature, what in-
formation they choose to present, and whether this
information is sufficient for taking informed action
on the basis of the outcome of a measure; thus,
we conducted a large scale analysis of 146 papers
in the ACL Anthology prior to June 2024, ensur-
ing that our analysis is appropriate for language
technologies.

Ethics statement

Our paper assumes that language technologies will
be deployed in contexts where they are applied
to human data and may produce socially discrim-
inatory outcomes. We further assume that there
exist some individuals or organizations that would
be interested taking meaningful steps to measure
and mitigate the production of (algorithmic) dis-
crimination. Under such assumptions, providing
mechanisms and processes for determining the de-
gree to which a measure is actionable can be one
factor in choosing bias measures to apply. More-
over, measures with high degrees of actionability
can help facilitate trust in models and systems that
are deployed. Finally, due to our methods’ limita-
tions and our own subjectivities, the desiderata and
recommendations that we provide should be treated
as a starting point, rather than as conclusive.
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(2018); Escudé Font and Costa-jussà (2019); Sheng
et al. (2019); Stanovsky et al. (2019); Dinan et al.

(2020a); Gaido et al. (2020); Gaut et al. (2020); Liu
et al. (2020); Yeo and Chen (2020); Barikeri et al.
(2021); Jørgensen and Søgaard (2021); Renduch-
intala et al. (2021); Ross et al. (2021); Berg et al.
(2022); Borchers et al. (2022); Costa-jussà et al.
(2022); Kwako et al. (2022); Malik and Johans-
son (2022); Mansfield et al. (2022); Parrish et al.
(2022); Zhou et al. (2022c); Cabello et al. (2023);
Hosseini et al. (2023); Onorati et al. (2023); Rug-
geri and Nozza (2023); Wan et al. (2023a,b); Wang
et al. (2023b,a); Guo and Caliskan (2021).

Adjusting or improving an existing metric.
May et al. (2019); Garimella et al. (2019); Kurita
et al. (2019); Manzini et al. (2019); Dinan et al.
(2020b); Munro and Morrison (2020); Basta et al.
(2021); de Vassimon Manela et al. (2021); Levy
et al. (2021); Troles and Schmid (2021); Qian et al.
(2022); Valentini et al. (2022); Zhou et al. (2022a);
Esiobu et al. (2023); Hada et al. (2023); Ma et al.
(2023); Maheshwari et al. (2023); Prakash and Lee
(2023); Xie et al. (2023); Zakizadeh et al. (2023).

Measuring a missing or new type of bias. Tan
and Celis (2019); Ahn and Oh (2021); Dawkins
(2021); Nozza et al. (2021); Elsafoury et al. (2022);
Câmara et al. (2022); Honnavalli et al. (2022);
Li et al. (2022); Lin et al. (2022); Nozza et al.
(2022); Cheng et al. (2023); Goldfarb-Tarrant et al.
(2023b); Piergentili et al. (2023); Sandoval et al.
(2023); Savoldi et al. (2023); Sobhani et al. (2023).

Measuring bias in a new language. Zhou et al.
(2019); Chávez Mulsa and Spanakis (2020); Huang
et al. (2020); Kocmi et al. (2020); Hansson et al.
(2021); Jiao and Luo (2021); Ramesh et al. (2021);
Malik et al. (2022); B et al. (2022); Bhatt et al.
(2022); Cabello Piqueras and Søgaard (2022);
España-Bonet and Barrón-Cedeño (2022); Hansal
et al. (2022); Kaneko et al. (2022); Névéol et al.
(2022); Steinborn et al. (2022); Wairagala et al.
(2022); Billah Nagoudi et al. (2023); Costa-jussà
et al. (2023); Deas et al. (2023); Goldfarb-Tarrant
et al. (2023a); Khanuja et al. (2023); Köksal et al.
(2023); Martinková et al. (2023); Mukherjee et al.
(2023); Singh (2023); Wambsganss et al. (2023).

Unclear or no motivation. Kiritchenko and Mo-
hammad (2018); Basta et al. (2019); Bhaskaran and
Bhallamudi (2019); Bordia and Bowman (2019);
Friedman et al. (2019); Prabhakaran et al. (2019);
Sweeney and Najafian (2019); Zhao et al. (2019);
Bartl et al. (2020); Li et al. (2020); Nangia et al.
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Figure 1: PRISMA 2020 flow diagram of our paper collection.

(2020); Mao et al. (2021); Basu Roy Chowd-
hury et al. (2021); Ciora et al. (2021); Dev et al.
(2021); Bansal et al. (2022); Chalkidis et al. (2022);
Jentzsch and Turan (2022); Krishna et al. (2022);
Orgad et al. (2022); Savoldi et al. (2022); Smith
et al. (2022); Wang et al. (2022); Adewumi et al.
(2023); Deshpande et al. (2023); Jha et al. (2023);
Ladhak et al. (2023); Lee et al. (2023); Luukkonen
et al. (2023); Rao et al. (2023); Sabir and Padró
(2023); Touileb et al. (2023); Triboulet and Bouil-
lon (2023); Vargas et al. (2023); Yeh et al. (2023).
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