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Abstract

Despite the rapid progress of large language
models (LLMs), their task performance
remains sensitive to prompt design. Recent
studies have explored leveraging the LLM itself
as an optimizer to identify optimal prompts
that maximize task accuracy. However, when
evaluating prompts, such approaches heavily
rely on elusive manually annotated gold labels
to calculate task accuracy for each candidate
prompt, which hinders its generality. To over-
come the limitation, this work proposes GLaPE,
a gold label-agnostic prompt evaluation method
to alleviate dependence on gold labels. GLaPE
is composed of two critical aspects: self-
consistency evaluation of a single prompt
and mutual-consistency refinement across
multiple prompts. Experimental results on 8
widely-recognized reasoning tasks demonstrate
that GLaPE can produce more effective
prompts, achieving performance comparable
to those derived from manually annotated gold
labels. Analysis shows that GLaPE provides
reliable evaluations aligned with accuracy,
even in the absence of gold labels. Code
is publicly available at https://github.
com/thunderous77/GLaPE.

1 Introduction

As the integration of large language models (LLMs)
into natural language processing tasks has become
imperative in recent years (Achiam et al., 2023;
Scao et al., 2023; Chowdhery et al., 2022; Touvron
et al., 2023), the sensitivity of the performance
of LLMs to prompts has garnered significant
attention (Pezeshkpour and Hruschka, 2023; Loya
et al., 2023). While traditional soft prompt
tuning methods (Li and Liang, 2021; Liu et al.,
2022; Lester et al., 2021; Qin and Eisner, 2021)
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demonstrate effectiveness in guiding the LLM to
perform desired tasks, they encounter limitations
when applied to private LLMs, such as GPT-4
(OpenAI, 2023). This situation necessitates the
exploration of effective strategies for optimizing
prompts without requiring gradient updates.

Recent studies (Yang et al., 2023; Zhou
et al., 2022) have unveiled a noteworthy strategy,
where the LLM itself acts as the optimizer to
seek the prompt that maximizes task accuracy.
Specifically, OPRO (Yang et al., 2023) provides an
intriguing avenue for prompt optimization based
on a gold label evaluation recipe (Figure 1a).
The optimization commences with an initial
prompt, then iteratively evaluates existing prompts
and generates novel prompts based on prior
assessments. However, a significant caveat
emerges as these studies heavily rely on manually
annotated gold labels. Concretely, the gold label,
representing the ideal output, serves as a crucial
ingredient for evaluating and refining prompts.
Nevertheless, the acquisition of such gold labels
poses a formidable obstacle (Huang et al., 2023;
Stechly et al., 2023), introducing complexity
and hindering the widespread implementation
and generality of these optimization techniques.
Therefore, exploring alternative methodologies
becomes mandatory to address these challenges
and improve the efficiency of prompt evaluation
and optimization for LLMs.

To address the limitations, this work proposes
a gold label-agnostic prompt evaluation (GLaPE)
method to identify prompts that facilitate consistent
and accurate answers. Instead of relying on gold
labels, GLaPE evaluates prompts based on two
critical aspects: self-consistency evaluation and
mutual-consistency refinement. Inspired by Wang
et al. (2022), we first consider a naive solution by
utilizing self-consistency (SC) as the evaluation
metric instead of accuracy, as correct answers
generally exhibit higher SC than incorrect ones.
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(a) Accuracy Evaluation
Question: Oscar has 24 lollipops and eats 2 on his way to school. He passes 14 out
to his friends. He buys twice as many lollipops on his way home as he gave to his
friends. He eats 3 more that night and 2 more in the morning. How many lollipops
does Oscar have?
Gold Label (Answer): 31
Prompt1: By carefully analyzing all aspects of the situation, the optimal solution
becomes crystal clear.
Responses: 31, 31, 31, 31, 31, 31, 31, 31, 31, 31 ✔
Score: 100.0
Prompt2: After thorough examination and careful consideration, the optimal
solution becomes clear.
Responses: 19, 31, 31, 31, 31, 31, 31, 31, 36, 36 ✔
Score: 100.0
Prompt3: Let’s think about this logically.
Responses: 31, 33, 33, 36, 36, 36, 36, 36, 36, 36 ✘
Score: 0.0
Prompt4: Let’s approach this problem systematically.
Responses: 19, 31, 31, 31, 33, 33, 36, 36, 36, 36 ✘
Score: 0.0
Prompt5: By carefully analyzing all the available data, the optimal solution
becomes unequivocally evident.
Responses: 8, 8, 11, 19, 19, 31, 31, 36, 36, 36 ✘
Score: 0.0

(b) Our GLaPE Method
Question: Oscar has 24 lollipops and eats 2 on his way to school. He passes 14 out
to his friends. He buys twice as many lollipops on his way home as he gave to his
friends. He eats 3 more that night and 2 more in the morning. How many lollipops
does Oscar have?
Gold Label (Answer): 31
Prompt1: By carefully analyzing all aspects of the situation, the optimal solution
becomes crystal clear.
Responses: 31, 31, 31, 31, 31, 31, 31, 31, 31, 31
Score: 87.9
Prompt2: After thorough examination and careful consideration, the optimal
solution becomes clear.
Responses: 19, 31, 31, 31, 31, 31, 31, 31, 36, 36
Score: 81.8
Prompt3: Let’s think about this logically.
Responses: 31, 33, 33, 36, 36, 36, 36, 36, 36, 36
Score: 50.0
Prompt4: Let’s approach this problem systematically.
Responses: 19, 31, 31, 31, 33, 33, 36, 36, 36, 36
Score: 45.7
Prompt5: By carefully analyzing all the available data, the optimal solution
becomes unequivocally evident.
Responses: 8, 8, 11, 19, 19, 31, 31, 36, 36, 36
Score: 44.2

Meta-prompt for Prompt Optimization
Meta-prompt 1 like “I have some texts along with their corresponding scores.”

Prompt: ... Score: ... ; Prompt: ... Score: ... ; [more prompts and scores]

Meta-prompt 2 like “Write your new text that is different from the old ones and has a score as high as possible.”

Prompt: ... Score: ... ; Prompt: ... Score: ... ; [more prompts and scores]

Prompt Evaluation Prompt Evaluation

New Prompts New Prompts

Figure 1: Sketch of prompt optimization utilizing the LLM as an optimizer (Yang et al., 2023), featuring distinct
prompt evaluation metrics based on: (a) accuracy or (b) our proposed GLaPE. The texts are favorably read in colors.
Blue: gold label, Yellow: most frequent answer, Green: high score, Red: low score, Purple: prompt evaluation.

However, we will show that SC alone may not
always yield accurate evaluations, since SC does
not always align well with accuracy and can
overestimate prompts that produce incorrect but
consistent answers. To mitigate this, we then
propose a complementary approach named mutual-
consistency refinement across multiple prompts.
This approach penalizes inconsistent scores based
on SC across prompts that produce the same
answers. By doing so, the refinement process
effectively identifies prompts that demonstrate high
SC but result in incorrect answers, leading to more
reliable evaluation scores. Figure 2 illustrates our
GLaPE method.

Building on our GLaPE evaluation strategy,
we then develop a gold label-agnostic prompt
optimization method. Specifically, we substitute
the accuracy evaluation method in OPRO with
our GLaPE method (Figure 1b). Experimental
results on 8 widely-recognized reasoning tasks
demonstrate that GLaPE can produce more effec-
tive prompts, achieving performance comparable to
those derived from manually annotated gold labels.

Our key contributions are as follows:
(i) This work studies a gold label-agnostic

prompt evaluation method to alleviate dependence
on gold labels, which allows prompt evaluation in
more realistic scenarios when human-annotated
dataset is unavailable. To the best of our
knowledge, this work is the first to study gold label-
agnostic prompt evaluation for LLMs.

(ii) We propose a novel prompt evaluation
approach named GLaPE, which consists of self-
consistency evaluation of a single prompt and
mutual-consistency refinement across multiple
prompts. GLaPE helps LLMs optimize effective
prompts that are comparable with those derived
from manually annotated gold labels.

(iii) We elicit the analysis of why the widely-
used SC approach fails at our evaluation task
and figure out an effective mutual-consistency
refinement approach to mitigate the challenge.

2 Related Work

Prompt Optimization In the domain of LLMs
(Achiam et al., 2023; Scao et al., 2023; Chowdhery
et al., 2022; Touvron et al., 2023), prompt
engineering plays a crucial role in guiding models
to generate desired outputs across diverse tasks
(Pezeshkpour and Hruschka, 2023; Loya et al.,
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2023). Consequently, optimizing prompts becomes
paramount for enhancing the performance and
efficiency of LLMs. Various soft prompt tuning
methods (Li and Liang, 2021; Liu et al., 2022;
Lester et al., 2021; Qin and Eisner, 2021) have
been explored in previous research to optimize
prompts for open-source LLMs. However, these
methods encounter challenges when applied to
private LLMs, where accessing gradients is
infeasible. Consequently, diverse gradient-free
prompt optimization techniques (Zhou et al., 2022;
Pan et al., 2023; Ye et al., 2023) have been explored.
Recent works (Yang et al., 2023) have embraced
an iterative process for gradient-free prompt
optimization, commencing from an initial prompt
and iteratively assessing existing prompts while
generating new ones based on prior evaluations.
Nevertheless, these iterative prompt optimization
methods heavily depend on gold labels for
prompt evaluation. Relying on gold labels not
only limits the generalizability of these prompt
optimization methods but may also introduce
other potential issues (Huang et al., 2023; Stechly
et al., 2023). In our work, we propose a novel
gold label-agnostic prompt evaluation method
and subsequently present a unique approach to
optimize prompts for LLMs without the constraints
associated with conventional gold label reliance.

Prompt Selection Prompt selection tasks aim
to identify the optimal prompt among candidates
for a given task, representing an alternative
approach to prompt optimization. Recent studies
have delved into probability-based evaluation
methods, utilizing diverse metrics such as mutual
information (Sorensen et al., 2022), entropy (Lu
et al., 2021), and perplexity (Gonen et al., 2022).
In contrast to these probability-centric assessments,
our proposed evaluation approach exclusively relies
on the output, making it applicable to private LLMs
where only the output is accessible.

3 Background

3.1 Task Formulation

Existing studies on prompt design (Yang et al.,
2023; Zhou et al., 2022) generally adhere to a
two-stage paradigm in an iterative manner: (i)
evaluate the prompt, analogous to calculating the
loss function and gradient in soft prompt tuning;
(ii) optimize the prompt, analogous to the gradient
descent process in soft prompt tuning.

We formulate the two stages on top of the widely-

used question-answering (QA) task defined by
QA pairs (Q,A), where each pair comprises an
input Q and its corresponding expected output A.
We introduce the prompted model as M and an
evaluation function f . Our objective is to determine
the optimal natural language instruction prompt.

To begin with, we define the meta-prompt as
the input to for prompt optimization. As the upper
block shown in Figure 1, a meta-prompt contains
three parts. The first part is a problem description.
The second part is an optimization trajectory,
includes past solutions and their evaluation scores.
The third part is the optimization instruction for
generating new candidate prompts.

Then, we describe the process of obtaining the
optimization trajectory. In each iteration, the LLM
generates a candidate prompt ρ to the QA task. We
concatenate each question Q with the candidate
prompt ρ to form the prompted input [Q; ρ]. Then,
the prompted input is feed to the model to obtain
the response M ([Q; ρ]). We evaluate the goodness
of candidate prompt ρ based on the evaluation
function f , e.g., calculating the accuracy between
each pair of M ([Q; ρ]) and the labeled answer A
in previous studies. Then the candidate prompt
along with the evaluation score is added to the
trajectory for the next iteration.

The optimization process terminates when the
LLM is unable to propose new prompts with
better evaluation scores, or a maximum number
of optimization steps has reached.

3.2 Self-consistency
Here, we adopt the definition of self-consistency
proposed by Wang et al. (2022). We sample n
responses (r1, · · · , rn) from the LLM using the
same prompt. The final answer is determined
by a voting mechanism, where the most frequent
response a is selected as the answer. Self-
consistency is the frequency of a in all n responses,
which can be formulated as:

SC =

∑n
i=1 1a=ri

n
. (1)

4 Investigating Gold Label-agnostic
Prompt Evaluation

According to Section 3.1, the evaluation function
f in existing studies measures the goodness of
the prompt candidate ρ by maximizing the task
accuracy. However, in real-world tasks, obtaining
gold labels poses a considerable challenge, limiting
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AddSub AQuA Big-Bench Date GSM8K MultiArith SVAMP StrategyQA MATH

Correct Answers (%) 96.0 79.0 83.4 82.1 97.5 90.1 95.4 70.2
Incorrect Answers (%) 73.4 67.1 67.8 49.3 54.2 57.5 90.6 35.9
Overall Answers (%) 92.8 71.8 79.2 73.8 96.6 84.9 91.9 44.6

Table 1: The average self-consistency (SC) of correct, incorrect, and overall answers generated by the LLM that
prompted with “Let’s think step by step.” on multiple datasets.

Testing
Question Prompt 3 33, 33

31

36, · · · , 36

SC:
70.0

Prompt 2

36, 36

31, · · · , 31

19

SC:
70.0

Prompt 1 31, · · · , 31 SC:
100.0

Prompt 4

19

31, 31, 31

33, 33

36, · · · , 36

SC:
40.0

Prompt 5

8, 8

11

19, 19

31, 31

36, 36, 36

SC:
30.0

Refinement of
Answer “31”

Refinement of
Answer “36”

Score: 87.9

Score: 81.8

Score: 50.0

Score: 45.7

Score: 44.2

SC
Evaluation (%) + MC

Refinement = GLaPE
Metric

-20.0

Figure 2: The schematic representation of our GLaPE method integrating self-consistency (SC) evaluation and
mutual-consistency (MC) refinement. This sketch illustrates how our method assesses the prompts in Figure 1;
computation details are provided in Appendix A.2. Notably, we observed that prompt3, as indicated by the red
marker, produces an incorrect answer with high self-consistency (70%). Through the mutual-consistency refinement,
our GLaPE score experiences a decrease of 20.0, rendering it more discernible when compared to prompt1 and
prompt2. The texts are favorably read in colors of background. Blue: self-consistency, Purple: mutual-consistency
refinement, Green: answer “31” (gold label), Orange: answer “36”, Yellow: GLaPE metric.

the generalization of existing prompt optimization
methods. Furthermore, we ultimately expect LLMs
to solve problems for which answers are not already
known. Therefore, when optimizing prompts to
enhance performance, gold labels are not readily
available. Thus, it is imperative to find a gold label-
agnostic prompt evaluation method.

In this section, we will investigate the challenge
of gold label-agnostic prompt evaluation and study
how to design an effective approach to overcome
the challenge.

4.1 SC Fails Due to Overestimating Prompts

For a gold label-agnostic prompt evaluation
method, it is essential to rely exclusively
on the responses and identify patterns within
them. Building on the findings of Wang et al.
(2022), which demonstrate that selecting the most
frequently response enhances accuracy, we aim to
investigate whether SC correlates with accuracy.

To this end, we experiment by utilizing the
prompt “Let’s think step by step.” proposed by
Kojima et al. (2022). We calculated the average
self-consistency of correct, incorrect, and overall
answers and presented the results in Table 1. We
observe a significant superiority in the average
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Evaluation Metric AddSub AQuA Big-Bench Date GSM8K MultiArith SVAMP StrategyQA MATH

GLaPE 0.44 0.04 0.88 0.49 0.88 0.69 0.18 0.67
SC evaluation 0.36 -0.13 0.75 0.40 0.29 0.31 0.14 0.33

Table 2: Spearman correlation coefficients (↑) between accuracy and SC / GLaPE across diverse datasets.
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SC

66

68
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74
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SC-Accuracy Graph

Figure 3: SC-Accuracy Graph for Prompts. Each
prompt is represented as a point on the graph, where
the x-coordinate signifies self-consistency and the y-
coordinate signifies accuracy.

self-consistency of correct answers compared to
incorrect ones. A more specific example is shown
in Figure 2. We see that the average SC of correct
answers (answer “31”) significantly surpasses that
of incorrect ones. This observation indicates
that the self-consistency of responses may reflect
accuracy. Thus, it is possible to evaluate prompts
based on the SC of the responses and incorporate
this method in prompt optimization.

However, we also find that there exists disparity
between SC and accuracy when using SC as the
sole evaluation metric. This disparity happens to
Prompt 3 as shown in Figure 2. Concretely, Prompt
3 yields an incorrect answer (answer “36”) but has
a high SC of 70.0. By taking the GSM8K dataset as
the testbed, we computed both the self-consistency
and accuracy for a group of prompts. Consequently,
we draw each prompt as a point in Figure 3.
Given the observed fluctuations in the line, it
is apparent that self-consistency does not align
rigorously with accuracy. Additionally, we find
that the Spearman correlation coefficient between
SC and accuracy is relatively low, as shown in the
first line of Table 2. Therefore, relying on self-
consistency alone proves insufficient in offering
a comprehensive representation of accuracy in
prompt evaluation and optimization.

So far, we show that SC alone may not
always yield accurate evaluations, since SC does

not always align well with accuracy and can
overestimate prompts that produce incorrect but
consistent answers. Therefore, it deserves a more
in-depth investigation to mitigate the side effects
of the overestimated prompts by SC. Beyond
examining individual prompt responses, we can
analyze relationships between different prompts.

4.2 Mitigating the Challenge with
Mutual-consistency (MC) Refinement

Although the performance of a single prompt is
only related to its responses, we leverage other
prompts for better evaluation in the absence of a
gold label.

Specifically, we infer the gold label from other
prompts and then refine the SC evaluation of the
single prompt. Table 1 shows that correct answers
exhibit higher self-consistency (SC), allowing us
to predict answer correctness by analyzing the
average SC of all prompts producing it. In Figure 2,
we can predict that the answer "31" is more likely
to be correct, while the answer "36" is not, as
the average SC of "31" is 87.5, whereas that
of "36" is 46.7. This prediction further aids in
refining evaluation of each prompt. For an incorrect
answer, we should lower the evaluation score of
prompts with elevated SC, towards the average. In
Figure 2, since the average SC of answer “36” is
46.7 while prompt 3 has an elevated SC of 70.0, the
evaluation score of prompt 3 should be lowered.
This refinement mitigate the SC evaluation of
overestimated prompts.

In summary, we predict the correctness of an
answer by its average SC and refine each SC
towards this average. This aligns the evaluation
of prompts producing the same answer.

Based on our pivot study above, we find that
combining SC and MC is effective for achieving
gold label-agnostic prompt evaluation.

5 GLaPE

In light of the discussions in Section 4, we
propose GLaPE, a gold label-agnostic prompt
evaluation approach. GLaPE is composed of two
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critical aspects: self-consistency evaluation of a
single prompt and mutual-consistency refinement
across multiple prompts. The overall procedure is
illustrated in Figure as depicted in Figure 2.

For formal description purposes, we assume
there are N different prompts and denote the
evaluation score for each prompt ρi as fi. Among
multiple samplings of M prompted with ([Q; ρi]),
the answer is ai and the self-consistency is ci, as
defined in Section 3.2.

Self-consistency Evaluation: We evaluate
prompts based on the self-consistency of their
answers by minimizing the loss function:

Lself =
N∑

i=1

(fi − ci)
2. (2)

Mutual-consistency Refinement: Additionally,
we propose Lrefine as a corrective measure for SC
evaluation. It measures and penalizes the mutual
inconsistency of evaluation scores (fi) for prompts
sharing the same answer:

Lrefine =
∑

1≤i<j≤N

1ai=aj (fi − fj)
2. (3)

The overall loss function Ltotal is determined by
balancing the loss functions of these two aspects:

Ltotal = α · Lself + (1− α) · Lrefine, (4)

where α weights the contribution of self-
consistency evaluation and mutual-consistency
refinement in the evaluation process. Based on pre-
liminary experiments (detailed in Appendix A.1),
we set α = 0.5.

We obtain the ultimate evaluations f1, · · · , fN
by minimizing the loss function Ltotal. We
initialize fi with ci for simplicity and utilize the
default gradient descent method to find the optimal
solution with a learning rate of 0.05.

6 Experiment

6.1 Experiment Setup
Datasets. Our experiments were conducted on 8
benchmark datasets to evaluate the performance
of our gold label-agnostic prompt evaluation and
optimization method. We selected five datasets
specifically focused on arithmetic reasoning:
AddSub (Hosseini et al., 2014), AQuA (Ling
et al., 2017), GSM8K (Cobbe et al., 2021), Multi-
Arith (Roy and Roth, 2015), and SVAMP (Patel

et al., 2021). Additionally, we included the
MATH dataset (Hendrycks et al., 2021), which
is extremely challenging and comprehensive, to
test our method’s efficacy on particularly difficult
benchmarks. Furthermore, we expanded our
evaluation to commonsense reasoning benchmarks,
such as Big-Bench Date (bench authors, 2023)
and StrategyQA (Geva et al., 2021), to assess the
performance of GLaPE in varied contexts.

Prompt Optimization. We implemented the
OPRO method proposed by Yang et al. (2023)
using the prompt shown in Figure 3 of their paper.
This technique utilizes an LLM to evaluate existing
prompts, generating improved prompts based on
the obtained evaluation scores. We chose this
approach due to its adaptability; alternative metrics
can easily replace evaluation scores in the meta-
prompt of optimization. This flexibility facilitates
the seamless execution of our gold label-agnostic
prompt optimization experiments. Due to time and
financial limitations, we conducted both the OPRO
and GLaPE-based methods for 16 iterations each,
generating 8 prompts per iteration.

LLM Backbone. In both the evaluation and
optimization phases, we employed GPT-3.5-turbo-
0613, which was the latest version of GPT-3.5-
turbo. For prompt evaluation, we empirically
set the temperature to 0.7 and generated 10
outputs using chain-of-thought prompting (Wei
et al., 2023). For prompt optimization, default
hyperparameters and meta-prompt from Yang et al.
(2023) were applied.

6.2 Main Results
Table 3 shows the main results on the 8 benchmark
datasets. GLaPE is able to produce effective
prompts, achieving performance comparable to
those derived from manually annotated gold labels
such as OPRO. The results suggests that our
GLaPE can function as a robust metric, akin
to accuracy. We also compared our method
with other recent prompt optimization methods
for private LLMs; these results are detailed in
Appendix A.3, providing additional evidence to
verify the generality of GLaPE.

6.3 Ablation Study
6.3.1 MC Refinement
In this section, we conduct ablation studies to
enhance our understanding of the GLaPE method,
with a specific focus on the impact of the mutual-
consistency refinement approach.
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Dataset Method Prompt Accuracy (%)

Addsub

Baseline (Wang et al., 2022) Let’s think step by step. 85.8
OPRO (Yang et al., 2023) Let’s meticulously scrutinize every detail. 89.4

GLaPE-based (Ours) Let’s carefully consider each step. 87.6

AQuA

Baseline (Wang et al., 2022) Let’s think step by step. 39.4

OPRO (Yang et al., 2023) After careful consideration and analysis, the
optimal solution is revealed. 41.7

GLaPE-based (Ours)

Through a meticulous analysis of all available
data and a strategic approach to problem-
solving, a definitive and optimal solution will
undoubtedly arise.

43.7

Big-Bench Date

Baseline (Wang et al., 2022) Let’s think step by step. 72.4

OPRO (Yang et al., 2023)
Using a systematic approach and thorough
examination, the unequivocal and optimal
solution becomes unmistakably evident.

72.1

GLaPE-based (Ours) Let’s analyze this situation thoroughly and
explore all possible solutions. 71.9

GSM8K

Baseline (Wang et al., 2022) Let’s think step by step. 74.8

OPRO (Yang et al., 2023) After careful analysis, the optimal solution
becomes clear.

76.6

GLaPE-based (Ours) After careful analysis, the conclusion is evident. 77.7

MultiArith

Baseline (Wang et al., 2022) Let’s think step by step. 98.0

OPRO (Yang et al., 2023)
Let’s approach this problem systematically and
strategically, step by step, with logical thinking
and methodical planning.

99.6

GLaPE-based (Ours)
Let’s approach this problem strategically, me-
thodically, and innovatively, exploring ground-
breaking solutions.

99.3

SVAMP

Baseline (Wang et al., 2022) Let’s think step by step. 83.9

OPRO (Yang et al., 2023)

Let’s approach this problem with an innovative
and revolutionary mindset, breaking the barriers
of conventional thinking and achieving unprece-
dented results.

88.9

GLaPE-based (Ours) Let’s approach this problem with an innovative,
revolutionary, and groundbreaking solution. 88.7

StrategyQA

Baseline (Wang et al., 2022) Let’s think step by step. 66.1

OPRO (Yang et al., 2023) Let’s tackle this problem with groundbreaking
approaches and unparalleled creativity. 69.4

GLaPE-based (Ours) Let’s explore all the possibilities. 70.2

MATH

Baseline (Wang et al., 2022) Let’s think step by step. 21.4

OPRO (Yang et al., 2023) Analyzing the data thoroughly can lead to
valuable insights. 26.4

GLaPE-based (Ours) Let’s approach this problem with an innovative,
revolutionary, and groundbreaking solution. 25.9

Table 3: Optimization results (optimal prompt and corresponding accuracy) of our GLaPE-based prompt optimization
method and OPRO (Yang et al., 2023) across various datasets. Notably, Our optimal prompt is determined by
selecting the prompt with the highest GLaPE score.

Initially, on the GSM8K dataset, we compared
prompt optimization outcomes using two distinct
evaluation methods: self-consistency assessment
and GLaPE. As shown in Table 4, GLaPE-based
prompt optimization results in a superior prompt
compared to that obtained through confidence
assessment. This observation suggests that
incorporating mutual-consistency refinement to

rectify confidence evaluation enhances the efficacy
of prompt optimization.

Furthermore, we incorporated the Spearman
correlation coefficient1 into our study, wherein a
higher coefficient signifies a stronger correlation
between variables. This quantitative assessment

1https://en.wikipedia.org/wiki/
Spearman’s_rank_correlation_coefficient
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Evaluation Metric Optimal prompt Accuracy (%)

GLaPE After careful analysis, the conclusion is evident. 77.7
SC evaluation Let’s break it down step by step. 75.1

Table 4: Comparison of prompt optimization based on self-consistency and our GLaPE.

96.0 96.5 97.0 97.5 98.0 98.5 99.0
SC

97.0
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(a) SC-Accuracy Graph.

96.4 96.6 96.8 97.0 97.2 97.4
GLaPE
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99.0

99.5

100.0
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cy

GLaPE-Accuracy Graph

(b) GLaPE-Accuracy Graph.

Figure 4: SC-Accuracy Graph v.s. GLaPE-Accuracy Graph for Prompts on Multiarith.

was employed to juxtapose GLaPE with the solely
SC-based evaluation regarding the correlation
with accuracy. Our analysis concentrated on
prompts within the optimization trajectory in the
experiment in Section 6.2, to mitigate unnecessary
computational costs. As shown in Table 2, the
Spearman coefficient between GLaPE and accuracy
exceeds that of self-consistency across all datasets.

Additionally, we utilized the visualization
method introduced in Section 4.1 to depict the
prompts of the optimization trajectory in a graph
(Figure 4). In Figure 4a, we observe a fluctuating
line, whereas in Figure 4b, a consistently increasing
line is evident. Both of the scrutiny indicate
that our mutual-consistency refinement method
significantly mitigates the disparity between self-
consistency and accuracy.

6.3.2 Generalizability Across LLMs
In the experiment of 6.2, we only optimize
prompts for GPT-3.5-turbo. To further assess the
generalizability of our method on models other
than GPT-3.5-turbo, we conducted experiments
on three widely used open-source models of
different sizes: Mistral-7B, Llama3-8B, and
Gemma2-9B. As shown in Table 5, our GLaPE-
based prompt optimization approach consistently
discovers prompts that outperform the baselines
and are competitive with the OPRO method across
all models.

Model Method Accuracy (%)

Mistral-7B
Baseline 33.8
OPRO 35.9
GLaPE (Ours) 35.9

Llama3-8B
Baseline 45.4
OPRO 48.6
GLaPE (Ours) 48.9

Gemma2-9B
Baseline 39.7
OPRO 42.4
GLaPE (Ours) 43.2

Table 5: Optimization results of our GLaPE-based
prompt optimization method and OPRO (Yang et al.,
2023) across various models on GSM8K dataset.

We also investigated the self-consistency (SC)
of answers across these models, as presented in
Table 6. The SC of correct answers consistently
exceeds that of incorrect answers for all models,
which aligns with the intuition discussed in
Section 4.1.

Answers Mistral Llama3 Gemma2

Correct (%) 65.6 53.3 81.4

Incorrect (%) 48.3 28.8 49.6

Overall (%) 53.9 39.9 62.2

Table 6: The average self-consistency (SC) of correct,
incorrect, and overall answers generated by the multiple
LLMs that prompted with “Let’s think step by step.” on
GSM8K datasets.
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These results indicate that the our unsuper-
vised GLaPE-based prompt optimization method
effectively generalizes across different LLMs,
maintaining competitive performance comparing
to the supervised OPRO method.

7 Rethink on Gold Label-agnostic
Prompt Optimization

Our amalgamation of self-consistency evaluation
and mutual-consistency refinement facilitates the
identification of prompts leading to correct answers.
However, we also observe a diminished Spearman
correlation coefficient between our GLaPE and
accuracy on the AQuA dataset and StrategyQA
dataset, as depicted in Table 2. Given the
suboptimal performance, we shift to reflect on the
intrinsic restriction posed by the LLM. As stated in
Section 4.1, in scenarios where all prompts result
in consistent but inaccurate answers, our evaluation
may fail to identify the error. Without access to
external resources, discerning the consistent errors
becomes challenging. We illustrate some example
questions in the Strategy dataset in Figure 5, where
almost all prompts lead to a incorrect answer with
extremely high self-consistency during our prompt
optimization. By excluding these problematic
questions, we observe a significant improvement
in the Spearman correlation coefficient, as detailed
in Appendix A.4.

Notably, Our GLaPE evaluation method has
been shown effective in challenging datasets, too.
Our GLaPE evaluation method aligns well with
accuracy on the rigorous MATH dataset, as shown
in Table 2. This alignment can be attributed
to the significant disparity in self-consistency
between correct and incorrect answers, as depicted
in Table 1. Conversely, on the StrategyQA
dataset, the self-consistency levels of correct and
incorrect answers are remarkably similar. This
similarity arises from the inherent errors within the
LLM itself, which precludes effective distinction
between these answers without access to the gold
standard labels.

8 Conclusion

This work presents an innovative gold label-
agnostic prompt evaluation methodology that oper-
ates in the absence of gold labels. By integrating
self-consistency evaluation and mutual-consistency
refinement, our evaluation demonstrates a strong
correlation with accuracy. Subsequently, we

Example 1: Was Iggy Pop named after his father?
Label: Yes.
LLM Answer & Explanation: No. Iggy Pop, whose
real name is James Newell Osterberg Jr., was not
named after his father. His father’s name was James
Newell Osterberg Sr., so they shared the same first
name but not the same nickname. Iggy Pop got his
stage name from his first band, The Iguanas, and later
shortened it to Iggy.
Example 2: Is Great Pyramid of Giza the last wonder
of its kind?
Label: Yes.
LLM Answer & Explanation: No. The Great
Pyramid of Giza is one of the Seven Wonders of the
Ancient World. It is the only wonder from that list that
still exists today. However, there have been other lists
of wonders created throughout history. For example,
the New7Wonders Foundation conducted a global poll
in 2007 to determine the New Seven Wonders of the
World.

Figure 5: Some examples in StrategyQA dataset where
the LLM consistently provides inaccurate responses.

incorporate our metric into prompt optimization,
yielding prompts comparable to those optimized
based on accuracy metrics across various tasks.

Limitations

First, in Section 7, we outlined the challenges faced
by our GLaPE method in accurately assessing the
inherent error of LLM itself. In future research,
innovative approaches could be explored to identify
the consistent mistakes. Another limitation in
our current evaluation methodology is that we
utilize a singular digital score as the assessment,
which fails to furnish comprehensive information
regarding the prompts. Consequently, future
research could augment the granularity of prompt
evaluations, incorporating other assessments, like
natural language feedback, to address this shortfall.
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A Appendix

A.1 Preliminary Experiments
In this section, we discuss two crucial hyperparam-
eters used in our experiments.

The first is the balance weight α, which balances
SC evaluation and MC refinement as described in
Equation 4. We tested α values of 0.25, 0.5, 0.75,
and 1.0, with results detailed in Table 7. An optimal
balance was achieved at α = 0.5, emphasizing the

significance of both SC and MC in our evaluation
framework. Consequently, we set α = 0.5 for all
experiments.

Weight α Prompt Accuracy (%)

0.25 Let’s think about this logi-
cally. 77.2

0.5 After careful analysis, the
conclusion is evident.

77.7

0.75

Let’s approach this prob-
lem with utmost creativity,
innovation, and strategic
thinking.

76.4

1.0 Let’s break it down step by
step. 75.1

Table 7: Optimization results on the GSM8K dataset
using different values of balance weight α as specified
in Equation 4.

The second parameter is the training dataset
size. We evaluated various sizes: 10, 20, 50, 100,
and 200, as shown in Table 8. Based on these
results, we selected a dataset size of 100 to balance
accuracy and computational efficiency.

Dataset Size Prompt Accuracy (%)

10 Let’s break it down step by
step. 75.1

20

Let’s carefully analyze each
aspect of the problem thor-
oughly and devise the most
optimal plan.

75.5

50

Let’s approach this
problem with utmost
creativity, innovation,
and strategic thinking.

76.4

100 After careful analysis, the
conclusion is evident.

77.7

200 Let’s break it down step by
step. 77.9

Table 8: Optimization results on the GSM8K dataset
using different training dataset sizes.

A.2 Computation Detail of Figure 2
First, we calculate the self-consistency ci for each
prompt according to the definition in Section 3.2,
which are:

c1 = 100.0, c2 = 70.0, c3 = 70.0,

c4 = 40.0, c5 = 30.0.

Thus, the loss function Lself is:

Lself =

5∑

i=1

(fi − ci)
2 = (f1 − 100)2 + (f2 − 70)2

+ (f3 − 70)2 + (f4 − 40)2 + (f5 − 30)2.
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Dataset Method Prompt Accuracy (%)

GSM8K

Baseline (Wang et al., 2022) Let’s think step by step. 74.8

APE (Zhou et al., 2022) Let’s work this out in a step by step way to be
sure we have the right answer. 76.3

APO (Pryzant et al., 2023)

Given the scenario, perform necessary calcula-
tions and provide a step-by-step explanation to
arrive at the correct numerical answer. Consider
all information provided.

76.5

PE2 (Ye et al., 2023) Let’s solve the problem step-by-step and
calculate the required total value correctly. 77.7

GLaPE-based (Ours) After careful analysis, the conclusion is evident. 77.7

MultiArith

Baseline (Wang et al., 2022) Let’s think step by step. 98.0

APE (Zhou et al., 2022) Let’s work this out in a step by step way to be
sure we have the right answer. 97.8

APO (Pryzant et al., 2023)

Given the scenario, perform the necessary
calculations step by step to find the final result.
Consider all parts of the input and the sequence
of events.

99.0

PE2 (Ye et al., 2023)

Let’s solve this problem by considering all
the details. Pay attention to each piece of
information, remember to add or subtract as
needed, and perform the calculations step by
step

99.6

GLaPE-based (Ours)
Let’s approach this problem strategically, me-
thodically, and innovatively, exploring ground-
breaking solutions.

99.3

Table 9: Optimization results (optimal prompt and corresponding accuracy) of our GLaPE-based prompt optimization
method and other popular methods.

Next, we calculate the loss function of mutual-
consistency refinement Lrefine, which is:

Lrefine =
∑

1≤i<j≤5

1ai=aj (fi − fj)
2,

since prompts 1 and 2 share the same answer 31,
while prompts 3, 4, and 5 share the same answer
36.

Clearly, f1 and f2 are unrelated to f3, f4, and f5
since their answers are different.

The evaluation scores are then computed as
follows (ignoring the coefficient 0.5 for both Lself
and Lrefine):

f1, f2 = arg min
f1,f2

[
(f1 − 100)2 + (f2 − 70)2

+ (f2 − 70)2 + (f1 − f2)
2
]

and

f3, f4, f5 = arg min
f3,f4,f5

[
(f3 − 70)2 + (f4 − 40)2

+ (f5 − 30)2 + (f3 − f4)
2 + (f3 − f5)

2

+ (f4 − f5)
2
]
.

Ultimately, the solution is:

f1 = 87.9, f2 = 81.8, f3 = 50.0,

f4 = 45.7, f5 = 44.2.

A.3 Further Comparison of Prompt
Optimization Methods

To emphasize the efficacy of our method, we
conducted additional comparisons between our
GLaPE method and other recent prompt opti-
mization approaches for private LLMs, including
APE (Zhou et al., 2022), APO (Pryzant et al., 2023),
and PE2 (Ye et al., 2023). The results are presented
in Table 9. These comparisons demonstrate that
GLaPE is not only competitive but also exceeds the
performance of other existing supervised methods
in various cases.

A.4 Spearman Correlation Coefficients on
Cleaned Datasets

It is imperative to recognize that our methodology
evaluates prompts on individual questions, and
the evaluation score of a prompt across the
entire dataset is derived from the sum of its
evaluation scores on each question. Consequently,
inaccuracies in evaluations for questions stated
in Section 7 can significantly compromise the
effectiveness of the overall dataset evaluation,
particularly on challenging datasets. To gauge the
impact of challenging questions on our GLaPE,
we exclude questions for which no prompt results
in a correct answer with a self-consistency level
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AddSub AQuA Big-Bench Date GSM8K MultiArith SVAMP StrategyQA MATH

Cleaned Dataset 0.61(+0.17) 0.40(+0.36) 0.94(+0.06) 0.69(+0.20) 0.93(+0.05) 0.81(+0.12) 0.41(+0.13) 0.61(+0.14)
Control Group 0.42(-0.07) -0.01(-0.05) 0.86(-0.02) 0.40(-0.09) 0.84(-0.04) 0.61(-0.08) 0.16(-0.02) 0.46(-0.01)
Original Dataset 0.44 0.04 0.88 0.49 0.88 0.69 0.18 0.47

Table 10: Comparison of Spearman correlation coefficients (↑) before and after excluding challenging questions that
surpass the intrinsic capabilities of LLM. Evaluation of the control group is conducted by randomly selecting 10
subsets of the original dataset, and the average Spearman correlation coefficient is computed.

greater than 50% from the dataset. The cleaned
dataset was then compared to a control group,
consisting of an equally large subset of the original
dataset, to mitigate the influence of dataset size
bias. On the initial dataset, the control group, and
the cleaned dataset, we calculate the Spearman
correlation coefficient.

In Table 10, the Spearman correlation coefficient
on the cleaned dataset demonstrates a considerable
improvement compared to that on the original
dataset or control group. This improvement
underscores the pronounced adverse influence of
intricate questions on our evaluation process.
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