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Abstract

Recent work using Rank-One Model Editing
(ROME), a popular model editing method, has
shown that there are certain facts that the al-
gorithm is unable to edit without breaking the
model. Such edits have previously been called
disabling edits (Gupta et al., 2024a). These dis-
abling edits cause immediate model collapse
and limits the use of ROME for sequential edit-
ing. In this paper, we show that disabling edits
are an artifact of irregularities in the implemen-
tation of ROME. With this paper, we provide
a more stable implementation ROME, which
we call r-ROME and show that model collapse
is no longer observed when making large scale
sequential edits with r-ROME, while further
improving generalization and locality of model
editing compared to the original implementa-
tion of ROME.

1 Introduction

Large language models (LLMs) are expensive to
train and the knowledge contained in these models
gets obsolete with time. Model editing or knowl-
edge editing (Yao et al., 2023) has recently come
out as a popular method to update knowledge in
large language models (LLMs). In this paper, we
focus on one popular parameter-modifying model
editing methods called ROME (Rank-One Model
Editing) (Meng et al., 2022a). ROME is not only
one of the most popular model editing algorithms,
but is also widely used in unlearning (Patil et al.,
2023) and model interpretability (Ghandeharioun
et al., 2024; Geva et al., 2023) literature.

While a lot of model editing approaches perform
well when making singular edits, editing multi-
ple facts in a model still remains a challenge for
parameter-modifying model editing methods. One
way to make multiple edits to the same model
is through sequential editing (Yao et al., 2023)
- where we make a series of single edits to a model
by modifying the parameters of the model after

Figure 1: A typical generation example after a disabling
edit is compared to a normal model edit using ROME.
The bold and underlined part in the text is input prompt.

every edit. Recent works have started studying the
effects of sequential editing and found that ROME
(Meng et al., 2022a) was prone to a sudden model
collapse by a single edit (Gupta et al., 2024a; Yang
et al., 2024; Hu et al., 2024). This effect was first
observed in Gupta et al. (2024a) during sequential
editing. The collapse included complete loss of
downstream performance, inability to recall previ-
ously editing facts and loss of the ability to even get
edited. Such facts were named disabling edits by
Gupta et al. (2024a) and were later independently
observed by Yang et al. (2024); Hu et al. (2024).

Disabling edits are detrimental for knowledge
editing at scale. While a gradual model degrada-
tion is expected as we make sequential edits to a
model (Gupta et al., 2024a), disabling edits lead to
a sudden model collapse irrespective of when the
disabling fact is edited, making sequential editing
impossible. An example of this can be seen in Fig-
ure 3a, where instead of allowing gradual model
degradation when doing sequential editing like in
Figure 4, the presence of disabling edits lead to a
sudden and immediate model collapse.

In this paper, we aim to find the source of these
disabling edits. We first introduce two metrics for
identifying disabling edits - generation entropy and
the norm of matrix update. We plot edits made
by ROME along these two dimensions and show
new ways of identifying disabling edits even when
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DATASET IMPLEMENTATION
Efficacy Generalization Locality Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ S ↑

CF ORIGINAL 99.92 99.68 96.29 71.58 75.8 10.25 89.32

r-ROME 99.74 97.79 99.09 70.86 80.62 26.0 92.22

p-ROME 99.9 99.36 97.04 63.01 80.0 5.74 91.42

Table 1: The above represents model editing results for 5000 singular model edits made on GPT-J-6B from the
CounterFact dataset (non-sequential).

making singular edits. As we dig deeper into the
optimization objectives and the codebase of ROME,
we find that the disabling edits in ROME are a result
of irregularities in the implementation of ROME,
and not an artifact of the optimization objective.
Specifically, disabling edits were caused due to
the asymmetric usage of key-vectors in the update
equation of ROME. With this paper, we share our
new ROME code-base and invite researchers to use
it for model editing. Our implementation of ROME,
which we call r-ROME, can be found here1.

2 Background

Facts are usually added in ROME using key-value
format, where a key is the vector representation of
a query-phrase and the value is the vector repre-
sentation of the target object. For example, when
adding a new fact - "The president of USA is John
Cena", the query-phrase here is "The president of
USA is" and the target object is "John Cena". The
key-vector is defined by Meng et al. (2022a) is
the activation of the first linear layer in the MLP
targeted by ROME:

k(l
∗)(x) = σ

(
W

(l∗)
fc γ

(
a
(l∗)
[x],i + h

(l∗−1)
[x],i

)
+ b

(l∗)
fc

)

(1)

Editing in ROME is done using a pair of vectors
- (ke, ve) that represent a new fact being added. ke,
also called the key-vector is a vector representation
of the query-phrase, and ve, or the value-vector is
the vector representation of the target object. The
weights of the specific layer being edited in ROME
are updated from W0 to Ŵ by inserting a new fact
(ke, ve) using the following equation:

Ŵ = W0 +∆

where ∆ = (ve −W0ke)
kTe C

−1
0

kTe C
−1
0 ke

(2)

1https://github.com/scalable-model-editing/
rebuilding-rome

where ∆ is the update to the current weight ma-
trix being edited such that the new fact (ke, ve) gets
incorporated. Additionally, each key-vector in ke
is not just the representation of a single prompt.
To enhance generalization, Meng et al. (2022a,b)
create the key-vector as an average representations
over the query-phrase with random prefixes. This is
done so that the represented key-vectors do not just
represent one way to phrase the query-phrase and
edits made using these representations can gener-
alize over different paraphrases of the edited facts.
The final key vector is found by averaging over N
random prefixes using the equation:

ke =
1

N

N∑

i=1

k(xi ⊕ p) (3)

Here k(xi ⊕ p) represents the key-vector corre-
sponding to a prefix xi being concatenated with
the original query-phrase p. Examples of prefixes
added in ROME can be seen in Table 3. In this
paper, we will refer to the averaged prefix represen-
tation of keys with ke, whereas when the represen-
tation just consists of the original prompt, we will
depict that with a superscript as koe . The following
equation explicitly differentiates between the two
mathematically:

koe = k(p) (4)

Evaluating Model Editing. Model editing is usu-
ally evaluated along three metrics - reliability, gen-
eralization and locality. Reliability represents if
a fact was successfully added in a model and is
measured using edit score (ES) and edit magni-
tude (EM) metrics. ES measures the portion of
cases when an edited fact is more probable than the
original fact post-editing, whereas EM measures
the difference in the probability magnitudes of the
edited and original facts. Generalization represents
if the edited fact is recalled through paraphrases of
the prompt used to edit the fact and is measured
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(a) ROME (b) r-ROME

Figure 2: This figure shows the difference between
the ROME and r-ROME updates on GPTJ (6B) for 5k
individual edits. Our implementation shows much less
potential disabling edits indicated by lower |∆| values.

using paraphrase score (PS) and paraphrase mag-
nitude defined similary as above for paraphases of
the edited facts. Locality represents if editing of
one fact affects other facts stored inside a model
and is measured using neighborhood score (NS)
and neighborhood magnitude (NM) on facts unre-
lated to the edited facts. The score metric is the
harmonic mean of ES, PS and NS. We follow stan-
dard model editing metrics proposed in the original
ROME paper Meng et al. (2022a). We refer the
reader to Yao et al. (2023); Meng et al. (2022a)
for a more comprehensive review of model editing
metrics.

Additionally, we also evaluated the model on
downstream task performance as proposed by
(Gupta et al., 2024a), which becomes especially im-
portant when making sequential edits to the same
model. We evaluate the edited model on four tasks
from the GLUE (Wang et al., 2018) benchmark -
sentiment analysis (SST2), paraphrase detection
(MRPC), natural language inference (NLI) and lin-
guistic acceptability classification for doing down-
stream evaluation.

3 Experiments

3.1 Properties of Disabling Edits
Disabling edits (Gupta et al., 2024a) are defined
as singular knowledge edits that lead to sudden
loss of ability to do downstream tasks or any kind
of meaningful generation. Gupta et al. (2024a)
also showed one way of identifying disabling edits
was the unusually large norm of the update matrix.
In other words, |∆| in equation 2 was unusually
higher when compared to normal edits.2

Figure 1 shows a typical example of model col-
lapse where the model constantly repeats a single
word. The simplest metric to identify such a model

2|∆| = ∥∆∥2/N is the L2 norm of the update matrix
normalized by the number of elements in the update matrix.

collapse is to calculate the entropy over the prob-
ability distribution of vocabulary elements of text
generated from the model. For this, a probability
distribution is calculated over the vocabulary of a
sample generation consisting of ten generations,
and is normalized by the vocabulary size to remove
the effect of the size of vocabulary. If the model
collapses as shown in Figure 1, we expected the
normalized entropy to be small and concentrated
around a handful of words.

The first set of experiments we do is to search
for disabling edits. We do this by making singular
model edits using ROME on GPT-J and GPT2-XL
using the CounterFact dataset to replicate the condi-
tions where disabling edits occurred in prior work.
We measure the above mentioned metrics as shown
in Figure 2(a) for GPT-J. Similar patterns are ob-
served for GPT2-XL and are shown in Figure 5
(appendix). When editing facts from the Coun-
terFact dataset, we see two clusters forming. We
find that certain edits have larger values of |∆| for
ROME, indicating the presence of disabling edits.

3.2 Fixing ROME
After finding signals of disabling edits while mak-
ing singular edits, we perform sequential editing
with ROME. Every iteration of sequential editing
with ROME leads to model collapse similar to Fig-
ure 3(a). This collapse occurs at random points
during the editing process at one of the facts that
clustered away in Figure 2(a). After a long inquiry
into the optimization objective of ROME, we found
no reason for |∆| of certain edits to be so large. We
then turned to the implementation of ROME and
found some interesting discrepancies. Although
seemingly benign, these discrepancies eventually
lead to disabling edits. The core reason behind dis-
abling edits is that instead of implementing equa-
tion 2 as mentioned in the paper, the authors of
ROME (Meng et al., 2022a) implement the follow-
ing equation for ∆:

∆imp = (ve −W0k
o
e)

kTe C
−1
0

kTe C
−1
0 ko

e

(5)

where ∆imp represents the actual implementa-
tion of ∆ in the code by Meng et al. (2022a),
with the difference highlighted in bold. The dif-
ference in implementation and original derivation
of ROME is the use of two different types of key
vectors. Rather than using key-vectors that average
over prefix prompts or ke (eq 3), the authors end
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DATASET IMPLEMENTATION
Efficacy Generalization Locality Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ S ↑

CF ORIGINAL 62.43 11.23 59.12 7.49 52.05 −0.05 57.53

r-ROME 97.92 72.14 96.23 54.97 59.52 0.16 80.20

p-ROME 99.94 95.31 94.05 55.22 52.57 −1.54 75.64

Table 2: We find that our implementations (r-ROME & and p-ROME) retains edit performance significantly more
than the original implementation of ROME on standard model editing metrics for GPT-J-6B. We use the same 5k
CounterFact examples from as Table 1 sequentially.

(a) Downstream Evaluation (b) |∆|

Figure 3: Sequential editing using original implementa-
tion of ROME on GPT-J (6B).

up using koe (eq 4) is certain places in the update
equation. We find that this asymmetry in usage
of the key-vector causes disabling edits.

To fix this issue, we create homogeneity in the
usage of the key-vectors. We first use ke every-
where in the update equation, an implementation
we refer to as r-ROME. This is the correct imple-
mentation of ROME as originally intended by the
authors of Meng et al. (2022a). We then use keys
generated using only the original prompts or koe
homogeneously in the update equation, referred to
as p-ROME. This also tests the hypothesis that
using a key-vector averaged over random prefixes
can create more generalizable edits.

The first evidence of removal of disabling edits
can be seen in Figure 2, where the |∆| of the up-
dates are orders of magnitude smaller for r-ROME
when compared to the original implementation.
The overall results for independent edits are shown
in Table 1. We find that edits made using r-ROME
create more generalized edits at the slight expense
of efficacy, resulting in a higher total edit score
than the original implementation. p-ROME leads
to increased efficacy and worse generalization re-
sulting in a slightly lower edit score. This shows
that homogeneity in using key-vectors is crucial in
making model edits.

3.3 Sequential Editing with r-ROME
The final litmus test of r-ROME is to study its per-
formance during large scale sequential editing. Fig-

(a) Downstream Evaluation (b) |∆|

Figure 4: Sequential editing with r-ROME on GPT-J.

ure 3 shows a typical case of sequential editing us-
ing the original ROME code-base for GPT-J, where
the presence of a disabling edit leads to large |∆|
and model collapse, as can be seen by an imme-
diate loss of downstream performance in Figure
3a. With r-ROME (Figure 4), we see that |∆| is or-
ders of magnitude smaller and increases smoothly,
which allows the model to maintain its general abil-
ities and avoids model collapse. This enables large
scale sequential model editing without loss of per-
formance. The final model editing metrics after
5000 sequential edits for GPT-J are shown in Fig-
ure 2, with r-ROME significantly outperforming
the original implementation of ROME. Additional
sequential editing results using p-ROME and GPT-
XL can be found in section B.

4 Conclusion

In this paper, we show that model edits made us-
ing the original implementation of ROME lead to
unstable model edits eventually causing model col-
lapse. Our re-implementations of ROME, called
r-ROME (code) prevents model collapse and leads
to stable and scalable model edits, thus making
sequential editing possible using ROME. We be-
lieve that such an improvement to the algorithm
should be available to the widespread community,
especially due to the potential impact and reach of
ROME.
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5 Limitations

The focus of our paper was to identify reasons be-
hind model collapse when using ROME and to
mitigate such effects. While r-ROME does that
and enables sequential editing with ROME, down-
stream performance degradation and decreased sta-
bility (as observed from increasing |∆|) still occurs
at scale. This is an inherent limitation of ROME
that we do not overcome and is beyond the scope
of this paper.
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Figure 5: This figure shows distribution of edits along
|Delta| and Normalized Entropy metric for edits us-
ing the original ROME implementation on CounterFact
dataset for GPT2-XL.

A Related Work

Recent works (Gupta et al., 2024a; Yang et al.,
2024; Hu et al., 2024) also observe the phe-
nomenon of disabling edits as a result of perform-
ing sequential edits with parametric methods such
as ROME and MEMIT (Meng et al., 2022b). The
sequential model editing task proves to be more
difficult for parametric editing methods at scale
due to model saturation and catastrophic forgetting.
Non-parametric methods such as SERAC (Mitchell
et al., 2022) bypass this limitation by maintaining
an external edit memory that removes the distinc-
tion between batched (simultaneous) and sequen-
tial edits. We primarily focus on single edits via
ROME in this paper, however, sequential editing
can be combined with batching for better scalability
(Gupta et al., 2024b).

B Additional Sequential Editing
Experiments

The results for sequential edits on GPT-J are shown
in Table 2. We indeed find that edits made us-
ing r-ROME create more generalized edits at the
slight expense of efficacy as in 1 but downstream
performance is retained at scale. The original im-
plementation’s downstream performance collapses
almost immediately (3). p-ROME surprisingly re-
tains downstream performance better than r-ROME
at the tail end of the sequential edits. We suspect
this is related to the instability and noise the ran-
dom prefixes induce: r-ROME n-gram entropies
are more widely distributed than p-ROME (2).

We observe similar trends in the sequentuial edit-
ing scenario with GPT2-XL 1.5B as with GPT-J
6B. Notably, p-ROME performs worse in the down-
stream evaluations than r-ROME, we postulate that
this is due to the poorer generalization ability of
the smaller model; GPT-J’s generalization abilities

(a) Downstream Evaluation (b) |∆|

Figure 6: Sequential editing with p-ROME on GPT-J
(6B).

seem to bridge the downstream performance gap
between r-ROME and p-ROME.

(a) Downstream Evaluation (b) |∆|

Figure 7: Sequential editing using original implementa-
tion of ROME on GPT2-XL (1.5B) on the 5K Counter-
Fact samples.

(a) Downstream Evaluation (b) |∆|

Figure 8: Sequential editing with r-ROME on GPT2-XL
(1.5B) on the 5K CounterFact samples.
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Original Prompt The President of the USA is

Prefix Prompts The President of the USA is
Therefore, I like. The President of the USA is
He is a. The President of the USA is
Today is a sunnay day. The President of the USA is
On this day. The President of the USA is

Table 3: Table showing examples of random prefixes xi from 3 added to the original query-phrase.

DATASET IMPLEMENTATION
Efficacy Generalization Locality Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ S ↑

CF ORIGINAL 99.94 97.92 96.38 62.2 75.8 4.33 89.35

r-ROME 98.98 93.35 95.75 59.65 76.39 4.63 89.18

p-ROME 99.68 97.68 (88.67 46.6 76.28 4.59 87.15

Table 4: Comparing the original implementation of ROME with (r-ROME & and p-ROME) for 5k non-sequential
edits for GPT2-XL.

(a) Downstream Evaluation (b) |∆|

Figure 9: Sequential editing with p-ROME on GPT2-
XL (1.5B) on the 5K CounterFact samples.
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