
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 21784–21798
November 12-16, 2024 ©2024 Association for Computational Linguistics

RECANTFormer: Referring Expression Comprehension with Varying
Numbers of Targets

Bhathiya Hemanthage1,2 Hakan Bilen2 Christian Dondrup1 Phil Bartie1 Oliver Lemon1

1Heriot-Watt University 2University of Edinburgh
{hsb2000, c.dondrup, phil.bartie, o.lemon}@hw.ac.uk {h.bilen}@ed.ac.uk

Abstract

The Generalized Referring Expression Com-
prehension (GREC) task extends classic REC
by generating image bounding boxes for ob-
jects referred to in natural language expres-
sions, which may indicate zero, one, or multiple
targets. This generalization enhances the prac-
ticality of REC models for diverse real-world
applications. However, the presence of varying
numbers of targets in samples makes GREC a
more complex task, both in terms of training su-
pervision and final prediction selection strategy.
Addressing these challenges, we introduce RE-
CANTFormer, a one-stage method for GREC
that combines a decoder-free (encoder-only)
transformer architecture with DETR-like Hun-
garian matching. Our approach consistently
outperforms baselines by significant margins in
three GREC datasets.

1 Introduction

Referring expression comprehension (REC) fo-
cuses on generating an image bounding box tightly
encompassing a region referred to by a natural lan-
guage query. This is a core task in multi-modal
information processing with potential to influence
a wide range of applications including instruction
following robots (Padmakumar et al., 2022; Gao
et al., 2023), situated multi-modal dialogues (Kot-
tur et al., 2021), and interactive photo editing (Jiang
et al., 2021; Sharma et al., 2018). Despite ad-
vances in REC on datasets like RefCOCO/+/g (Yu
et al., 2016; Nagaraja et al., 2016) current methods
assume that a single referring expression always
refers to a single object instance in the image. This
simplification limits their real-world applicability,
as they cannot handle expressions with no or multi-
ple matching instances.

Several datasets; Generalized REC (He et al.,
2023), Visual Query Detection (Acharya et al.,
2019), and REF-ZOM (Hu et al., 2023) have been
proposed to bridge this gap between real-world and

classic REC datasets. Expressions in these datasets
may refer to zero, one, or many instances in an
image. (In this work, we adopt the term ‘GREC’
coined by He et al. (2023) to refer to this family of
tasks). Despite the existence of suggested datasets
and their corresponding baselines based on state-of-
the-art classic REC models, no models have been
developed specifically addressing REC with vary-
ing numbers of targets, including zero targets.

The GREC task is more challenging than clas-
sic REC, where an image with n referable objects
results in n distinct targets in classic REC, as op-
posed to 2n distinct combinations of objects in
GREC. Unlike classic REC datasets, which are sus-
ceptible to models exploiting biases (Cirik et al.,
2018) the large pool of possible distinct combina-
tions in the GREC task makes it extremely difficult
for models to exploit biases. Furthermore, a top-1
selection strategy (or top-k variant) which is preva-
lent in classic REC models with the one-to-one
assumption (Yan et al., 2023; Deng et al., 2021),
is unsuitable when there are varying numbers of
targets. A confidence-score threshold-based selec-
tion strategy is a viable alternative. However, we
demonstrate that the threshold-based approach also
leads to a significant drop in performance when
current REC models are trained and evaluated on
GREC datasets.

To overcome these limitations in classic
REC methods, we introduce RECANTFormer:
a transformer-based framework for Referring
Expression Comprehension with Varying Number
of Targets. To address the challenge of training
the model with a varying number of targets, we
leverage Hungarian matching loss similar to DETR
(Carion et al., 2020), where bipartite matching
is calculated between the set of proposed boxes
and ground truth boxes. However, differing from
DETR, which is a transformer encoder-decoder
based approach for object detection, RECANT-
Former only employs transformer encoders with
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simple MLP-based prediction heads. Inspired by
the success of using a separate token for grounding
(Deng et al., 2021), to allow for multiple potential
targets in GREC, we propose a multimodal trans-
former encoder with multiple learnable localization
tokens. Our selection of an decoder-free architec-
ture is driven by the training-inefficient nature of
encoder-decoder based DETR-like architectures,
as shown in (Chen et al., 2022; Ding et al., 2023).
(Also our preliminary experiments in Appendix E
support this argument.)

To summarize, our main contribution is intro-
ducing RECANTFormer, a transformer-based one-
stage framework for GREC. To our knowledge, it
is the first model to learn and infer varying num-
bers of bounding boxes in GREC. Additionally,
this is the pioneering work adapting DETR-like
Hungarian-matching to an encoder-only architec-
ture for a multimodal task. Our method signifi-
cantly outperforms state-of-the-art REC methods
on three GREC benchmarks and achieves compa-
rable performance on classical REC datasets.

2 Related Work

Classic REC techniques are primarily categorized
into two-stage methods, such as (Yu et al., 2018;
Hong et al., 2019; Liu et al., 2019), which use a Re-
gion Proposal Network to generate candidates, and
one-stage methods (Yang et al., 2019, 2020; Huang
et al., 2021) that offer a more efficient, end-to-end
approach. Recent advances integrate transform-
ers (Vaswani et al., 2017), facilitating multimodal
integration, with models like RECANTFormer ex-
emplifying transformer-based one-stage methods
trained on task-specific data without visual lan-
guage pretraining. Unlike models that map ex-
pressions to a single region, RECANTFormer can
interpret expressions correlating to multiple or no
regions. Additionally, although leveraging vision-
language pre-training (VLP) has proven beneficial
for REC, as demonstrated by models like UNITER
(Chen et al., 2020), MDETR (Kamath et al., 2021),
and Universal (Yan et al., 2023), RECANTFormer
outperforms these VLP-based methods without re-
quiring extensive visual-language data.
Generalized REC: Despite several datasets avail-
able (Acharya et al., 2019; He et al., 2023), prior
research has not specifically targeted GREC. To
the best of our knowledge, our model, RECANT-
Former, is the first to focus on this task.

There are several tasks related to GREC with

key differences. Phrase localization in Flickr30K
Entities (Plummer et al., 2015) aims at localizing
each noun phrase in a given image with a set of
bounding boxes. This task differs from (G)REC in
two ways: 1) In both REC and GREC, the entire
referring expression must be considered, requir-
ing more sophisticated reasoning over a language
query. 2) Evaluation protocols of phrase localiza-
tion models avoid one expression and many targets
scenarios (see appendix for more details). Tasks
like phrase detection (Plummer et al., 2020) and
open vocabulary object detection (OVD) also limit
language expressions to simple noun phrases. Fur-
thermore, these tasks consider a large, yet finite
number of categories, whereas free-form language
in REC results in an infinite number of potential
categories.
DETR-based Detection There is a body of work
that is built on DETR, most of which focuses on
further improving DETR for object detection (Liu
et al., 2022a,b; Zhang et al., 2023) while a few
works (Kamath et al., 2021; Chu and Lee, 2023)
have used DETR for multimodal settings. All these
works use a full encoder-decoder architecture sim-
ilar to DETR. Ding et al. (2023) and Chen et al.
(2022) have investigated decoder-free DETR, em-
phasizing the training inefficiency and slow conver-
gence in the encoder-decoder architecture. How-
ever, these works focus on language-agnostic ob-
ject detection, in contrast to the multimodal setting
of RECANTFormer.

3 Method

3.1 Model Architecture

Multimodal Transformer Encoder

Linear ProjectionLinear Projection

Vision Transformer

Language Embeddings CNN Features

Language Transformer

Learnable Localization
Tokens

Box Prediction Head

Validity Prediction Head

Input ImageReferring Expression

[CLS] [SEP]

Language Stream Vision Stream

Multimodal Fusion Module

Prediction Heads

Figure 1: An overview of the proposed RECANTFormer
framework consisting of 1) Language Stream, 2) Vision
Stream, 3) Multi-modal Fusion module that leverages Learn-
able Localization Tokens, 4) Prediction Heads.
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As illustrated in Figure 1, our method takes in
two input streams for vision (in purple) and lan-
guage (in green), and employs a multi-modal fusion
module (in yellow), which includes a multi-modal
transformer encoder that serves as the core of the
RECANTFormer architecture.
Vision Stream: The vision stream consists of a
convolution layer followed by a 6 layer transformer
encoder. The transformer encoder in the vision
stream extracts embeddings that are capable of cap-
turing spatially long-range correlations in the im-
age. This is particularly crucial for GREC, as re-
solving most queries (e.g., ‘two individuals on the
outermost sides’) necessitates modeling long-range
interactions between different image patches.

Given an image with dimensions H × W , we
utilize our backbone, ResNet-50, to generate a
lower-resolution activation map of dimensions
C×H/32×W/32, where C (=2048) is the channel
dimension. A 1× 1 convolution layer then reduces
the channel dimension to Cv (=256). The resulting
vector is flattened to obtain H/32×W/32 tokens,
with a hidden dimension of Cv. These token vec-
tors are taken as input by the visual encoder, which
outputs a vector of the same dimensions. Con-
sidering the 2D nature of the visual features, sine
positional encoding is used.
Language Stream To encode text, we em-
ploy a pre-trained transformer language model,
BERTbase (Devlin et al., 2018) model.
Multi-modal Fusion Module: The objective of
this module is to facilitate cross-modality reasoning
by word embeddings attending to features of image
patches, and vice versa. As shown in Figure 1, the
multi-modal fusion module consists of two linear
projection layers with one layer from each stream.
This is followed by a multi-modal transformer with
6 encoder layers. In addition to the linear projec-
tions, we prepend the set of learnable localization
tokens to the multi-modal transformer.

Learnable Localization Tokens: Inspired by
prior object detection work (Carion et al., 2020)
and classic REC (Deng et al., 2021; Ho et al., 2022),
we introduce fixed number of learnable tokens (ini-
tialized randomly) with a specific focus on object
localization. Essentially, each token is designed
to correspond to a distinct region in the image. In
contrast to REC, where language expressions con-
sistently map to a single region in the image, GREC
models require tracking multiple potential targets.
Prediction Heads: RECANTFormers consist of
two parallel prediction heads, which take output

states of the localization tokens as the input. A
bounding box head predicts a fixed number of
bounding boxes N ∗ 4 with N usually larger than
the number of referenced objects. However, only
a subset of these coordinates predictions are valid
for a given image-text pair. To determine the valid
subset of coordinate predictions, a validity predic-
tion head, which predicts the validity of each of
N bounding box predictions, is trained in parallel.
Both prediction heads are implemented as 3-layer
MLPs with ReLU activation.

3.2 RECANTFormer Training Objectives

In our method, similar to the approach used in
DETR (Carion et al., 2020), we use Hungarian
matching loss with bipartite matching to assign
each ground truth bounding box with a unique pre-
dicted bounding box from N predictions made by
a bounding box head. Predictions with a matched
ground truth bounding box are supervised with the
corresponding ground truth as the target. A linear
combination of L1 loss and scale invariant Gener-
alized IoU (GIoU) loss (Rezatofighi et al., 2019)
is used. The rest of the boxes without a matching
ground truth bounding box are labeled as nega-
tives for the validity classification head. Standard
cross-entropy loss is used for supervising validity
label prediction. In the case of no-target examples,
a bounding box of all zeros ([0, 0, 0, 0]]) is used
as target, while the validity classification head is
supervised to predict an invalid label for all the
predicted bounding boxes. (More detail on the loss
function is provided in Appendix B)

4 Experiments

4.1 Datasets

We conduct our experiments on GREC with three
datasets: VQD (Acharya et al., 2019), gRef-
COCO (He et al., 2023), and Ref-ZOM (Hu et al.,
2023).(See appendix for more details.) We also
evaluate RECANTFormer on three standard REC
datasets: RefCOCO/+/g.

4.2 Evaluation Metrics

Precision@(F1=1, IoU ≥ 0.5) is used to assess
the performance in the GREC task as proposed by
He et al. (2023). For the VQD dataset, we also
report standard PASCAL VOC APIoU=.5 : from
object detection. (Appendix D provides a detailed
discussion on evaluation metrics)
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5 Results

GREC REF-ZOM VQD
Method TestA TestB Test Test

Models Without VL pretraining
MCN† 32.3 26.8 - -
VLT† 40.2 30.2 - -
RESC(L)-MT 20.52 22.47 17.18 45.18
RECANTFormer(5) 57.82 49.49 56.69 -
RECANTFormer(10) 55.07 48.01 59.78 63.18

MLLM Zero-shot Evaluation
KOSMOS-2 22.06 15.96 44.33 21.64

Models With VL pretraining
MDETR† 50.0 36.5 56.96 -
UNINEXT† 46.4 42.9 - -

Table 1: Comparison of RECANTFormer performance on 3
datasets with baseline models. For all the compared methods,
bounding box predictions are selected using a threshold of
0.7. †: Baselines as reported in (He et al., 2023). Number in
parenthesis indicate the # of localization tokens.

Method APIoU=.5

DETECT 26.94
Vision+Query 31.03
RECANT(10) 38.60

Table 2: Comparison of RECANTFormer results on VQD
dataset baselines. Pascal VOC AP IoU=.5 is reported.

Generalized REC Table 1 compares the perfor-
mance of RECANTFormer with 3 types of base-
lines. First, VLT (Ding et al., 2022), MCN(Luo
et al., 2020) and RESC Large(Yang et al., 2020)
baselines are strictly trained on the training split
of the specific dataset without using any additional
VLP data. This is similar to the setting followed
by RECANTFormer. It can be seen that our model
RECANTFormer outperforms the non-pretrained
baselines by a significant margin. Second, we eval-
uate the GREC datasets on a Multimodal Large
Language Model (MLLM), Kosmos-2, in a zero-
shot manner. Despite reporting zero-shot accuracy
over 50 on classic REC datasets, Kosmos-2 demon-
strates poor performance on the GREC datasets.
Third, we report results for models subscribing to
the pretrain, then finetune strategy, which involves
pre-training on a large visual-language corpus. For
example, MDETR is pre-trained on 1.3M images
taking approximately 5300 GPU hours, whereas
UNINEXT is trained on 2M images taking 3000
GPU hours. Despite using limited data and com-
pute resources, RECANTFormer outperforms both
MDETR and UNINEXT baselines by a significant
margin on the gRefCOCO dataset. Furthermore,
table 2 reports the standard Pascal VOC AP IoU=.5

scores with baselines reported in Acharya et al.
(2019).

(a). red airplane on
the the right

(b). leftmost three
airplanes

(c). four flying air-
planes

(d). guy sitting (e). two individu-
als on the outermost
sides

(f). the four individ-
uals counted from
the right.

Figure 2: Example results of our method on the gRefCOCO
dataset. If exist, predicted boxes and ground truth boxes are
shown in green and red colors respectively

Qualitative Examples Figure 2 shows some
qualitative examples of the RECANTFormer model
on the gRefCOCO dataset. The model demon-
strates its ability to differentiate objects based on
color in identifying the absence of a “red airplane"
in Figure 2a. Figure 2d presents a no-target sam-
ple that demands the model to differentiate objects
based on an action noun (“sitting”). Multi-target
samples in Figures 2b, 2c, 2e and 2f use counting
words (“two", “three", and “four") when referring
to objects. Figures 2b, 2e and 2f requires the model
to comprehend spatial adjectives (“leftmost”, “out-
ermost”, “from the right”) in referring expressions.

Methods
RefCOCO RefCOCO+ RefCOCOg

testA testB testA testB val
CNN Based
FAOA 74.35 68.50 60.23 49.60 56.12
ReSC-Large 80.45 72.30 68.36 56.81 63.12
Transformer Based
TransVG 82.67 78.12 68.15 55.63 66.56
VGTR 82.09 73.31 69.65 55.33 62.88
RECANTFormer(1) 83.08 76.51 70.43 58.08 65.40

Table 3: Comparison of RECANTFormer with state-of-the-
art methods on classic datasets; RefCOCO, RefCOCO+, Ref-
COCOg

Classic REC Results in Table 3 indicates that
RECANTFormer achieves superior or compara-
ble performance to state-of-the-art REC models on
classic REC tasks. This is despite not resolving the
one-to-one assumption, which significantly eases
the task for baseline models.

Ablation Study An evaluation on Table 4 shows
the impact of localization tokens N on GREC per-
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formance. Increasing N from 5 to 10 in gRef-
COCO decreased Pr@(F1=1) by 2%. In Ref-ZOM,
N = 10 slightly improved by 0.09% over N = 5,
but N = 20 declined over 2%. For RefCOCO
(classic REC), N = 1 vs N = 5 differed by over
5%. We hypothesize that this behavior is attributed
to the diluted loss signal caused by most the pre-
dicted boxes remaining unassigned during Hungar-
ian matching.

N
gRefCOCO Ref-ZOM RefCOCO
Val Test Val

1 - - 81.30
5 57.73 59.69 76.06
10 55.10 59.78 -
20 54.27 56.40 -

Table 4: Variation of performance in gRefCOCO, Ref-ZOM,
and RefCOCO datasets with the number of localization tokens.

6 Conclusion

This paper presents RECANTFormer, the first
framework focused on the challenging task of
Generalized Referring Expression Comprehension
(GREC). RECANTFormer has a simple, decoder-
free transformer-based architecture and demands
minimal visual-language training data. Our model
effectively utilizes the powerful multimodal fusion
capabilities of transformers encoders to outperform
GREC benchmarks across 3 datasets. By effec-
tively handling referring expressions with a vary-
ing number of target objects, including no-target
scenarios, RECANTFormer expands the range of
applications for REC.

Limitations

Detecting Hard Negatives Notwithstanding its
substantial improvement over baselines, RECANT-
Former’s performance demonstrates a marked de-
terioration in the face of challenging negative sam-
ples. Further elaboration is provided in Table 5,
which presents RECANTFormer’s accuracy in pro-
cessing samples with no targets (N-acc) across var-
ious datasets. Upon comparing the results across
datasets, it becomes apparent that the N-acc value
on the gRefCOCO dataset is significantly lower
than that of the other two datasets, attributed to the
presence of difficult negative examples.
Supervised Learning We employ a fully super-
vised setup for training RECANTFormer. Given

the considerable annotation cost associated with
creating GREC datasets, we consider a fully su-
pervised setup to be a significant constraint for
GREC. We believe that a semi-supervised setup
(Ouali et al., 2020; ?), leveraging both unannotated
and annotated data, offers a promising direction for
future research.

GREC REF-ZOM VQD
Method Val TestA TestB Test Test
RECANT(5) 52.70 53.38 54.53 88.24 -
RECANT(10) 52.73 53.07 54.81 88.24 94.16

Table 5: No-target accuracy of the models across datasets.

Ethical Statement

All the datasets used in this study have been pre-
viously published. Since the GREC task that we
address is a core skill in multimodal information
processing, this work has the potential to impact
wide range of important applications such as voice
controlled autonomous driving, social robots, mul-
timodal dialogue agents, and interactive photo edit-
ing. However the capabilities of these models may
be used for harmful applications such as surveil-
lance without consensus and illegal information
retrieval from images, which must be addressed.

Computational Budget

Compute budget for the entire research is around
4000 GPU hours. This includes, failed experiments,
hyper-parameter tuning, ablation studies and train-
ing baseline methods. We mainly used NVIDIA
A100 GPUs with 80GB of GPU memory for train-
ing alongside NVIDIA 2080RTX GPUs with 16GB
GPU memory. Our infrastructure facilitate maxi-
mum of 4GPUs per job.

Use of AI

AI assistants were not utilized for the research or
coding; however, they were employed to enhance
the writing in certain paragraphs of the paper.
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A Baselines

A.1 No Additional Data Setting
Modified RESC(Large) : RESC(Yang et al., 2020)
is a CNN based one stage approach proposed for
classic REC. RESC build on FAOA (Yang et al.,
2019), which is developed with the main idea of fus-
ing VOLVO3 features with text query embedding.
RESC improves FAOA perfomance on classic REC
with recursive subquery construction. Original
RESC model assume with one expression one re-
gion. Therefore, during training process model
select the best matching anchor prediction (specif-
ically; using Softmax over all the anchor predic-
tions) and calculate regression losses against the
single target bbox. To facilitate many targets sce-
nario, replace this loss calculation with YoloV5
loss function with IoU based loss calculation. Loss
calculation w.r.t recursive sub-query construction
is kept unchanged.

A.2 Zero-shot Setting
We use (Peng et al., 2023) as a zero-shot evalua-
tion baseline. Kosmos-2 is a grounded Multimodal
Large Language Model (MLLM) trained on 115M
text spans over 90M images. Model record a zero-
shot accuracy scores over 60 on RefCOCOg splits
in classic REC task.

A.3 Pretrain-finetune Setting
We report the results of MDETR and UNINEXT
from (He et al., 2023). In the case of MDETR, fine-
tuning process follows the same pre-trained check-
point and procedure as classic REC tasks. Initially,
the training dataset is preprocessed using Spacy to
identify the roots of the referring expressions, and
then the model is fine-tuned on the pre-processed
data. In UNINEXT (Yan et al., 2023), the stage-
1 pre-train checkpoint is fine-tuned to avoid data
leakage.

B Training Objectives

RECANTFormer follow Hungarian matching
based calculation similar to DETR(Carion et al.,
2020) object detection. This section presents de-
tails of loss calculation for completeness.

In RECANTFormer, the bounding box head al-
ways predicts Nloc boxes for a given sample. Addi-
tionally, the validity head predicts Nloc predictions
in parallel with a validity label for the correspond-
ing to each predicted box. The aim is to evaluate
these predictions considering the varying number

of ground truth bounding box targets. The loss
calculation involves two steps: 1) Matching the
predictions to the ground truth targets using the
Hungarian Algorithm based on similarity. 2) Calcu-
lating the losses of the validity labels and predicted
bounding boxes based on the assigned ground truth
boxes from step 1, if any.

Step-1: Target-Prediction Matching We repre-
sent predicted bounding boxes as Ŷbbox ∈ Nloc × 4
and the predicted validity scores as Ŷval ∈ Nloc×2.
Similarly, we denote the set of ground truth bound-
ing boxes asYbbox. Assuming Nloc larger than
the number of ground truth bounding boxes, we
pad ground truth bounding boxes so that Ybbox ∈
Nloc × 4 . When generating target validity labels
Yval, we assign an invalid label to the positions with
padded boxes, while marking the remaining (ac-
tual) ground truth positions as valid. To find a bipar-
tite matching between the sets; Y = (Ybbox, Yval)
and Ŷ = (Ŷbbox, Ŷval); we search for a permuta-
tion of Nloc elements σ ∈ SNloc

with the lowest
cost:

σ̂ = arg min
σ∈SNloc

Nloc∑

i

Lmatch(Yi, Ŷσ(i)) (1)

where Lmatch(Yi, Ŷσ(i)) is the pair-wise match-
ing cost between ground truth Yi with the predic-
tion at index σ(i). Following prior work (Carion
et al., 2020; Stewart et al., 2016) we use Hungar-
ian Algorithm for calculating optimal assignment.
Matching cost calculation take both validity labels
and the bounding box similarity between ground
truth and predictions into account. After the first
step, each ground truth bounding box at index i is
matched with the prediction at index σ̂(i).

Step-2: Loss Calculation In the second step,
predicted bounding boxes with a matching is evalu-
ated against corresponding ground truth bounding
box assigned in step-1. In addition, validity predic-
tion loss is calculated between Nloc predictions and
generated ground truth labels (including padded po-
sition). Hungarian loss can be denoted as:

LHungarian(Y, Ŷ ) =

Nloc∑

i=1

− log ρ̂σ̂(i)(Yval(i))

+

Nloc∑

i=1,Yval(i)=valid

Lbbox(Ybbox(i), Ŷbbox(σ(i))

(2)
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(a). Distribution of 209344 gRefCOCO training examples (b). Distribution of 68429 Ref-ZOM training examples

Figure 3: Distribution of data in train splits of gRefCOCO and Ref-ZOM w.r.t number of ground truth targets

Specifically, Lbbox is a linear combination of L1
loss and GIoU loss. Removing the inputs for sim-
plicity:

Lbbox = λL1LL1 + λGIoULGIoU (3)

Note that in eq. (2) Lbbox is calculated only if
there is a valid ground-truth bounding box.

B.1 RECANTFormer+: Extension for GRES
When extending RECANTFormer loss calculation,
matching step remain unchanged. Therefore same
matching indexes are used. In addition to the two
components in eq. (2), joint training for GREC and
GRES includes Lsegm where:

Nloc∑

i=1,Yval(i)=valid

Lsegm(Ysegm(i), Ŷsegm(σ(i))

(4)

Lsegm is a linear combination of Focal loss and
DICE loss:

Lsegm = λFocalLFocal + λDICELDICE (5)

C Datasets

We conduct our experiments on GREC using
3 datasets: VQD (Acharya et al., 2019), gRef-
COCO(Liu et al., 2023) and Ref-ZOM(Hu et al.,
2023). Referring expressions across all datasets are
in English. In this section we provide statistics of
these 3 datasets.

In addition to the gRefCOCO and Ref-ZOM
datasets, we also evaluated RECANTFormer on
three mainstream referring expression comprehen-
sion datasets: RefCOCO, RefCOCO+ (Yu et al.,

2016) and RefCOCOg (Nagaraja et al., 2016). For
RefCOCO and RefCOCO+, we used the UNC par-
tition, while for RefCOCOg, we used the Google
partition.

C.1 Dataset Links
We used gRefCOCO and Ref-ZOM datasets for
our experiments in GREC and GRES tasks. Both
the datasets are publicly available and downloaded
links are provided at following git repositories:

• gRefCOCO: https://github.com/henghuiding/
gRefCOCO

• VQD: https://github.com/manoja328/VQD_

dataset

• Ref-ZOM: https://github.com/toggle1995/

RIS-DMMI

C.2 Dataset Statistics
Table 6 provide number of expressions (image-text
pairs) in different splits in gRefCOCO and Ref-
ZOM datasets. In appendix A.3 breaks-down train-
ing split of each dataset by the number of ground
truth targets for given image-expression pair. Note
that 99% of gRefCOCO training examples have
zero target, single target or two-targets. In the case
of Ref-ZOM, just over 95% samples have two or
less ground truths, while 2.5% of training examples
having three ground-truth targets.

D Discussion on Evaluation Metrics

In this section, we discuss the selection of
Pr@(F1=1, IoU ≥ 0.5) as the evaluation metrics
against several other alternatives.

In traditional REC research, where expressions
always correspond to a single object instance and
thus a single bounding box, top-1 accuracy is com-
monly used as a metric. The predicted bounding
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GREC REF-ZOM VQD
Sample Category Train Val TestA TestB Train Test Train Test
Total Samples 209344 16870 18712 14933 68249 21770 431363 190174
Zero-target 19140 6966 4189 4242 9610 2327 161494 80025
Multi-target 69580 5905 8835 5744 13601 7387 55148 20048

Table 6: Number of image-text pairs in gRefCOCO and Ref-ZOM dataset splits.

box with the highest confidence is compared to
the ground-truth bounding box, and the prediction
is deemed correct if the Intersection over Union
(IoU) between the two bounding boxes exceeds a
specified threshold (typically 0.5). However, this
approach is not applicable when the number of
ground-truth bounding boxes is unknown in ad-
vance and can vary, including cases where there are
zero, one, or multiple target bounding boxes.

While the zero-target case is not taken into ac-
count, efforts have been made in phrase ground-
ing research to address scenarios where multi-
ple ground truth bounding boxes exist. The pri-
mary evaluation metric proposed for assessing
grounded detection datasets, such as Flickr30K en-
tities(Plummer et al., 2015), is Recall@k. How-
ever, Recall@k is not adequately defined for cases
involving multiple boxes. To overcome this limi-
tation, prior work on phrase grounding has intro-
duced two distinct protocols: the Merge-box proto-
col (Deng et al., 2021; Liu et al., 2019; Yang et al.,
2019) and the Any-box protocol (Li et al., 2019)
(as referred to in (Kamath et al., 2021)).

Merge-box protocol In the Merge-box protocol,
all the ground truth bounding boxes corresponding
to a given phrase are merged to create the smallest
enclosing bounding box. This resulting bounding
box is then considered the target for evaluation.

Any-box protocol In the Any-box protocol, a
model prediction is deemed correct if it has an
Intersection over Union (IoU) higher than the spec-
ified threshold (0.5) with any of the ground truth
bounding boxes.

As evidenced by fig. 4, both evaluation ap-
proaches suffer from significant drawbacks. The
merged-box protocol, for instance, sacrifices fine-
grained details to an extent that undermines seman-
tic correctness in GREC. This is demonstrated in
fig. 4b, where the resulting bounding box encom-
passes all individuals instead of solely capturing
those on the outermost sides. Meanwhile, the any-
box protocol fails to assess whether all instances

(a). Ground Truth Targets (b). Target under Merged-box
protocol

(c). Sufficient target under
Any-box protocol

(d). Sufficient target under
Any-box protocol

Figure 4: Merged-box and any-box evaluation scenarios for
‘two individuals on the outermost sides’

referred to in the expressions are correctly iden-
tified. As illustrated in figs. 4c and 4d, identify-
ing any of the individuals would suffice under this
protocol, which is problematic given that the ex-
pression explicitly references "two individuals." By
contrast, Pr@(F1=1, IoU=0.5) represents a more
stringent measure that demands fine-grained pre-
dictions while still preserving semantic correctness
in terms of the number of identified regions, as
compared to the aforementioned protocols.

Furthermore, object detection research relies on
metrics such as Average Precision (AP), which
involve a trade-off between recall and precision.
However, in the context of GREC, it is possible
for a model to achieve high recall and precision
scores while lacking a proper understanding of the
expression’s semantics. For example, as depicted
in fig. 5, a model that selects every person in the im-
age would attain perfect recall and high precision.
Nevertheless, it is important to note that these high
precision/recall scores conceal the model’s failure
to comprehend the underlying expression.
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(a). four person in
the background appear-
ing fuzzy

(b). everyone except the kid in red

Figure 5: ’Two examples where model can achieve perfect
recall and high precision by selecting every person, while
failing to understand the expression ’

E Preliminary Experiments

In our initial experiments, we trained the MDETR
architecture on the Ref-ZOM dataset, which is
encoder-decoder based, without using pretrained
weights. We found that the non-pretrained MDETR
model did not perform well on the GREC task after
25 epochs of training (approximately 30 hours) on
4 NVIDIA A100 GPUs, yielding a precision score
of only 10.69. In contrast, the RECANTFormer
model achieved a Pr@(F1=1) score of 55.74 after
25 epochs in approximately 12 hours. Due to the
inefficient use of compute resources, we discontin-
ued experiments with non-pretrained versions. Our
intuition suggests that training an encoder-decoder
model with cross-attention requires more resources
(data and compute) compared to an encoder-only
approach. In general, we believe that encoder-only
DETR-based models show promise for further in-
vestigation, especially in low-resource settings.

F Implementation Details

Our model is trained using the AdamW optimizer.
The multimodal fusion module has an initial learn-
ing rate of 1e-4, while the vision and language
streams have learning rates of 1e-5 and a weight
decay of 1e-4. We initialize the backbone and vi-
sion encoder using weights from a DETR model
encoder (Carion et al., 2020), which was trained
on COCO images excluding those in the test/val
splits of respective datasets. The language stream is
initialized with the BERTbase model (Devlin et al.,
2018). We use Xavier initialization for the weights
in the multimodal fusion module. Data augmen-
tation follows prior work (Deng et al., 2021), but

we exclude random horizontal flipping due to se-
mantic ambiguity. Additionally, random cropping
is not used when training on Generalized REC
datasets (gRefCOCO. Ref-ZOM and VQD). Im-
ages are scaled so that the longest side is 800 pix-
els, and the language stream uses a maximum of 40
language tokens. We train the model for 90, 90, 40
epochs on gRefCOCO, Ref-ZOM and VQD exper-
iments respectively. For all the classic REC tasks,
we train the model for 180 epochs. The learning
rate decreases by a factor of 10 after 60 epochs in
all experiments.

G Ablation

We use gRefCOCO validation set to ablate our
choice of bounding box loss components and report
results in Table 7.

L1 GIoU Pr@(F1=1)

✗ ✓ 56.53
✓ ✗ 57.44
✓ ✓ 57.73

Table 7: Ablation results of RECANTFormer(5) on gRef-
COCO validation set with different bounding box loss compo-
nents.

H More on Localization Tokens

fig. 6 provides more examples of the RECANT-
Former model predictions. In addition to the final
set of predicted bounding boxes (shown in column
3 with green bounding boxes), the second column
illustrates the predicted regions by the bounding
box head without applying validity filtering. In
fig. 6a, where there are four persons present, five
probable bounding boxes predicted by box head
includes two highly overlapping regions (around
the second person from the left). The validity head
correctly selects the best set of bounding boxes,
predicting a single bounding box covering each
person. In fig. 6b where ‘every male individual.’
are referred, box head predicts a box around each
of the person including the woman. Validity predic-
tion head filter outs the female individual and cor-
rectly select the four target objects for the given ex-
pression. Similar behaviour, where bounding box
prediction head select set of probable regions for
the validity head to filter-out regions irrelevant to
the expression, can be also seen in figs. 6c and 6d.
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(a). Every Person

(b). every male individual.

(c). bowl in front with chopstick and guy in middle

(d). pizza in front with chopstick

Figure 6: GREC examples with regions detected before and after validity filtering. First column shows ground truth bounding
boxes in red. Yellow boxes in second column shows all the bounding boxes from box head without applying validity filtering.
Last column with green bounding boxes shows final prediction of the model after filtering
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(a). back half of elephant and trunk (b). giraffe on right and middle giraffe

(c). every male individual.

(d). every single broccoli floret. (e). banana second to left

Figure 7: Attention weights of output state of valid localization tokens to output states of tokens representing visual features in
multimodal tranformer encoder. RECANTFormer checkpoint only trained on GREC task is used. Under each visualization of
weights, is the bounding box predicted by the particular localization token.
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I Attention Weights of Localization
Tokens

We hypothesize that the output state of the local-
ization tokens within the multimodal transformer
encoder contains crucial information necessary for
the generation of a segmentation mask that ex-
tends beyond predicting bounding box coordinates.
To validate this intuition, we visualize attention
weights of the output state of valid localization to-
kens in relation to the output states of the tokens
that represent visual features, as depicted in fig. 7.
It is worth noting that these visualizations utilized
the checkpoint from RECANTFormer, which was
solely trained on the GREC task prior to any joint
fine-tuning. Each attention weight is accompanied
by an image featuring the corresponding bounding
box predicted by that particular localization token.
These visualizations validate that the weights of
localization tokens contain pertinent information
beyond forecasting of box coordinates.

J RECANTFormer+ for GRES

Figure 8: Implementation of segmentation head extending
ReCANTFormer for Generalized Referring Expression Seg-
mentation

Mask Prediction Head The mask prediction
head extends the RECANTFormer model to gen-
erate a segmentation mask per image which is il-
lustrated in Figure 8. Here our key idea is that the
self-attention mechanism in the multi-modal trans-
former, specifically the attention between localiza-
tion tokens and visual tokens, captures the required
information to generate a segmentation mask. This
module receives two inputs from the multi-modal
transformer encoder: 1) the output states of local-
ization tokens, and 2) the output states of visual
tokens. The attention mechanism between localiza-

tion tokens and visual tokens includes multi-head
attention, which in turn generates a set of M heat
maps. The FPN approach (Lin et al., 2017a) is
used for upsampling. The segmentation mask gen-
erates N number of masks. Masks obtained using
this segmentation head are finally filtered using the
validity classification head. Then selected masks
are combined to generate a single segmentation
mask. Our design is motivated by the extension of
the DETR (Carion et al., 2020) object detector for
(panoptic) segmentation. However, DETR being
an encoder-decoder architecture, uses multi-head
attention between decoder output and the encoded
image to generate heatmaps. Linear combination of
focal loss (Lin et al., 2017b) and dice loss (Milletari
et al., 2016) is used to train the model.

Results on GRES The performance of RE-
CANTFormer+ on GRES task on gRefCOCO is
presented in table 8. When models with compara-
ble backbones are considered, RECANTFormer+
outperforms MattNet (Yu et al., 2018), VLT (Ding
et al., 2022), and ReLA (Liu et al., 2023) models
with respect to gIoU, cIoU and N-acc metrics by
significant margins.
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Dataset
Visual Text val testA testB
Encoder Encoder cIoU gIoU N-acc T-acc cIoU gIoU N-acc T-acc cIoU gIoU N-acc T-acc

MattNet R-101 LSTM 47.51 48.24 41.15 96.13 58.66 59.30 44.04 97.56 45.33 46.14 41.32 95.32
VLT D-53 bi-GRU 52.51 52.00 47.17 95.72 62.19 63.20 48.74 95.86 50.52 50.88 47.82 94.66
ReLA R-50 BERT 42.04 39.10 29.70 98.23 47.42 44.95 35.09 96.56 38.76 36.01 23.39 97.86
RECANTFormer(5)+ R-50 BERT 56.08 59.95 52.83 95.94 62.88 64.65 53.66 96.88 51.64 56.54 55.96 93.40

Table 8: Comparison of GRES Results on gRefCOCO dataset. cIoU: Cumulative IoU. gIoU: Generalized IoU N-acc: No-target
accuracy. T-acc: Target accuracy
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