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Abstract

The rapid advancement of generative AI has
heightened environmental concerns, particu-
larly regarding carbon emissions. Our frame-
work, SPROUT, addresses these challenges by
reducing the carbon footprint of inference in
large language models (LLMs). SPROUT in-
troduces "generation directives" to guide the
autoregressive generation process, achieving a
balance between ecological sustainability and
high-quality outputs. By employing a strategic
optimizer for directive assignment and a novel
offline quality evaluator, SPROUT reduces the
carbon footprint of generative LLM inference
by over 40% in real-world evaluations, using
the Llama model and global electricity grid
data. This work is crucial as the rising interest
in inference time compute scaling laws ampli-
fies environmental concerns, emphasizing the
need for eco-friendly AI solutions.

1 Introduction

The AI boom, driven by the demand for genera-
tive artificial intelligence (GenAI) (Nijkamp et al.,
2023; Jumper et al., 2021; Pierce and Goutos, 2023;
Chen et al., 2023a), has prompted concerns over
its environmental impact, particularly in terms of
carbon emissions associated with the datacenters
hosting these technologies. OpenAI’s reported pur-
suit of trillions in investment for AI chips (For-
tune, 2024), destined for their datacenter infrastruc-
ture, underscores the scale of resource expansion
required to support GenAI’s growth.

Generative large language models (LLMs) have
gained a substantial user base across various sci-
entific fields (Singhal et al., 2023; Lin et al., 2023;
Liu et al., 2024, 2023b; Christofidellis et al., 2023).
This underscores a critical need for research fo-
cused on minimizing LLMs’ environmental impact.
Although training these models requires extensive
compute cycles and carbon footprint, it is the in-
ference processes of these LLMs that are poised to

become the predominant source of emissions, ac-
cording to various prior studies (Chien et al., 2023;
Wu et al., 2022; de Vries, 2023). The carbon foot-
print of inference is expected to become even more
significant as models like OpenAI o1 (OpenAI,
2024b) tend to scale inference compute (Brown
et al., 2024). Unlike traditional natural language
understanding models that predict a single masked
word or sentiment, generative LLMs are even more
carbon-demanding as they perform iterative predic-
tions for each request until reaching a predefined
token or iteration limit. Despite the urgency of this
issue, there lacks a solution for reducing carbon
emissions specifically from the LLM inference op-
erations – which is natural given the field is in the
early stages, but rapidly evolving.

In this paper, we design SPROUT as the first
work to address the sustainability challenges in
running a generative LLM inference service. Var-
ious previous works have attempted to reduce the
carbon footprint of machine learning (ML) appli-
cations (Wu et al., 2022; Acun et al., 2023a; Li
et al., 2023a), but none has designed optimizations
tailored to LLM inference which is becoming a
dominant workload and requires intervention to
reduce its carbon footprint. The following summa-
rizes SPROUT’s insights and contributions.

Introduction of generation directives to LLM
inference for carbon saving. Previous works have
identified the opportunity to manipulate the num-
ber of parameters in the model to save energy and
cost (Wan et al., 2020; Romero et al., 2021), while
SPROUT is the first work to identify that in gener-
ative language model inference, its autoregressive
generation pattern presents a unique opportunity
beyond previous works. SPROUT introduces the
concept of “generation directives”, a strategy to
indirectly manipulate the number of autoregressive
inference iterations while providing high-quality
content generation. For example, a directive can
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guide the model to provide a concise response, sav-
ing significant carbon from generating a long se-
quence while still being accurate. Identifying the
variability in the carbon intensity of the electricity
generation and the diverse requirements of different
tasks, SPROUT can leverage different generation
directives to minimize the carbon footprint of LLM
inference with a guarantee of generation quality.

Design, implementation and evaluation of
carbon-friendly generation directive configura-
tion for LLM inference. We present SPROUT,
a novel carbon-aware generative language model
inference framework designed to reduce carbon
footprint through the strategic use of token genera-
tion directives while maintaining high-quality out-
puts. From the selection of directive levels based
on electricity grid carbon intensity and user be-
havior variability, SPROUT introduces a linear pro-
gramming approach for system-level optimization,
balancing carbon savings with generation quality.
SPROUT identifies the difficulty in retrieving gen-
eration quality feedback, and implements an auto-
matic offline and opportunistic quality assessment
mechanism to ensure the framework’s decisions are
informed by up-to-date generation quality.

We evaluate SPROUT using production software
setup, state-of-the-art LLM, representative corpus
to synthesize user prompts, and real carbon inten-
sity traces from global electricity grid operator
regions. Our evaluation confirms SPROUT’s ef-
fectiveness in reducing carbon emissions by more
than 40% while still achieving high generation
quality. We open source SPROUT’s artifact at
https://doi.org/10.5281/zenodo.13879728.

2 Background and Motivation

Carbon footprint of an inference request. The
carbon footprint is a metric for quantifying the
amount of greenhouse gas emissions (gCO2) gener-
ated. When requesting a service from a datacenter
server (e.g., HTTP requests), its carbon footprint
comprises the operational carbon and embodied
carbon. The operational carbon comes from elec-
tricity generation to power the datacenter, which
powers the hardware (e.g., GPUs) that serves the
request (carbon intensity × energy). The carbon
intensity (denoted as CO

Intensity
2 ) of the grid, rep-

resenting the amount of CO2 emission per unit of
energy usage (gCO2/kWh), reflects the “greenness”
of the energy source. For example, wind turbines
have lower carbon intensity than coal power plants.
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Figure 1: Quantifying the impact of factors on an infer-
ence request’s carbon footprint: (a) the number of model
parameters and (b) the number of generated tokens.

Due to the temporal difference in availability of re-
newable energy, carbon intensity varies over time.

Embodied carbon (denoted as COEmbed
2 ) repre-

sents the carbon emissions associated with the man-
ufacturing and packaging of computer components,
effectively “embodied" within the device itself. We
follow the methodology in (Gupta et al., 2021,
2022) to model the embodied carbon. For an infer-
ence request processed by a computing device, its
share of embodied carbon is proportional to the ex-
ecution time relative to the device’s overall lifespan.
The total carbon footprint of serving an inference
request, Creq, can be formally expressed as:

Creq = CO
Intensity
2 · Ereq +

COEmbed
2

Tlife
· Treq (1)

Here, Ereq and Treq represent the energy consump-
tion and execution time for the request, respectively,
with Tlife indicating the assumed device lifespan,
set to five years for this analysis. Given that the
lifespan of the device significantly exceeds any sin-
gle request’s execution time, operational carbon
dictates the total carbon footprint, except in scenar-
ios where CO

Intensity
2 approaches zero.

Motivational Empirical Study and Opportuni-
ties. We make three major observations.

Takeaway 1. The LLM inference carbon foot-
print depends on not only the model size but
also the number of tokens generated, present-
ing a new opportunity to reduce carbon without
being forced to choose a smaller model size.

In Fig. 1 (a), we demonstrate how the carbon
footprint of LLM inference changes with model
size, showcasing examples with the Llama2 model
at 7 billion (smaller model) and 13 billion param-
eters (larger model). In Fig. 1 (b), we execute a
series of input prompts on the Llama2 7B and 13B
model and observe that there is a strong linear cor-
relation between the total carbon emission and the
volume of tokens generated from request.
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<prompt> How old is the Earth approximately? 
(A) 50,000 years (B) 300 million years 
(C) 4.5 billion years (D) no one knows

<generation directive L0 (default)> Based on a 
variety of geological and astronomical 
evidence, including …. While …, the scientific 
consensus is (C): 4.5 billion years old.

<generation directive L1 (brief)> (C). The 
Earth is approximately 4.5 billion years old.

(a) (b)

(13B, L0)

(7B, L0)

(13B, L1)

Better

Figure 2: (a) Example of applying generation directive.
(b) Hosting larger models (e.g., Llama2 13B) with gen-
eration directives can outperform smaller models (e.g.,
Llama2 7B) in both carbon emission and correctness.

The autoregressive token generation iteratively
predicts the subsequent token until an end-of-
sequence (EOS) token emerges or a predefined
limit is reached. Despite initial computations to
pre-fill the KV cache with key and value vectors
from the input prompt, we show that the overall
carbon emission of a request is largely dictated
by the quantity of generated tokens. Our experi-
mental results show that rather than naively relying
on smaller models and potentially compromising
the contextual understanding capabilities, we can
potentially infer from a larger size model but focus
on generating fewer tokens (Fig. 1 (b)).

Takeaway 2. Incorporating generation direc-
tives into prompts can significantly reduce the
carbon footprint by enabling concise yet accu-
rate responses. To control the LLM token genera-
tion length, we introduce “generation directive".

Definition 1 A generation directive is an instruc-
tion (e.g., “respond concisely”) that guides the
model to generate tokens. Each generation direc-
tive level specifies a pre-defined text sequence that
acts as this guiding instruction.

In Fig. 2 (a), we show a prompt from the MMLU
task (Hendrycks et al., 2020). Without using any
specific directives (level L0), the Llama2 13B
model defaults to generating an extensive num-
ber of tokens. However, such detailed background
information may not always align with user pref-
erences. Applying a generation directive (level
L1) ensures both brevity and correctness. This
practice demonstrates the potential to reduce car-
bon emissions from token generation. Fig. 2 (b)
demonstrates such potential quantitatively by mea-
suring the CO2 emission and MMLU correctness
rate. It shows that employing generation directives
with a larger model (13B, L1) significantly out-
performs smaller models (7B, L0) in both carbon
and the accuracy of generated content. This is at-
tributed to the larger model’s superior contextual
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Figure 3: Applying generation directives across differ-
ent tasks reveals varied sensitivity to these directives.

understanding, which, when combined with con-
cise generation directives, retains its comprehen-
sive knowledge base without unnecessary verbosity,
highlighting the advantage of optimizing response
generation instead of model sizes.

Takeaway 3: The impact of employing gener-
ation directives on carbon emissions and accu-
racy differs across user tasks, presenting an in-
teresting challenge in optimally utilizing these
directives, particularly in the context of fluctu-
ating carbon intensity. In Fig. 3, we show the im-
pacts of different generation directives (L0, L1, L2)
on different tasks including science knowledge (Lu
et al., 2022) and trivia knowledge (Joshi et al.,
2017). We observe that both the amount of car-
bon emission and the generation’s correctness rate
vary with the task. Responding to these challenges,
we design SPROUT, a generative LLM inference
framework that takes advantage of generation direc-
tives to dynamically optimize the carbon footprint
while guaranteeing high-quality generations.

3 SPROUT Design

3.1 System Overview and Key Ideas
SPROUT is designed as the first carbon-aware gen-
erative language model inference framework, utiliz-
ing token generation directives to minimize carbon
footprint while ensuring high-quality content gen-
eration. Fig. 4 shows a brief design overview of
SPROUT. Once the user prompts are assigned to
an inference server by the load balancer, they are
tokenized into numerical representations. In this
phase, a generation directive selector 1 assigns a
directive level to each prompt, integrating it into
the tokenized input. The policy for assigning di-
rective levels is established by SPROUT’s token
generation directive optimizer 2 , as detailed in
Sec. 3.2. This optimizer systematically considers
the carbon intensity of the local grid and the feed-
back on both the quality and carbon footprint of
token generation.

To retrieve the local carbon intensity, we ac-
cess third-party API endpoints such as Electricity
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Figure 4: Overview of SPROUT’s Carbon-Friendly Inference System.

Maps (Maps, 2024). To enable inference carbon
feedback, SPROUT monitors the datacenter PUE
and device energy with tools such as nvidia-smi
to record the GPU power and processing time of re-
quests and save the logs to the database. However,
obtaining the token generation quality feedback is a
different process from the above metrics. After au-
toregressive inference concludes on the inference
server 3 , the generated tokens are detokenized
and sent back to the user clients, while simultane-
ously, the request and node monitoring logs are
archived in the database. A generation quality eval-
uator 4 then extracts a sample of prompts from the
database, generates responses for each at all gen-
eration directive levels, and identifies the directive
level that yields the best response for each request.

However, determining the directive level that
yields the best response presents a challenge due
to the subjective nature of preference and the ab-
sence of a definitive best response. Since manual
evaluation by humans is impractical, following a
methodology from recent research (Dubois et al.,
2024), SPROUT employs an LLM-based automatic
evaluator, rather than human evaluators, to provide
generation quality feedback, aligning with com-
mon academic and industry practices (Liu et al.,
2023a; Bai et al., 2024; MistralAI, 2024).

SPROUT’s evaluator consults an auto-evaluation
LLM 5 to gauge its preference for the responses,
logging them back into the database. The whole
process happens offline, and since the evaluation
process also incurs carbon emission, SPROUT’s op-
portunistic evaluation invoker 6 (Sec. 3.3) ensures
the evaluations are carried out only as necessary
and during low carbon intensity periods.

3.2 Generation Directive Optimizer
While employing generation directives to reduce
token output in the autoregressive process is bene-
ficial for lowering carbon emissions, it poses a risk
to content quality. Two key external factors further
complicate this balance: the regional carbon inten-
sity powering the datacenter, which directly affects

the efficacy of carbon savings, and the nature of
user prompts, which influences the impact of gen-
eration directives on both emissions and content
quality. To address these challenges, SPROUT’s op-
timizer is designed to dynamically adjust to fluctu-
ations in carbon intensity and the variability of user
prompt tasks. In scenarios of low carbon intensity,
SPROUT prioritizes directives that enhance content
quality, leveraging the carbon discount in gener-
ating new tokens. Under high carbon intensity, it
opts for directives that may slightly compromise
quality but significantly reduce emissions. This
strategy underpins the mathematical formulation
of the SPROUT optimizer, ensuring that it targets
both carbon footprint and content quality.

Optimization variable. Optimizing directive lev-
els for each request introduces several practical
complications: (i) Dimensionality challenge: the
number of dimensions equals the number of re-
ceived requests (user prompts) at each optimization
step. (ii) Computational overhead: the optimization
is in the critical path before the autoregressive infer-
ence starts, delaying the time to first token (TTFT).
(iii) Predictability issues: anticipating the impact of
each directive level on carbon emissions and con-
tent quality for individual requests is challenging.
We can only infer general trends from historical
data, which do not apply to specific future prompts.

Considering these challenges, SPROUT adopts
a system-level optimization strategy for genera-
tion directive levels, rather than an impractical
per-request optimization. It achieves this by de-
termining the probability of selecting each direc-
tive level for all user requests (prompts). Let n
denote the number of available generation direc-
tive levels. The optimization variable, represented
as x = [x0, x1, . . . , xn−1]

T , defines xi ∈ [0, 1] as
the probability of applying the i-th directive level
to any request, with x0 representing the baseline
directive L0 (indicating no directive). To ensure ev-
ery request receives a directive level, the condition∑n−1

i=0 xi = 1 must be satisfied. This system-wide
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probabilistic approach to directive selection, while
not optimizing for individual prompts, is shown to
achieve carbon savings close to those of an imprac-
tical per-request Oracle optimizer (Sec. 5).

Objective function. Following Eq.1, we design
the objective function f(x) to encapsulate the ex-
pected carbon footprint of an inference request.

f(x) = k0 · eTx+ k1 · pTx (2)

where x denotes the probabilities of selecting each
directive level across all user prompts. It incorpo-
rates (i) the current regional carbon intensity (k0 in
gCO2/kWh), obtained via API; (ii) the prorated
per-second embodied carbon of the inference hard-
ware through its device lifetime (k1 in gCO2/s);
and (iii) the profiles of energy consumption (e) and
processing time (p) for requests employing vari-
ous generation directive levels. The vectors e =
[e0, e1, . . . , en−1]

T and p = [p0, p1, . . . , pn−1]
T

represent the average energy (in kWh) and pro-
cessing time (in seconds), respectively, for recent
requests guided by each directive level.

Generation quality constraints. The optimizer
also requires feedback from the generation quality
evaluator, which reports the auto-evaluation LLM’s
preference on which directive level is the best for
all sampled requests. Let q = [q0, q1, . . . , qn−1]

T

where qi ∈ [0, 1] denote the preference rate of each
directive level reported by the evaluator. For ex-
ample, if q = [0.5, 0.3, 0.2]T , it means 50% of the
time, the auto-evaluator prefers the response gener-
ated using directive L0, 30% of the time by L1 and
20% of the time by L2. We can denote the expected
generation quality as qTx. During the optimiza-
tion, we need to make sure the preference rate does
not deviate beyond a threshold of ξ ∈ [0, 1] away
from the q0 generation baseline using directive L0.
In addition, SPROUT designs the actual quality de-
viation from q0 to vary based on the current carbon
intensity – when the carbon intensity is low, the
constraint should be more strictly enforced (devia-
tion closer to 0) since renewable energy is abundant
in the grid to support high-quality generation, and
vice versa, during high carbon intensity periods,
the deviation should be closer to ξ. This can be
formulated as an inequality constraint:

qTx ≥ (1− k0 − kmin
0

kmax
0 − kmin

0

· ξ) · q0 (3)

where kmin
0 and kmax

0 are the known historical min-
imum and maximum carbon intensities, respec-

tively, and are used for min-max normalization
of k0. The parameter ξ, adjustable according to
system requirements, facilitates a balance between
carbon footprint and content quality. For SPROUT’s
evaluation (detailed in Sec. 5), we set ξ to 0.1.

Problem formulation. The overall optimization is

min
x∈Rn

f(x) (4)

s.t. qTx ≥ qlb, (5)

∀i, 0 ≤ xi ≤ 1, (6)
n−1∑

i=0

xi = 1 (7)

For simplicity, we replace the right-hand side of
Eq. 3 with scalar qlb to represent the quality lower
bound. Eq. 6 indicates that the probability of each
level is within the range of 0 to 1, and Eq. 7 in-
dicates that all probabilities sum to 1. Note that
f(x) is linear because both eT and pT are con-
stants to the optimization variable x (Eq. 2), and
all the constraints in Eq. 5, 6 and 7 are linear to x.
Therefore, we have mapped the optimal generation
directive level configuration problem to a linear
programming problem and we can use the HiGHS
dual simplex solver (Huangfu and Hall, 2018) to
find the optimal solution for x.

3.3 Opportunistic Offline Quality Assessment

In Eq. 5, SPROUT relies on the qT vector to impose
the quality constraint. As a carbon-friendly genera-
tive LLM inference framework, SPROUT not only
cares about the carbon footprint of the inference
server but also the quality evaluation process, es-
pecially when the auto-evaluation LLM can have
> 10× number of parameters than the inference
model (e.g., GPT-4 compared with Llama model).
Note that the quality evaluation is not in the critical
path of online inference serving and thus can be
done offline opportunistically in a different server.

SPROUT triggers the offline quality evaluation
based on specific carbon intensity thresholds of
the evaluation server. When deciding on whether
to evaluate at the current time t, it is critical to
weigh the carbon intensity of the evaluator LLM
at the current moment, denoted as k(t)2 , against the
time elapsed since the last evaluation at t0. Di-
rect and frequent evaluations can lead to unneces-
sary carbon emissions without significant benefit,
whereas delayed evaluations can undermine the
optimizer’s reliability, as the qT vector becomes
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Figure 5: Process to select the opportunity to invoke
quality evaluation (golden star). (a) The urgency-
adjusted k

′(t)
2 must fall within the green zone after the

grace period (red area) and below the carbon intensity
threshold (green line). The red crosses, despite showing
a positive second-order derivative, do not qualify for
evaluation. (b) Even if carbon intensity stays high all
the time, the increasing evaluation urgency ensures that
offline evaluation always occurs.

outdated (Sec. 3.2). To mitigate these issues, we
first enforce a grace period to ensure the evaluation
does not occur too frequently, then introduce an
urgency multiplier to the carbon intensity to cap-
ture the increasing need for re-evaluation as time
progresses. The urgency-adjusted carbon intensity
k
′(t)
2 is expressed as

k
′(t)
2 = e−β(t−t0) · k(t)2 (8)

The urgency parameter, β, determines the rate
at which the evaluation interval incurs penalties
over time, ensuring that the value of immediate
evaluation – offering a timely update to the qT

vector in Sec. 3.2 – is weighed against waiting for
potentially lower future carbon intensities. By de-
fault, we set β so that the urgency-adjusted carbon
intensity k

′(t)
2 becomes 1/2 of the actual carbon

intensity after 24 hours without evaluation. An
offline evaluation starts under conditions of (i) ts
represents a local minimum for k′(t)2 , indicating a
positive second-order derivative at that point; (ii)
a grace period has elapsed since the last evalua-
tion; (iii) the urgency-adjusted carbon intensity at
ts, k

′(ts)
2 , falls below a predefined threshold, such

as 50% of the historical maximum carbon intensity.
This evaluative mechanism, illustrated in Fig. 5,
highlights moments of evaluation marked by stars
in two different cases, underlining SPROUT’s con-
sideration for both carbon intensity and the need
for timely quality feedback.

We have implemented SPROUT’s generation di-
rectives as system prompts, implemented the infer-
ence server and monitoring framework following
industry standards, and developed an automatic
quality evaluation mechanism for Sec. 3.3. More
details are provided in Appendix A.2.

4 Methodology

Experiment setup. We conduct experiments on a
testbed comprising two nodes, each equipped with
two NVIDIA A100 40GB GPUs and two AMD
EPYC 7542 CPUs. We use Meta Llama2 13B (Tou-
vron et al., 2023) to establish the inference server,
with each GPU hosting a model instance within
its 40GB HBM memory. To assess SPROUT’s ef-
ficiency, three levels of generation directives are
implemented: L0 as the default baseline with no di-
rectives, L1 for “brief" generation, and L2 for “very
brief" generation. GPT-4, accessed via the OpenAI
API, serves as the auto-evaluation LLM for offline
quality assessments. Each of our quality evaluation
requests to OpenAI’s gpt-4-0613 API costs about
$0.01 on average. It is worth noting that while the
auto-evaluation LLM occasionally favors longer
outputs, it consistently prioritizes correctness and
accuracy over length in its assessments.

SPROUT is evaluated using a diverse set of NLP
tasks across five real-world electricity grid opera-
tion regions of the US Texas (TX), US California
(CA), South Australia (SA), Netherlands (NL), and
Great Britain (GB) in February 2023, and further
evaluated in June and October 2023 for robustness.
We have provided more details in Appendix A.3.

Competing schemes. SPROUT is evaluated along-
side five distinct strategies, detailed as follows:
BASE is the baseline strategy that represents a
vanilla LLM inference system, it does not explore
the opportunity of generation directives discussed
in Sec. 2. SPROUT_CO2 represents a scheme that
minimizes CO2 emissions using SPROUT’s most
aggressive generative directives. It will always use
the generation directive level that yields the lowest
carbon footprint without considering the genera-
tion quality. MODEL_OPT is an implementation
of the idea to automatically swap between different
underlying models to achieve optimization goals
from previous works (Romero et al., 2021; Wan
et al., 2020). Unaware of the generation direc-
tives, this scheme uses inference model variants
(i.e., Llama2 7B and 13B) as optimization variables
since model variants also introduce the trade-offs
between carbon and generation quality. It repre-
sents the optimal model variant selection for the
user prompts. SPROUT_STA is a static version
of SPROUT, applying a single, month-long opti-
mal generation directive configuration identified
through offline configuration sweeping, without
dynamic adjustments based on real-time carbon in-
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Figure 6: SPROUT significantly saves carbon while pre-
serving quality across all geographical regions.

tensity and generation feedback. ORACLE is an
impractical scheme based on oracle information.
It assumes the inference carbon emission on every
generation directive level is known ahead of time
for all user prompts, and knows the exact genera-
tion quality feedback for future prompts instead of
relying on sampling.

Metrics. The two primary metrics are the inference
carbon footprint and the text generation quality.
The carbon footprint metric accounts for the CO2

emissions associated with each inference, averaged
for comparison against the default operation rep-
resented by BASE. The generation quality is mea-
sured from the auto-evaluation LLM’s preference,
normalized against BASE as a percentage.

5 Evaluation

Effectiveness of SPROUT. SPROUT consistently
achieves substantial carbon savings while main-
taining high generation quality in diverse geo-
graphical regions in Table 2. As shown in Fig. 6,
SPROUT’s application of optimized generation di-
rectives can reduce carbon emissions by up to 60%.
The normalized generation preferences across all
regions remain above the 90% mark, notably reach-
ing over 95% in South Australia (SA) alongside a
carbon saving exceeding 40%.

Below, we contextualize the magnitude of po-
tential savings for easier interpretation, but do not
claim that SPROUT directly achieves them. For ex-
ample, from an inference service provider perspec-
tive, according to a recent survey (de Vries, 2023),
deploying OpenAI’s ChatGPT service necessitates
around 29K NVIDIA A100 GPUs, equating to an
energy consumption of 564 MWh daily. In the
Azure West US region of California (Microsoft,
2024), this translates to monthly CO2 emissions
of 3,266 tonnes. Adopting SPROUT-like solution
could result in a monthly carbon reduction of 1,903
tonnes – equivalent to offsetting the carbon foot-
print of flying 6,358 passengers from New York
City to London (ICAO, 2024).
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Figure 7: SPROUT excels when competing against com-
petitive strategies and is closest to ORACLE. The carbon
from auto-evaluation LLM is included for schemes re-
quiring quality evaluation.

SPROUT outperforms competing methods,
closely aligning with the ORACLE standard.
Fig. 7 illustrates SPROUT’s performance against
competing strategies outlined in Sec. 4, showcasing
its proximity to the ideal ORACLE in both carbon
savings and normalized generation preference
across all regions. Here, vertical lines denote
the upper bound of generation preference in
our evaluation, while horizontal lines indicate
the upper bound of carbon savings. Unlike
SPROUT_CO2, which prioritizes carbon reduction
at the expense of generation quality, SPROUT

maintains a balance closer to BASE quality. While
MODEL_OPT, SPROUT_STA, and SPROUT exhibit
similar preferences, MODEL_OPT falls short
in carbon savings, highlighting the limitations
of optimizing solely based on inference model
variants (Romero et al., 2021; Wan et al., 2020).
In contrast to its static version SPROUT_STA,
SPROUT demonstrates that its dynamic approach
to generation directives yields results nearer
to the ORACLE benchmark, underscoring the
effectiveness of adaptive configurations.

Analysis of the Sources of SPROUT’s Effective-
ness and Evaluation Overhead. First, we show
that SPROUT dynamically adapts when carbon in-
tensity varies. Fig. 8 presents the empirical cumula-
tive distribution function (CDF) for 10K inference
requests across three environmental carbon inten-
sities: 200, 300, and 400 gCO2/kWh. The x-axis
scales the CO2 emissions of each request relative
to its execution on the BASE system. Since we only
show CO2 per request, as expected, SPROUT_CO2

is the best among all the schemes – 80% of requests
have used less than 30% of the BASE carbon emis-
sion. When carbon intensity increases, SPROUT’s
CDF moves closer and closer to SPROUT_CO2, in-
dicating that SPROUT’s optimizer is adapting to the
regional carbon intensity since the gain from using
more concise directives gets amplified at higher car-
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Figure 9: Without its offline evaluator, SPROUT misses
the opportunity to leverage requests friendly to concise
directive levels, thus forfeiting potential benefits in car-
bon savings and generation quality simultaneously.

bon intensities. Specifically, when carbon intensity
is 200 gCO2/kWh, 40% of SPROUT’s requests have
used less than 40% of the carbon footprint than
BASE; when it increases to 400 gCO2/kWh, about
75% of SPROUT’s requests have less than 40% of
SPROUT’s carbon footprint. Unlike SPROUT_CO2

and SPROUT_STA, which do not adjust based on
carbon intensity and thus maintain constant CDF
curves, SPROUT exhibits a dynamic adaptation that
aligns closely with ORACLE in a request-level anal-
ysis.

The offline quality evaluator is key to SPROUT’s
effectiveness. In Fig. 9, we select SPROUT-friendly
prompts which are prompts whose shorter re-
sponses are on average more preferred by the auto-
evaluator than their default responses, and mix
them with unfriendly prompts (shorter responses
are less preferred by auto-evaluator than default
responses). Over time, we vary the proportion of
these two types of prompts, and observe that when
the portion of friendly is high, SPROUT without
the evaluator will miss out on the opportunity to
save more carbon while achieving higher evalua-
tor preference at the same time. As we can see
around hour 22, the normalized preference is above
100%, meaning the auto-evaluation LLM prefers
SPROUT’s generation over the default generation
more than 50% of the time.

The offline evaluator’s low carbon overhead is
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Figure 10: (a) Carbon overhead of SPROUT’s offline
evaluator. (b) Violin plot of evaluated region’s carbon
intensity distribution, and the carbon intensity where
SPROUT invokes offline evaluation (marked as red line).

also a key contributor to SPROUT’s carbon savings.
In Fig. 10 (a), we show the carbon overhead of
SPROUT’s offline evaluator. Since GPT-4 is only ac-
cessible from third-party API, we use the following
numbers to estimate the offline evaluation carbon
footprint. GPT-4 is speculated to use a mixture-of-
experts (MoE) architecture, and during inference,
only one expert is active. Thus, the model size is
equivalent to one expert that has 220B parameters,
which can be hosted on 16 A100 GPUs. With the
measured average API accessing time of 500ms,
we assume all 16 GPUs are running at max power
(250W), under no network delay and no batched
processing. Despite our conservative estimation
where in reality the GPU generation time is much
shorter than 500ms (network latency, pre- and post-
processing) and multiple requests can be processed
simultaneously in a batch, the overhead in Fig. 10
(a) serving 30 requests per second (RPS) (Kwon
et al., 2023) is still well below 1% for all regions.
The minimal carbon impact stems from (i) strate-
gically timing evaluations to coincide with periods
of low carbon intensity as shown in Fig. 10 (b),
and (ii) designing the request to the auto-evaluation
LLM such that it generates only a minimal number
of assessment tokens, as detailed in Appendix A.2.

We further show that SPROUT is robust across
different seasons, and show the Pareto front of the
carbon and quality trade-off in Appendix A.4.

6 Related Work

Sustainable AI (Wu et al., 2022) and Sustainable
HPC (Li et al., 2023a) have explored various carbon
trade-offs in ML infrastructure. Various works have
analyzed the AI development’s impact on carbon
emission (Patterson et al., 2021, 2022; Schwartz
et al., 2020; Acun et al., 2023b; Strubell et al.,
2019; Anderson et al., 2023). SPROUT is moti-
vated by these works and takes the effort a step
further to LLM inference application. While sys-
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tems like Carbon Explorer (Acun et al., 2023a),
Ecovisor (Souza et al., 2023), Clover (Li et al.,
2023b), and Dodge et al.(Dodge et al., 2022) have
been designed to adapt to varying carbon intensi-
ties, they have not been specifically optimized for
generative LLM inference workloads.

Previous works have explored pre-training and
fine-tuning algorithms for controllable text gen-
eration, steering the generation towards specific
lexical choices or sentiments (Zhang et al., 2023;
Zhou et al., 2023; Dinu et al., 2019; Keskar et al.,
2019). SPROUT proposes a promising new direc-
tion – controlling LLMs’ generation toward carbon
efficiency. Kaneko et al. (Kaneko and Okazaki,
2023) demonstrate a reduction in the length of tar-
get text by omitting unedited tokens, which can
be applied complementarily to SPROUT’s various
generation directives. Jie et al. (Jie et al., 2024)
present a concurrent work that focuses on apply-
ing controlled-length summary generation for text
summarization tasks. While their approach is rel-
evant, it does not address adapting to changing
carbon intensity or incorporating generation qual-
ity evaluator feedback for general language tasks
to mitigate the environmental impact – which is
SPROUT’s main contribution.

Various works have focused on performance and
memory optimization of LLM inference, explor-
ing strategies like sparsity and pruning (Liu et al.,
2023c; Frantar and Alistarh, 2023), speculative de-
coding (Leviathan et al., 2023; Chen et al., 2023b),
GPU kernel tiling and fusion (Dao, 2023; Zheng
et al., 2023). These advancements are crucial for
facilitating the deployment of larger LLMs to a
broader audience. However, the environmental im-
plications of these technologies are equally impor-
tant. Carburacy (Moro et al., 2023) and LLMCar-
bon (Faiz et al., 2023) offer carbon footprint evalu-
ations to help researchers gauge the environmental
impact of LLM training, while SPROUT is the first
work to tackle the carbon footprint challenge of
generative LLM inference.

7 Conclusion

This paper introduced SPROUT, a framework to
enhance the sustainability of generative language
models. SPROUT can reduce the carbon footprint of
LLM inference by over 40%, indicating a greener
future for natural language generation.

8 Limitation

SPROUT may not be useful for requests that gen-
erate very short responses. In this case, adding a
generation directive to the prompt may incur more
carbon than not using directives. However, note
that the extra carbon to process a longer input se-
quence that includes a generation directive is very
limited as modern LLM serving systems maintain
a KV cache, which stores key and value vectors
from previously processed tokens without recom-
puting their KV vectors. The generation directive
will be maintained in the KV cache after the initial
pre-filing phase during LLM inference.

SPROUT is not evaluated on commercial LLMs
such as ChatGPT and Gemini due to their closed-
source nature. Our evaluation necessitates local de-
ployment for accurate carbon measurements. How-
ever, SPROUT’s design does not preclude its appli-
cability to closed-source commercial LLMs. Ser-
vice providers can implement SPROUT on their
infrastructure, utilizing various directive levels and
answer quality evaluations to minimize the envi-
ronmental impact of their inference services.

Expert LLM users may send API requests and
specify the system prompt. SPROUT will conser-
vatively not apply generation directives to such
requests as the directive may conflict user’s system
prompt (e.g., if the user explicitly asks for detailed
responses).

Some LLMs are designed to allocate additional
tokens for “thinking” during inference, aiming to
produce higher-quality responses (e.g., OpenAI o1).
In such cases, SPROUT’s carbon savings may be
constrained. SPROUT’s generation quality evalua-
tor may detect a significant degradation in output
quality when the number of “thinking” tokens is
limited. Consequently, it may refrain from apply-
ing aggressive generation directives, even during
periods of high carbon intensity. This limitation
highlights the potential trade-off between carbon
efficiency and maintaining the intended reasoning
process of certain LLM use cases.

9 Ethical Considerations

While SPROUT demonstrates promising results in
mitigating carbon impact through adaptive guid-
ance towards more concise responses, it is crucial
to acknowledge potential unintended consequences.
One significant ethical consideration is the pos-
sibility of increased vulnerability to jailbreaking
attempts when the model is configured for more
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aggressive carbon-saving measures. We have not
yet empirically verified whether the conciseness
directives make the model more susceptible to gen-
erating harmful or biased content when prompted
adversarially. This potential trade-off between en-
vironmental benefits and robustness against misuse
warrants further investigation. Future work should
rigorously evaluate the security implications of
SPROUT’s carbon-efficiency optimizations across
various directive levels to ensure that environmen-
tal gains do not come at the cost of compromised
safety and reliability.
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A Appendix

A.1 Miscellaneous Design Considerations
Role of auto-evaluation LLM. The auto-
evaluation LLM, boasting orders of magnitude
more parameters than the inference model, might
seem like an ideal choice for processing user
prompts. However, utilizing a giant model like
GPT4, with its estimated 1.76 trillion parameters,
entails considerable development, training, and de-
ployment resources, making it impractical for most
organizations due to high costs and environmen-
tal impact. Also, directly serving millions of user
prompts on such a model incurs significantly more
carbon emissions than a model with billions of pa-
rameters. Therefore, for most cases, it is better
to fine-tune an open-sourced model like Llama to
tailor to the user targets and use third-party LLMs
like GPT4 for occasional quality feedback.

There may be instances where the auto-
evaluator’s preferences diverge from an individual
user’s expectations, as users might have varying
inclinations toward the conciseness or detail of re-
sponses. In such cases, the inference service could
proactively notify users when responses are con-
densed due to elevated carbon intensity levels, sub-
sequently inquiring about their preference for more
detailed answers. Should a user client express a
preference for details, SPROUT can then specifi-
cally mark this preference by applying the baseline
directive level, L0, to all their future prompts, en-
suring tailored responses that align more closely
with their expectations.

Number of evaluation samples. According to the
sample size theory in (Charan and Biswas, 2013),
384 samples is an appropriate size for 95% confi-
dence level and 5% margin of error. SPROUT uses
a default 500 request samples to collect generation
quality feedback, inference service providers can
also adjust this number according to budget. This
fixed sample size during offline evaluation has min-
imal impact relative to the total volume of prompts
processed from the inference server. Consequently,
the carbon emissions associated with these evalu-
ations are deemed negligible and are not factored
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Generation 
Directive Selector

“Which scientist 
formulated the 

theory of 
relativity?”

User

L0 L1 L2

“Always answer 
briefly”

Inference Request
{
 “system”: “Always answer 
   briefly”,
 “user”: “Which scientist 
   formulated the theory 
   of relativity?”
}

Figure 11: SPROUT implements generation directive
level assignment as LLM system prompts.

into the carbon footprint reduction strategy detailed
in Sec. 3.2.

A.2 Implementation

Applying generation directive levels. The in-
ference service provider specifies the number
of directive levels and the actual directive se-
quence to apply for each level. SPROUT im-
plements the generation directives as the system
prompt alongside the user prompt, as the system
prompt is widely accepted as a prompting for-
mat compatible with leading AI platforms like
OpenAI ChatML (OpenAI, 2024a), Llama (Face-
bookResearch, 2024), Anthropic Claude (An-
thropic, 2024b), MistralAI (Huggingface, 2024),
etc. Figure 11 illustrates SPROUT’s method of in-
corporating a specific directive, such as the text
from level L1, directly into the inference request
as a system prompt. When a system prompt al-
ready exists within a user prompt, SPROUT conser-
vatively discards the generation directive to avoid
conflict with the user-specified system prompt.

Inference server and monitoring. SPROUT seam-
lessly integrates with existing inference server
setups by processing system prompts together
with user prompts, avoiding the need for infras-
tructure alterations. Mirroring industry-standard
LLM inference practices, the server incorporates
vLLM (Kwon et al., 2023) for its high-throughput
and efficient KV cache management and utilizes
FlashAttention (Dao, 2023) to streamline self-
attention computations at the CUDA kernel level.
To accurately log execution metrics as outlined in
Eq. 2, the CarbonTracker (Anthony et al., 2020)
package has been adapted to monitor each infer-
ence processing node, facilitating the calculation
of eT and pT vectors essential for optimizing
SPROUT’s operation.

Automatic quality evaluation. We extend the
AplacaEval (Li et al., 2024) project to build
SPROUT’s quality evaluator. Specifically, we gen-
eralized the auto-annotator to be able to query the
auto-evaluation LLM to select the best one from an

<|im_start|>user
Select from the following {NUM} 
outputs the one that best matches the 
given instruction. Your answer should 
ONLY contain: {INPUT}.
# Task: … 
## Instruction: … 
## Output: …
<|im_end|>

Instruction = “What is the major 
cause of global warming?”
Output (1) = “Emission of greenhouse 
gases like CO2.”
Output (2) = “The sun is hotter.”

<|im_start|>user
Select from the following 2 outputs the 
one that best matches the given 
instruction. Your answer should ONLY 
contain: Output (1) or Output (2).
# Task:
Now is the real task, do not explain your 
answer, just say Output (1) or Output 
(2).
## Instruction:
What is the major cause of global 
warming?
## Output (1):
Emission of greenhouse gases like CO2.
## Output (2):
The sun is hotter.
<|im_end|>

1

2 3

Figure 12: A simplified example of SPROUT’s qual-
ity evaluation query. Box 1 represents the instructions
and outputs generated using different directives, box
2 represents the template, and box 3 represents the
ChatML (OpenAI, 2024a) query to the evaluator LLM.

Table 1: Language modeling tasks to evaluate SPROUT.

Dataset Description Task

Alpaca (2023)
Instructions generated by

OpenAI’s text-davinci-003
Instruction tuning

GSM8K (2021)
Grade school

math problems
Arithmetic and

multi-step reasoning

MMLU (2020)
Massive multitask

language understanding
Multiple-choice

questions

Natural
Questions (2019)

Real-user questions
from Google

Question
answering

ScienceQA (2022)
Science knowledge

(e.g., Biology/Physics/Chemistry)
Multiple-choice

science questions

TriviaQA (2017)
Trivia questions collected

by trivia enthusiasts
Reading

comprehension

arbitrary number of generations, each correspond-
ing to a specific generation directive level. We also
implemented shuffling of the generations to remove
position bias in the query. The evaluator is dili-
gently implemented to prompt the auto-evaluation
LLM to generate minimal tokens – just enough to
identify the preferred output followed by the EOS
token. This design is both carbon-efficient and cost-
effective as commercial LLMs charge based on the
number of tokens generated. Fig. 12 presents a sim-
plified example. A query, comprising an instruction
(user prompt) and two outputs, is combined with
a template and submitted to the auto-evaluation
LLM, which will select the preferred output as
“Output (1)”. We have manually examined the pref-
erence of several auto-evaluation LLMs (GPT-4,
GPT-4 Turbo, GPT-3.5 Turbo) by inspecting 200
auto-evaluation LLM responses from each dataset.
We compared the response to the dataset-provided
answers and confirmed that the evaluator accurately
identified the correct response in over 97% of cases.

A.3 Experimental Details

We randomly sample prompts from tasks in Ta-
ble 1 to evaluate SPROUT. These tasks span var-
ious fields and applications, serving as critical
benchmarks in performance evaluations for lead-
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Table 2: Geographical regions used to evaluate SPROUT.

Region abbr. Operator Annual Min/Max

Texas (US) TX
Electric Reliability

Council of Texas (ERCOT)
124 / 494 (gCO2/kWh)

California (US) CA
California Independent

System Operator (CISO)
55 / 331 (gCO2/kWh)

South Australia SA
Australian Energy

Market Operator (AEMO)
10 / 526 (gCO2/kWh)

Netherland NL TenneT 23 / 463 (gCO2/kWh)

Great Britain GB
National Grid Electricity
System Operator (ESO)

24 / 282 (gCO2/kWh)

0 10 20 30 40 50 60
Carbon Saving (%)

GB
NL
SA
CA
TX

Carbon Emission
February 2023 June 2023 October 2023

0 20 40 60 80 100
Preference (Norm. %)

GB
NL
SA
CA
TX

Generation Quality

Figure 13: SPROUT remains effective during different
seasons.

ing LLMs such as Llama (Touvron et al., 2023),
Claude (Anthropic, 2024a), GPT (Achiam et al.,
2023), Gemini (Team et al., 2023), as well as the
ones used for scientific discovery (Singhal et al.,
2023; Taylor et al., 2022; Xie et al., 2023; Al-
mazrouei et al., 2023). To simulate realistic user
prompts for the inference server, the composition
of prompts from each task follows the request pat-
terns from Alibaba’s AI Platform trace (Weng et al.,
2022), ensuring the evaluation comprehensively
represents practical scenarios.

The evaluation of SPROUT extends across five
grid operation regions in various countries, as de-
scribed in Table 2. Given the variability in car-
bon intensity by region, this diversity enables a
comprehensive assessment of SPROUT’s perfor-
mance in differing environmental contexts. The
study uses carbon intensity data from February (de-
fault), June, and October of 2023, sourced from
Electricity Maps (Maps, 2024) at hourly intervals,
to gauge SPROUT’s adaptability to fluctuating car-
bon intensity levels across these regions. Despite
the offline evaluation LLM not being sensitive to
latency and thus not requiring proximity to users –
allowing it to be located in any global data center
with the lowest carbon footprint. However, for a
more cautious approach, we assume it resides in
the same region as the inference server.

A.4 Robustness and Implications

We also assess the robustness of SPROUT and its
broader implications. Fig. 13 presents an evalua-
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Figure 14: Pareto front of SPROUT across geographical
regions.

tion of SPROUT across various periods of 2023 (dif-
ferent carbon intensity variation patterns), demon-
strating its consistent efficacy across different sea-
sons. SPROUT consistently enables the inference
server to achieve over 40% carbon emission savings
while sustaining high levels of generation quality.

SPROUT offers inference service providers the
ability to balance carbon savings against quality
through the adjustable parameter ξ. Fig. 14 illus-
trates the Pareto front demonstrating the trade-off
between carbon savings and generation quality as
ξ is varied. Notably, even when tightening the gen-
eration preference criterion to 95% (indicating the
evaluator prefers SPROUT’s generation 48.7% and
the default 51.3% of the time), SPROUT consis-
tently secures over 40% carbon savings across all
regions.

To the best of our knowledge, SPROUT is the first
approach to utilizing generation directives for gen-
erative LLM inference, with a particular emphasis
on advancing its environmental sustainability. This
strategy opens up extensive possibilities beyond
its current focus. For instance, using generation
directives can significantly enhance LLM inference
throughput, thereby reducing the number of GPU
servers needed to achieve specific rates of requests
per second (RPS). This efficiency translates into
reduced capital expenses for building LLM infer-
ence infrastructure and lowers the embodied carbon
associated with manufacturing the GPU servers.
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