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Abstract

Tokenizers are crucial for encoding information
in Large Language Models, but their develop-
ment has recently stagnated, and they contain
inherent weaknesses. Major limitations include
computational overhead, ineffective vocabulary
use, and unnecessarily large embedding and
head layers. Additionally, their performance
is biased towards a reference corpus, leading
to reduced effectiveness for underrepresented
languages. To remedy these issues, we pro-
pose T-FREE which directly embeds words
through sparse activation patterns over charac-
ter triplets, and does not require a reference
corpus. T-FREE inherently exploits morpholog-
ical similarities and allows for strong compres-
sion of embedding layers. In our exhaustive ex-
perimental evaluation, we achieve competitive
downstream performance with a parameter re-
duction of more than 85% on these layers. Fur-
ther, T-FREE shows significant improvements
in cross-lingual transfer learning.

1 From Text Representations For
Machine Learning

Large language models (LLMs) have shown re-
markable abilities in processing natural language
and various data types. The tokenizer, an essential
part of any language-based LLM, splits input text
into subwords and converts textual data into integer
representation. It is built by populating a fixed-size
vocabulary based on statistical frequencies in a ref-
erence corpus (Sennrich, 2016; Kudo and Richard-
son, 2018). With the LLM’s trained embedding
layers, these integers are converted into floating-
point representations (Mikolov et al., 2013b; Press
and Wolf, 2017; Vaswani et al., 2017). These com-
ponents significantly shape the training objectives
and influence what an LLM can process, interpret,
and generate. Despite advances, the basic princi-
ples of tokenization and embeddings have remained

largely unchanged in recent years.
Although this approach has served the LLM com-

munity well, and influential characters target to tok-
enize all kinds of data to “lead a new industrial revo-
lution”1, it has significant inherent weaknesses. For
one, subword tokenizers require dedicated training
and, as such, additional computational resources.
Design choices and errors at this stage can neg-
atively impact the downstream model (Ali et al.,
2023). Any tokenizer’s vocabulary is heavily opti-
mized for the reference corpus, leading to strong
drops in performance for, e.g., underrepresented
languages. We also show that the resulting vocabu-
lary of subword tokenizers is poorly utilized, where
up to 34% of tokens are near duplicates with lim-
ited additional information. Despite that, the cor-
responding embeddings are trained independently.
These issues have caused a significant expansion
in the size of vocabularies and their correspond-
ing embedding layers, with billions of parameters
being allocated exclusively for text encoding and
decoding.

To remedy these issues and challenge the tradi-
tional views, we propose a paradigm shift on how
we embed and decode text for LLMs. We present
tokenizer-free sparse representations for memory-
efficient embeddings (T-FREE) as an alternative
to subword tokenizers. We directly embed each
word in the input text with sparse activation pat-
terns over hashed character triplets. Consequently,
we eliminate the need for subword tokens, thus re-
taining near-optimal performance across languages.
Additionally, T-FREE explicitly models character
overlaps between morphologically similar words
without the need to learn an embedding for each
variant from scratch through a one-to-one bijec-
tion. The backbone of the language model will
remain free of subword tokenization as we directly

https://github.com/Aleph-Alpha/trigrams
1
https://x.com/tsarnick/status/1801884651986030820?s=12&t=5I_

_mymj5rXz7lxfplR8Gg

21829

https://github.com/Aleph-Alpha/trigrams
https://x.com/tsarnick/status/1801884651986030820?s=12&t=5I__mymj5rXz7lxfplR8Gg
https://x.com/tsarnick/status/1801884651986030820?s=12&t=5I__mymj5rXz7lxfplR8Gg


(a) Classic Tokenizer. (b) T-FREE.

Figure 1: Method comparison of classic Tokenization (left) and T-FREE (right) for text encoding (top) and decoding
(bottom). Classic subword tokenizers learn a single-label vocabulary, i.e. a token is bijectively mapped into a
single entry of the vocabulary. Instead, T-FREE uses a bijective multi-label mapping over multiple activations of
hashed character trigrams. As T-FREE explicitly models morphological similarities, it enables compression of the
embedding layer.

encode the textual representation. We argue that
the converged embedding of such similar words
should remain close and, thus, can be heavily com-
pressed2. This exploitation of similarities allows
T-FREE to reduce the size of the embedding layers
by 87.5%3 and the average encoding length of text
by 56%4. In addition to the inherent benefits of
T-FREE, the approach remains highly competitive
on standard downstream model performance bench-
marks. Finally, for transfer learning to an unseen
language, the T-FREE model quickly improves per-
formance, while the tokenizer baseline shows only
minor adaptation.

Our contributions can be summarized as follows:

• We systematically demonstrate the inherent
weaknesses of common tokenization and em-
bedding approaches.

• We propose T-FREE, a powerful and efficient
alternative for tokenizer-free LLMs.

• We exhaustively evaluate hyperparameters of
T-FREE on established benchmarks by train-

2The English language contains about 500k words, while
“native fluency” is achieved at 10k words (Nation, 2006).

3Compared to our 64k unigram baseline.
4Compared to Mistral 32k avg. of EN, DE, RU, VI, AR.

ing 1B LLMs from scratch. Our compari-
son against equally trained models with clas-
sic tokenization demonstrates competitive per-
formance despite the significant reduction in
compute resources and parameters.

• We demonstrate the capabilities of T-FREE for
cross-lingual transfer on continual pre-
training on a 3B LLM.

2 Classic Tokenization Principles

Before we derive T-FREE in detail, let us first estab-
lish some basics of how LLMs traditionally encode
and decode text. Most LLM operations are per-
formed in floating-point numbers through a series
of matrix multiplications and non-linear activation
functions. Consequently, we require techniques
that map discrete textual inputs into floating-point
representations and inversely transform the predic-
tions of the model back to text.

Traditionally, the first step in this process is to
split any textual input into small chunks referred to
as tokens. Generally, these tokens can take arbitrary
formats, spanning numerous characters, a single or
even multiple words, and may also contain special
characters. The latter can be particularly useful to
encode programming languages. A tokenizer com-
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prises the steps and rules that are necessary to dis-
sect a text into a sequence of tokens. Importantly,
the total number of tokens is restricted, and we refer
to the set of all unique tokens as the vocabulary.

Each token in the vocabulary is assigned an in-
teger token-id, wherefore tokenizers produce a se-
quence of token-ids for any textual input. Next, a
large matrix of dimensions vocab size × hidden
size, an LLM’s embedding layer, maps each token-
id to an internal representation as a floating point
vector (cf. Fig. 1a). To produce new text, gener-
ative models are trained auto-regressively. That
is, they iteratively predict the next token, which is
appended to the input text. Therefore, the training
objective is formulated as a classification problem:
a one-label prediction of the next token over the
entire vocabulary. Consequently, the last layer of
the model—the LM head—is a projection into the
size of the vocabulary and thus also of dimension
vocab size× hidden size. For decoding, we can, for
example, always select the token with the highest
assigned value, which is called greedy sampling.
The output text is produced by looking up the cor-
responding text snippet of each predicted token-id
in the vocabulary.

Generally, it is desirable to encode any text in
as few tokens as possible to reduce computational
cost. At the same time, different semantic concepts
should be separated into distinct tokens to ensure
good language comprehension. The combination
of both objectives is usually best satisfied by en-
coding each word as one token.

2.1 Tokenizer Algorithms
The vast majority of LLMs utilize a tokenizer built
with one of two approaches. Both progressively
build up tokenization rules and their vocabulary
based on statistics in a reference corpus.

Byte Pair Encoding (BPE). BPE (Sennrich,
2016) starts with a set of all characters as individ-
ual tokens. Progressively, the most frequent token
pairs occurring together in the training documents
are merged. The resulting new token and the merg-
ing rule are added, and the training is completed
when the desired number of tokens is reached.

In order to encode text with the trained tokenizer,
BPE splits the input into individual characters and
applies the lowest-ranking merge rule until no more
are applicable. This exhaustive search can become
computationally intensive, especially for long input
sequences and large vocabularies.

Unigram. Unigram (Kudo and Richardson,

2018) operates inversely to BPE. First, it splits the
training corpus into a large set of reference words
and their respective frequencies. The vocabulary is
initially populated with all possible substrings of
these words. At each iteration, Unigram computes
a loss of the current vocabulary with respect to the
training corpus for all possible tokenizations. The
least influential tokens are then removed until the
desired vocabulary size is reached. For text encod-
ing, the Viterbi algorithm is applied to determine
the most preferred segmentation of a given word
based on the ranked available tokens.

The text decoding in both cases maps directly
back into the vocabulary list and the respective
sub-words. To ensure that every word can be repre-
sented, a “byte-fallback” into unicode is often used
for characters not present in the vocabulary.

2.2 Facing the Flaws
Common to both methods is a set of distinct flaws.

Large Vocabularies F1) Words that do not ap-
pear in the vocabulary are split into multiple tokens
and, as such, require more compute during model
inference and training. To avoid out-of-vocabulary
words and to achieve the best downstream repre-
sentations on a diverse set of languages and tasks,
researchers tend to use ever larger vocabularies. Al-
though some models still rely on a 32k vocabulary
(Touvron et al., 2023; Jiang et al., 2023), more re-
cent releases go up to 128k (Meta, 2024) or even
beyond 250k (Mesnard et al., 2024; Gomez, 2024).
Large vocabularies, in turn, require large embed-
ding and head layers. For example, Command-R
(Gomez, 2024) with a hidden dimension of 12, 288
and a vocabulary of 256, 000 tokens uses 6.3B pa-
rameters only for the embedding and head layer.
Naturally, a large number of parameters complicate
model training and may require advanced sharding
techniques such as “model parallelism”. Even the
tokenization itself can become (CPU-) computa-
tionally intense for large documents and vocabular-
ies. Naturally, embedding matrices of this scale are
generally not an option for smaller “on-the-edge”
models. Nevertheless, they still occupy a large por-
tion of parameters in smaller models, e.g. 40% for
Gemma-2B (Mesnard et al., 2024).

Duplicate Tokens F2) Furthermore, the allo-
cated vocabulary is expected to be poorly utilized
due to the statistically likely occurrence of near-
duplicate tokens. Most prominently, a significant
portion of tokens appears multiple times, only dif-
fering in capitalization or the existence of a lead-
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ing whitespace (cf. Sec 4.3). For example, to
spell all 64 substrings and variations of the word
“_words”5, we require a total of 37 unique tokens
(cf. App. Tab. 7). Since the corresponding embed-
dings of all tokens are independent and randomly
initialized, the representation of each duplicate to-
ken needs to be learned from scratch without ex-
ploiting morphological synergies. Further, large
embedding layers are purely utilized since some
tokens will rarely occur. The corresponding em-
bedding weights of these tokens are thus seldom
active while still requiring compute.

Training data overfitting F3) As discussed
above, these tokenizers require dedicated training
before the actual model training. In addition to the
added computational overhead, the data selection
and potential mistakes during tokenizer training
have significant impact on the subsequent LLM
(Ali et al., 2023). For natural language, for exam-
ple, this paradigm may result in a vocabulary tai-
lored to one language (usually English) and conse-
quently drops in performance for others, especially
those not explicitly included. The resulting LLM
may still be somewhat adapted to other languages
since many similar low-level structures (Mikolov
et al., 2013a). However, its overall training and
inference performance will not be as efficient as
we demonstrate.

In contrast, T-FREE addresses all of these dis-
advantages. It is computationally efficient and per-
forms good tokenization across languages without
duplicates. It drastically reduces the parameters re-
quired for text encoding, exploiting word spelling
similarities. Importantly, none of these improve-
ments sacrifices downstream model performance.

3 T-FREE

A key motivation for T-FREE is the intuition that
minor differences in spelling, like leading whites-
paces or capitalization, do not hold enough entropy
to justify entirely independent tokens. T-FREE di-
rectly encodes morphological similarities by repre-
senting each word as a multi-label encoding of its
character triplets. This designed overlap between
words allows us to significantly reduce the size of
embedding layers.

We now derive T-FREE’s approach to text en-
coding and decoding and discuss implications on
LLMs in general. We provide a visualization of
each step in Fig. 1b and pseudo-code in App. A.

5_ represents a whitespace.

3.1 Text Encoding

Step 1: Word splitting. First, we rigorously split
the text by digits and non-alphanumeric characters.
The resulting splits, therefore, contain entire words,
digits, or special characters. We consider each
digit separately, as it is standard in SOTA LLMs (cf.
Tab. 1). Specifically, we include the 10 digits 0 to 9,
and otherwise, we rely on attention to comprehend
larger numbers or mixtures with characters.

By definition, we represent each word with a
prefixed and suffixed whitespace. In particular, we
assume that an entire word is encoded into a single
embedding, and analogously, we predict an entire
word at once. Consequently, we no longer need
to explicitly model whitespace as a character and
eliminate near-duplicate tokens. Nonetheless, we
add a dedicated “whitespace” and “non-whitespace”
token to the tokenizer. These special tokens allow
us to model cases where substrings should (not) be
concatenated with whitespace, e.g., single digits of
larger numbers. To reduce their need, we further
add a rule-set that favors (non-)whitespace in front
or after certain characters. Generally, we prefer to
add no whitespace after a digit embedding and sim-
ilarly no whitespace before punctuation. A detailed
description of the rule set is found in App. B.

Considering the example in Fig. 1b, the in-
put text “Hello_word!” would be tokenized as
[‘Hello’,‘word’,‘!’].

Step 2: Encoding. Next, we define a robust hash
function that uniformly encodes a token into n de-
scriptors, where n usually equals the word-length6.
Specifically, we apply convolutions of size three
and byte-wise stride to each word. This operation
yields a set of character triplets, which we refer
to as “trigrams”. Consequently, “Hello” is decom-
posed into {_He,Hel,ell,llo,lo_}. Trigrams usually
contain enough information about the relationship
between letters to reassemble the word from the
unordered set.

Subsequently, we project each trigram descriptor
into a sparse hidden representation vector of m “ac-
tive entries” on the embedding layer. Specifically,
T-FREE calculates m numerical hashes of each tri-
gram, which can be considered as identifiers. We
map these into the LLMs embedding matrix by
calculating each hash value modulo v to identify
the active indices. The selection of vocab size v is
further explained in Step 3.

Overall, we obtain n ·m total activations for any

6Only exceptions are unicode fallbacks.
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single word. To further exploit word similarities
and bootstrap training, we calculate k ∈ [0,m)
out of these hash calculations with the lowercased
trigram. This mapping from trigram to hidden rep-
resentation is static and can be precomputed7.

Step 3: Aggregation. Similar to classic embed-
ding approaches (cf. Fig. 1a) T-FREE also utilizes
an embedding matrix of dimension v with hidden
size h. However, we do not have a fixed vocabu-
lary, whose size dictates v. Instead, we can inde-
pendently choose v as a hyperparamter with words
and trigrams sharing individual entries to better
encode similarities. Lastly, we sum all n ·m em-
bedding entries to produce the final one embedding
corresponding to a word, such as “Hello”.

Note again, that we utilize a significantly smaller
number of embeddings than there are trigrams.
While their hashes may naturally overlap, we en-
sure the uniqueness of the entire patterns through
the m simultaneous hashes. As we ensure that
trigram encodings do not collide, neither will the
word encodings.

3.2 Training Objective & Text Decoding
As T-FREE’s representation of a word is now a
multitude of activations, we reflect this change in
the LM head, as well (cf. Decode sections in Fig. 1,
App. Alg. 3,5). In particular, we change the target
loss function from classic single-label binary cross-
entropy (BCE) to a multi-label (ML) BCE over all
n ·m activations of the next word targets:

LML
BCE = −∑v

j=1[yj log(ŷj)+(1−yj) log(1−ŷj)],

for ŷ being the LM’s prediction and y the binary
target vocab labels with

∑v
j=1 yj = n ·m.

Next token decoding is shown in Fig. 2. We first
assemble a dictionary of all possible next words
and pre-compute their activation patterns. Impor-
tantly, only n ·m out of v entries will be non-zero
for each word, and since we choose m << v, the
dictionary matrix can be encoded as a sparse ma-
trix, thus improving runtime. In addition, note the
pattern similarity between similar words, as pre-
viously described. The last hidden layers’ output
h is sigmoided, and multiplied with the dictionary
matrix. Finally, we compute the average sigmoid
value per dictionary entry, h′, to sample the next
word, e.g. using standard argmax. Overall, for a
dictionary with 512k entries, this procedure only
marginally increases the decoding runtime due to

7Note that there are only 2563 ≈ 16.7M trigrams.

the sparse property of the activation patterns. Fur-
ther description, along with pseudocode, detailed
depictions, and step-wise runtime analysis can be
found in App. 5.

Note that the decode matrix is not required dur-
ing training, and can dynamically be exchanged.
We generate it by sampling the top-500k occur-
ring words in the training dataset, and dynamically
adding the missing words of the prompt.

3.3 Distinctions of paradigm shift

Notably, this paradigm shift to a multi-class vocabu-
lary allows for more semantically robust decoding.
With the classical approach, the distinctly noisy
learning process can lead to unrelated concepts ap-
pearing among the top predictions (cf. ‘House’ and
‘Car’ in Fig. 1a). This effect can have a signifi-
cant impact on next token sampling and potentially
devastative outcomes for model modifications such
as compression (Deiseroth et al., 2024). In con-
trast, the trigrammification and resulting embed-
ding overlap of similar words with T-FREE in-
herently favors similar words during decoding (cf.
‘ouse’ in Fig. 1b). Moreover, activations in the
embedding and LM head are more uniformly dis-
tributed, leading to better parameter utilization, and
more stable model behavior.

The predictable words are still derived from a
dictionary. However, this vocabulary list is ex-
changeable, and is not required during training. As
such, depending on the use-case, it may be kept in
reasonable sizes. Moreover a hierarchical decoding
exploiting morphological structures can straightfor-
ward be implemented, e.g. first decoding lowercase
words, and then uppercase variations (or similarly
grouping by stems or endings).

Lastly, our design of a robust hash function on
words adresses the afore mentioned flaws (Sec. 2.2)
as the results of the next section demonstrate.

4 Empirical Evaluations

We continue with an empirical demonstration of the
performance of T-FREE, and how it remedies the
flaws of standard tokenizers as outlined in Sec. 2.2.
To thoroughly analyze the performance differences,
we designed three consecutive experiments: First,
we perform hyperparameter ablations on a series of
1B parameter models, which achieve competitive
scores on standard benchmarks with a reduced vo-
cabulary, which in turn addresses F1. Second, we
analyze the duplicates in the tokenizers of recent
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Figure 2: Example of the next word prediction with
T-FREE. To the list of predictable words of dimension
d we generate once the corresponding patterns within
the available vocabulary size v, as described in the en-
coding step 2 of Sec. 3.1. Note how morphologically
close words will generate overlapping patterns. The
element-wise sigmoid values of the output of the last
hidden layer, σ(h), is multiplied with this pattern matrix
using standard dot product. Finally, we use h′ for the
sampling process, the average sigmoid value of a word.
C.f. App. A for further details.

LLMs with respect to F2. Notably, T-FREE is by
design free of duplicates. Lastly, we look at F3
and evaluate the performance of various tokenizers
across languages. Further, we trained 3B param-
eter models on English and continued training on
German data to practically investigate language
adaptability. T-FREE has better tokenization per-
formance across languages and outperforms classic
tokenizers on language transfer.

4.1 Experimental Details
First, let us clarify some details about our exper-
imental setup. We provide more details for each
section in the Appendix.

Data and Code. We use the slimpajama
dataset (Soboleva et al., 2023) as our English and
Occiglot Fineweb v0.5 (Brack et al., 2024) as our
German data corpus. Both datasets contain a di-
verse range of content and have been extensively
filtered and deduplicated.

As a baseline, we trained BPE and Unigram
tokenizers of sizes 32k and 64k on a random 20GB
slimpajama sample using Sentencepiece8. More
details are described in App. C.

To ensure fair comparisons, we trained 1B and
3B models from scratch for the baselines and T-
FREE using our adjusted code base9.

LLM Pre-Training. All models are transformer,
decoder-only architectures similar to Llama-2. We
solely change the tokenizer, embedding layer and
LM head. Consequently, ablations with smaller

8https://github.com/google/sentencepiece
9https://github.com/Aleph-Alpha/trigrams

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Difference to Unigram Baseline on 18 Benchmarks

vocab size v
1k
2k
4k
8k

Improvement over Baseline

Figure 3: Hyperparameter search for Vocab Size of T-
FREE on a series of 1B ablations. We fixed number of
activations m = 10, and do not apply lowercase overlap
(k = 0). The boxplots show the differences of trained
models to a 64k unigram baseline for 18 downstream
benchmarks (0-shot). T-FREE outperforms in median
the classical tokenizer architecture with a reduced vocab
size of 8k entries (12.5%).

sizes of v result in a lower overall parameter count,
heavily skewing the comparison in favor of the
baseline. For hyper-parameter ablations of T-FREE,
we train 1B models for 50k steps with 2k sequence
length and 1k total batch size. We then scale up
the baseline and T-FREE models to 3B parame-
ters and train for 110k steps on slimpajama with
4k sequence length. For the multilingual learn-
ing experiment, we continue training this English
3B model at a lower learning rate for another 20k
steps on German Occiglot data with a 20% replay
of English.

Evaluation. We evaluate tokenizer performance
in isolation using fertility measurements similar to
Rust et al. (2021). Fertility benchmarks the number
of tokens required per word with 1.0 thus being
the optimal value. Specifically, we compare differ-
ent tokenizers across 5 diverse languages on the
respective data from Wikipedia.

Downstream benchmark comparisons are per-
formed on 18 standardized benchmarks10 in En-
glish that measure a wide variety of LLM capabil-
ities, including general language modeling, ques-
tion answering, and common sense reasoning. To
evaluate german and english in comparison we use
german translations of the Hellaswag, Truthfulqa
and Arc-Challenge benchmarks11.

We built T-FREE’s prediction dictionary, from
the top 80k words that occurring in slimpajama,
and additional top 20k words from the German

10
https://github.com/EleutherAI/lm-evaluation-harness

11https://github.com/bjoernpl/GermanBenchmark
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Occiglot data.

4.2 T-FREE performs at 8k vocab size

We present the results of our hyperparameter abla-
tion study of T-FREE for 1B models in Fig. 3. All
scores are reported as differences to the Unigram
64k baseline and for fixed parameters m = 10 and
k = 0. Generally, T-FREE remains highly compet-
itive with the baseline as all versions outperform
the Unigram model on some of the benchmarks.
Further, we achieve the best results for a vocab size
v of 8k at which T-FREE outperforms the base-
line on average. In contrast, a vocab size of ≤ 2k
seems insufficient with devastating outliers. We
performed further ablations on parameters m and
k, which are outlined in App. H.

These results demonstrate that T-FREE success-
fully addresses the flaw of large vocabularies and
embedding layers (cf. F1 in Sec. 2.2). We are
able to achieve competitive performance with only
12.5%12 of the embedding parameters using T-
FREE instead of Unigram.

Note, that we do not adjust any other model pa-
rameters when reducing vocab size. As such, the
benchmark results compare a Unigram model with
1.07B parameter against a T-FREE model with
0.84B parameters (for v = 8k). Consequently,
we demonstrate that an LLM using T-FREE instead
of Unigram performs better, despite having over
20% fewer parameters.

4.3 T-FREE no duplicates by design

Let us now look into (near) duplicate tokens in
commonly used tokenizers (cf. F2 in Sec. 2.2).
In general, there are three types of overlaps in vo-
cabularies: 1) The same token with and without
capitalization, 2) with and without leading whites-
pace, and 3) dedicated tokens for multiple digits.

In Tab. 1, we report the percentage of duplicate
tokens for our baseline tokenizers and commonly
used models. Overall, between 15% and 35% of the
available vocabulary is spent on (near) duplicate in-
formation with limited differences in entropy. Gen-
erally, tokenizers contain the most duplicates for
capitalization, slightly fewer for whitespaces, and
only a few duplicate digits. The relative amount of
overlap tends to decrease with larger vocabularies,
although Gemma marks an inglorious exception.
In contrast, T-FREE is inherently designed to be
free of duplicates. We can even adjust the param-

128k instead of 64k.

eter k to explicitly model the overlap of words
to their lowercase representations. Consequently,
all variants are inherently well represented in the
emedding layer.

4.4 T-FREE has lower fertility across,
and is more adaptive to new languages

Finally, we investigate the versatility of tokenizers
beyond their (main) language (cf. F3 in Sec. 2.2).
We report the fertility of our baselines and other
popular models in English, German, and three
dissimilar languages that also contain significant
character-level differences in Tab. 1. Common to
all tokenizers is a significantly decreasing perfor-
mance for non-English languages, especially for
Russian and Vietnamese. Naturally, larger vocab-
ulary sizes tend to have better multilingual cover-
age , in particular to language groups close to En-
glish, but still suffer from significant performance
drops. In comparison, the tokenization of T-FREE,
which is mainly based on whitespace splitting, pro-
vides comparably good performance across all 5
languages13. The increases in fertility for Russian
or Vietnamese remain small and there is no per-
formance difference for German or Arabic. Note
that these synergies were explicitly modeled, and
no reference corpus is needed to train and bias the
fertility of T-FREE. Consequently, T-FREE allows
for easier and more efficient model adaptation to
low-resource languages.

We now explicitly show the devastating conse-
quences of biased tokenizers on the language trans-
fer capabilities of LLMs. As discussed above, we
first train 3B models for T-FREE and Unigram on
English, and then transition to German. Through
more ablations, we fixed the activations to m = 7
and the lowercase trigram overlap to k = 3. Fig. 4
shows the performance average on the English
and German versions of the standard benchmarks.
The baseline performance in German is already
improved with T-FREE, indicating that syntactic
and semantic similarities between the languages
are better captured in the learned representations.
Additionally, T-FREE almost achieves the English-
level performance on German after 20k training
steps. In contrast, the classical tokenizer variant
improves only marginally with the same amount of
training.

We, again, do not adjust any other model pa-
rameters when reducing the vocab size. As such,

13More detailed evaluations are found in App. E.
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Model/Tokenizer Portion of duplicate tokens (%) ↓ Fertility across languages ↓
Total Cap. Space Digits EN DE RU VI AR

Unigram (64k) 35.24 23.27 13.47 0.00 1.280 2.004 11.431 5.060 9.455
BPE (64k) 35.24 23.27 13.47 0.00 1.275 2.025 11.423 4.755 9.465
Mistral (32k) 31.47 19.10 16.45 0.00 1.397 1.931 2.560 3.346 4.722
Phi-2 (50k) 23.23 12.91 16.89 3.32 1.265 2.266 6.729 4.339 5.225
Gemma (256k) 34.68 20.27 20.50 0.04 1.176 1.447 1.903 1.726 1.793
Command-R (255k) 15.31 15.31 14.00 0.00 1.152 1.411 1.590 1.597 1.578
T-FREE (Ours) 0.00 0.00 0.00 0.00 1.163 1.182 1.338 1.400 1.086

Table 1: Demonstration of inherent benefits of T-FREE over traditional tokenizers. The performance no longer
degrades when confronted with languages beyond the one primarily trained on. Additionally, the vocabularies
of classic tokenizers contain large portions of tokens only differing in their capitalization or leading whitespace.
T-FREE does not construct such a vocabulary in the first place and thus utilizes embeddings more efficiently.
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Figure 4: Continual pre-training performance. Trained
are 3B models on English slimpajama data for 90k steps
(“baseline”), and continued on German occiglot data for
20k steps. Plotted are the average scores of two bench-
marks available in German and English: Hellaswag
and Arc-Challenge. Notably, T-FREE outperforms in
German already with the baseline. Within 20k contin-
ued steps, T-FREE improves by 5% on average in 0
and 2-shot, while the classic tokenizer approach barely
improves. Both models slightly drop performance in
English, albeit the tokenizer version more drastically.
Full evaluations are found in Appendix Tab. 8,9,10.

T-FREE uses 10% fewer parameters than the base-
line (2.77B instead of 3.11B) and still strongly
outperforms the Unigram variant. More detailed
evaluations are found in App. J.

5 Discussion

Prior research has demonstrated that the mapping
into a sparse hidden representation and the training
of a dense aggregation layer as applied in T-FREE,
is a universal function approximator (Aved’yan,
1995). These results provide further theoretical
motivation for our approach.

T-FREE allows for significant compression of
an LLMs’ vocabulary by more than 85% without
performance degradation. Notably, the affected

embedding and head layers are by far the largest
in LLMs in terms of parameter count. They are
also the most influential to an LLM, as they dictate
the mapping between text and numerical represen-
tations. For one, these massive improvements al-
low for better utilization of billions of parameters
in large models. The compression of T-FREE in
particular paves the way to building better low-
resource models, by reducing model size and train-
ing cost and improving adaptability. For exam-
ple, in our experiments without pipe or model-
parallelism, we were able to triple the micro-batch
size, yielding faster training iterations.

Furthermore, we observed more stable loss
curves for T-FREE, in particular for higher learning
rates. These improvements may be attributed to the
explicit modeling of similar words, the removal of
duplicates, and the less volatile multi-label train-
ing target. Further, the uniform hashing distributes
gradients evenly amongst the available vocab size,
in contrast to classical approaches. We provide
further details in App. D,G.

The rules we use for obtaining word representa-
tions are universal and well-defined at pre-training
time. They do not change over time, particularly
neither when adding languages later on. T-FREE

also lowers computational costs due to its low fertil-
ity and easy-to-process whitespace splitting. Con-
sequently, pre-processing, training and inference
of an LLM all require less compute.

Lastly, T-FREE allows to explicitly model and
steer the decoding process at inference time, by
altering the available dictionary. Consequently,
hallucinations will likely be reduced due to fewer
“generic fall-back” word splits. Moreover, one can
dynamically add or remove words. It is worth point-
ing out that T-FREE’s compression benefits can
also be combined with traditional tokenizers. In-
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stead of the simple whitespace splitting one could
keep traditional tokenization and trigramify “clas-
sic tokens”.

6 Related Work

Few alternatives to BPE and Unigram have been
found in recent LLMs and research. Tay et al.
(2022) propose a gradient-based trainable tokeniza-
tion module in contrast the otherwise statistical
based approach.

The naive approach of splitting the input text into
bytes or characters maximizes fertility and thus
increases computational requirements. Yu et al.
(2023) employ a mix of multiple models to improve
this drawback of byte-wise processing. I.p. they
introduce a fixed character-embedding aggregation
and a second character-decoder model. However,
they use a fixed byte-width that is processed at
once, which is not aligned with word splits.

Consequently, prior research has proposed meth-
ods for merging bytes, e.g., through state-space
models (Wang et al., 2024). However, these ap-
proaches still result in performance degradation.
Finally, linguistically motivated approaches have
built tokenizers based on known morphological
rules (Jabbar, 2024). However, these methods are
usually tailored to specific applications and are usu-
ally too costly and error-prone for large, general-
purpose models.

Bojanowski et al. (2017) in particular discusses
how adding subword informations, such as tri-
grams, enriches the encoding of words and leads
to reliable compressions. Svenstrup et al. (2017)
conduct research on the overloading of different
hashfunctions to further improve and compress em-
bedding representations. Xue and Aletras (2022)
train BERT-style encoder models based on a dif-
ferent set of hashes on words. Clark et al. (2022)
propose a multistage encoding scheme that uses
hash functions and convolutions to enhance the
BERT-encodings of words.

Another line of work to reduce the vocabulary
parameter count is the utilization of weight tying,
effectively halving it, as the embedding and head
layers become “tied” to the same matrix (Press and
Wolf, 2017). However, the effects on performance
are still not sufficiently explored, and it arguably
imposes a more difficult training objective.

7 Conclusion

In this work we present T-FREE, an alternative
to subword tokenizers with a simple and explic-
itly modeled robust hash function on words. It
removes the need and pitfalls to limit “a models
potential” to a “pre-pre-trained” vocabulary. We,
moreover, fundamentally shift the established tar-
get of training language models, previously de-
signed as a single-label problem, into a multi-label
prediction based on word similarities. Similarities
in particular include leading whitespaces and upper-
case variations, for which subword tokenizers add
specific tokens that are independently trained from
scratch. These contributions allow us to train lan-
guage models more robust, more adaptable when
continuing pre-training with a new language, and
with a significantly (to 12.5%) reduced parame-
ter size without a decrease in benchmark scores.
Due to the special role of the matrices, the latter in
particular allows one to increase micro-batchsize,
which further accelerates training time. Finally,
the consequent convolution-like encoding achieves
SOTA fertility scores across most languages and
enables by design synergies to similar language
groups. We demonstrated the latter showing that
our 3B almost achieved “native-language” perfor-
mance after a small amount of language-transfer
training steps, in contrast to the tokenizer baseline.

Limitations

With T-FREE we propose a fundamentally different
approach to text encoding and decoding in LLMs.
Due to the intense resources required to train LLMs,
we have focused on evaluating models up to 3B
parameters. Evaluations on even larger models and
training datasets remain a relevant point of investi-
gation for future work. Nonetheless, we observed
an easy transfer from 1B to 3B parameters, and we
will continue to train and release more advanced
models.

We expect T-FREE to experience some numer-
ical instabilities for very long words since single-
word embeddings are calculated as the sum of their
n ·m activations. However, less than 2% of the en-
tire slimpajama dataset contains words with more
than 10 characters (cf. App. I), and we did not
encounter any issues with the benchmarks. Con-
sequently, such potential instabilities remain sta-
tistically insignificant. Nonetheless, we could ade-
quately tackle long outliers with an additional split
rule based on the words length or at the occur-
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rence of repetitions. Subword tokenizers already
demonstrate that such approaches will work, even
when tokens are at first glance meaningless and
underutilized—and again, these cases remain out-
liers. Moreover, a hybrid setup utilizing a large
tokenizer (>512k tokens) with T-FREE for opti-
mized memory footprint is depicted in Figure 16.

Similarly, we did not thoroughly study the ef-
fect of repetitive trigrams in words. These did also
not occur frequently enough to have any measur-
able effect on our experiments. As of now, we
only accumulate a word pattern in a binary fash-
ion, not accounting for trigrams appearing mul-
tiple times in a single word. As a fallback, one
could again, split words at the position of repeti-
tions. Another promising direction would overload
embeddings with positional encodings similar to
rotary (Su et al., 2024).

Although T-FREE’s fertility on code is on par
with that of LLama2 (cf. App. E), it could be fur-
ther improved by explicitly modeling code patterns.
In this work, we have focused on natural language
and leave detailed evaluations of T-FREE in down-
stream coding tasks for future research. Further-
more, we did not investigate languages entirely re-
lying on Unicode byte-encodings, such as Chinese.
However, as they seemingly work out-of-the-box
with subword tokenizers, we do not expect issues
here by splitting them character/ word-wise. In par-
ticular for asian symbols, additionally translating
the symbols to its romanization through the pho-
netic alphabet such as pinyin may further improve
the synergies of word encodings.

Finally, we only studied a single constructed
hash function for T-FREE. As this work paves
the way to model required language features more
explicitly, we are looking forward to variations of
the proposed T-FREE method.
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Appendix

A T-FREE Algorithm

Alg. 1,2,3,4,5 show the core steps to encode text
into embeddings, and decode text from model pre-
dictions with T-FREE. Here, regex.split denotes
an algorithm that splits text based on a regular ex-
pression, hash denotes an arbitrary hash function
like md5, % denotes the mathematical modulo op-
eration. In style of python, f ′{token}_′ denotes
text formatting to indicate the string with content
of variable token being followed by an underscore,
and EL[i] denotes the i−th entry of matrix EL
and ′string′[i : i+ 3] three consecutive characters
in the text string starting from position i, where
′s′ is at position 0. Finally, v ≈ 8, 000 is the cho-
sen vocabulary size, d ≈ 100, 000 is the chosen
dictionary size, h ≈ 3, 072 the LLMs hidden size.
Finally, 0h denotes a zero vector of dimension h
and 1v×d a matrix with entries 0 or 1. Note that we
included some normalization steps in Alg. 5, which
we surprisingly found not beneficial for Alg. 3 in
our ablations.

Finally, refer to Figure. 14,15 for a step-wise
comparison of the computation step, parameters
and runtimes. Figure 16 shows a “hybrid” mode, in
which embody a classical subword-tokenizer as a
text preprocessing step, but utilize T-FREE to keep
the “tokenizer free LLM backbone”. Arguably, this
approach benefits from a compressed embedding
layer, and the tokenizer may easier be exchanged
afterwards—the encoding of the text-chunks in the
backbone will be kept as proposed.

Algorithm 1 token_split

input: text

tokens← regex.split((_|\W |\d), text)
(cf. Sec. B if necessary)

output: tokens

B Whitespace encoding

By default our model is trained to predict full words
separated by whitespaces. To not be limited to this
use-case, we add a special “non-whitespace” and
“whitespace” token. We empirically evaluated each
exception occuring in code tokenization. To fur-
ther reduce its fertility, we favor “non-whitespace”
before one of the following characters:

$ . , ; : # ? ! = − + * / \ ( ) < > [ ] &@%_~^

Algorithm 2 trigramify

input: token, k, m
▷ k : lowercase activation, m : total activation

pattern← 0v

for l ∈ [0, len(token)− 1] do
trigram← f ′_{token}_′[l : l + 3]
for i ∈ [1,m] do

if i ≤ k then
stringi = lower(trigram)

else
stringi = trigram

end if
hashi = hash(f ′{stringi}_{i}′)
pattern[hashi%v] = 1

end for
end for
output: pattern

Algorithm 3 encode
input: token, EL

▷ EL: Embedding Layer (∈ Rv×h)

embedding ← 0h

pattern← trigramify(token)
for i ∈ [0, v − 1] do

if pattern[i] == 1 then
embedding ← embedding + EL[i]

end if
end for
output: embedding

We further prefer non-whitespace after one of the
following characters:

#$ = −+*/ ’ \" ( <[~^&@%_ \ n1234567890

As such, the text “In 2024” would result in
the split “[In,2,0,2,4]” without the need of any
special annotations, while “In20 24” resolves to
“[In,<no_ws>,2,0,<ws>,2,4]”.

Finally, to further improve code fertility, we
merge consecutive <ws> and newline tokens up
to 3 times, i.e. 8 consecutive whitespaces would
result in a single <|8<ws>|> token.

C Tokenizer trainings with sentencepiece

For training of a unigram tokenizer with the cur-
rent sentencepiece library, a 20GB reference data
corpus reaches the limit of our available 1TB Ram
compute node. We thus randomly sample 20GB
of the slimpajama dataset and run the following
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Algorithm 4 compile_dictionary

input: tokens ▷ d target tokens

dict← 0d×v

for i ∈ [0, d− 1] do
dict[i]← trigramify(tokens[i])

end for
output: dict

Algorithm 5 decode
input: logit, dict, tokens

▷ logit: single prediction (∈ Rv×1),
dict: compiled dictionary (∈ 1d×v),
tokens: d tokens corresponding to dict

scores← dict · sigmoid(logit)
for i ∈ [0, d− 1] do

scores[i]← scores[i]/sum(dict[i])
end for
scores← softmax(scores)
i← argmaxl scores[l]

output: tokens[i], scores[i]

statement for training of the actual tokenizer:

s p m _ t r a i n −− i n p u t =20 GB_sample . t x t \
−− m o d e l _ p r e f i x =unigram_64k \
−− v o c a b _ s i z e =64000 \
−− c h a r a c t e r _ c o v e r a g e =0 .99 \
−− mode l_ type = unigram \
−− b y t e _ f a l l b a c k = t r u e \
−− s p l i t _ b y _ n u m b e r = t r u e \
−− s p l i t _ b y _ w h i t e s p a c e = t r u e \
−− t r a i n _ e x t r e m e l y _ l a r g e _ c o r p u s = t r u e \
−− s p l i t _ d i g i t s = t r u e \
−− a l l o w _ w h i t e s p a c e _ o n l y _ p i e c e s = t r u e \
−− r e m o v e _ e x t r a _ w h i t e s p a c e s = f a l s e \
−− n o r m a l i z a t i o n _ r u l e _ n a m e = nfkc \
−− num_th reads 64 −− e o s _ i d =0 \
−− b o s _ i d =−1 −− unk_id =2 \
−− pa d_ i d =1 \
−− e o s _ p i e c e =" < | e n d o f t e x t | > " \
−− p a d _ p i e c e =" < | padd ing | > " \
−− u n k _ p i e c e =" < | unknown | > "

D Training Configurations

D.1 1B

Training Parameters are listed in Tab. 2.

D.2 3B

Training Parameters are listed in Tab. 3.

Parameter Value

hidden size 2,048
layers 16
attention heads 16
norm layer
mlp gelu
mlp scale 5,456
training steps 50k
sequence length 2,048
batch size 1,024

precision bfloat16
learning rate 6e-4
minimum learning rate 6e-5
annealing cosine
annealing steps 50k
warmup steps 200
optimizer AdamW
optimizer beta1/ beta2/ eps 0.9 / 0.95 / 1e-8
weight decay 0.1

Table 2: 1B Parameter configurations (for all ablations).

Parameter Value

hidden size 3,072
layers 24
attention heads 24
norm rms
mlp swilu
mlp scale 8,192
training steps 90k (20k)
sequence length 4,096
batch size 1,024

precision bfloat16
learning rate 3e-4 (1e-4)
minimum learning rate 3e-5 (3e-5)
annealing cosine
annealing steps 90k (20k)
warmup steps 200 (500)
optimizer AdamW
optimizer beta1/ beta2/ eps 0.9 / 0.95 / 1e-8
weight decay 0.1

Table 3: 3B Parameter configurations (for all ablations).
In brackets are highlighted values for German continued
pre-training.
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E Fertility Analysis

We subsequently provide further experimental de-
tails on the fertility analysis conducted with respect
to F3, Sec. 4.4. As a reference dataset, we used the
November 23 dump of Wikipedia in the respective
languages. We derived reference tokenization us-
ing UDPipe (Straka, 2018). A tokenizer’s fertility
is then calculated by dividing its total token count
for a document by the number of tokens produced
by UDPipe. We present results for more models on
8 languages in Tab. 5.

We also evaluated the white-space tokenization
of T-FREE for code. For 22 programming lan-
guages, we took 10k random documents each from
the starcoder dataset 14. Since ground truth text
splitting for code is hard to establish, we instead
report the normalized sequence length with respect
to a reference tokenizer. We here used Llama-2
and report results in Tab. 4. Since T-FREE’s tok-
enization achieves an NSL close to 1.0, it performs
roughly on par with Llama-2.

F Token Overlap/Duplicates

For the empirical evaluation regarding F2, cf.
Sec. 4.3, we present more exhaustive results with
additional models in Tab. 6.

G Training stability

Memory footage comparing classic tokenizers to
T-FREE is found in Fig. 6.

Note that the hashing step of Alg. 2 uniformly
distributes gradients amongst the available vocab-
ulary, as discussed in Sec. 5. This is in contrast
to classic tokenizers, as they depend on a bijective
single-label mapping, and as such each vocabu-
lary entry update is dependent on its the occurance
frequency of the corresponding token within the
dataset. Moreover, we explicitly let trigram acti-
vations overlap with their lowercase version. We
assume that these are responsible for the more sta-
ble training dynamics as shown in Fig. 5. Moreover,
we found that the lowercase overlap bootstraps
learning as shown with the downstream benchmark
ablations Fig. 8.

H Hyperparameter Ablations

Some 1,500 determined experiments later...

14https://huggingface.co/datasets/bigcode/
starcoderdata

lang Ours (NSL) ↓ Starcoder (NSL) ↓
c-sharp 1.034783 0.816206
c 0.996308 0.860453
cpp 1.084867 0.855094
css 1.109492 0.903693
cuda 1.018222 0.857034
dockerfile 0.954086 0.851568
go 1.142476 0.883456
html 1.164936 0.885237
java 1.003201 0.835858
javascript 1.183923 0.850398
json 1.071685 0.892871
kotlin 0.925868 0.846053
makefile 1.006108 0.862994
markdown 0.965325 0.892784
php 1.179374 0.838566
python 1.005064 0.857439
ruby 0.979135 0.846597
rust 1.086027 0.857645
shell 1.041322 0.879112
sql 0.954786 0.859785
typescript 1.121119 0.847393
yaml 0.974146 0.856218
Overall 1.045557 0.860748

Table 4: Normalized sequence length wrt Llama-2 on
code tokenization.
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Model EN DE FR ES IT RU VI AR
Unigram Baseline (32k) 1.3584 2.2577 2.1354 2.1524 1.9508 11.4448 5.1826 9.4740
Unigram Baseline (64k) 1.2802 2.0043 1.9492 1.9163 1.7263 11.4305 5.0603 9.4555
BPE Baseline (32k) 1.3585 2.2784 2.0625 2.0977 1.9396 11.4321 4.8717 9.4694
BPE Baseline (64k) 1.2759 2.0253 1.9059 1.8894 1.7212 11.4231 4.7545 9.4656
Mistral (32k) 1.3973 1.9316 1.6613 1.7569 1.7591 2.5601 3.3458 4.7228
Llama-2 (32k) 1.4014 1.7702 1.5495 1.6413 1.6160 2.3242 3.3540 4.8255
Phi-2: (50k) 1.2654 2.2660 1.8183 1.9736 1.9132 6.7289 4.3392 5.2246
Gemma (256k) 1.1761 1.4470 1.2754 1.3163 1.3253 1.9028 1.7257 1.7938
DBRX (100k) 1.2381 1.8311 1.5423 1.6142 1.6191 3.2385 2.6617 3.6821
Jais (85k) 1.3029 2.1391 1.7347 1.8514 1.8244 3.6730 3.4382 1.2653
Command-R (255k) 1.1525• 1.4110 1.2079 1.2527 1.2460 1.5899 1.5967 1.5787
Llama-3 (128k) 1.2330 1.8221 1.5351 1.6033 1.6130 2.2144 1.8261 1.9660
NeMo-Tekken (131k) 1.2313 1.5178 1.3061 1.3845 1.4171 2.0521 1.8378 1.6045
Ours 1.1636◦ 1.1829 1.2363 1.1695 1.1274 1.3386 1.4001 1.0863

Table 5: Additional evaluations of fertility evaluations. Cf. Sec. 4.3.

Model/Tokenizer Portion of duplicate tokens (%) ↓
Total Cap. Space Digits

Unigram Baseline (32k) 32.99 21.44 11.76 0.00
Unigram Baseline (64k) 35.24 23.27 13.47 0.00
BPE Baseline (32k) 32.12 21.30 13.85 0.00
BPE Baseline (64k) 35.32 23.82 15.52 0.00
Phi-2: (50k) 23.23 12.91 16.89 3.32
DBRX (100k) 24.87 23.77 16.17 1.10
GPT-2 (50k) 25.25 21.93 16.99 3.32
Gemma (256k) 34.68 20.27 20.50 0.04
Command-R (255k) 15.31 15.31 14.00 0.00
Mistral (32k) 31.47 19.10 16.45 0.00
Llama-2 (32k) 30.23 17.10 16.98 0.00
Llama-3 (128k) 21.22 20.17 15.28 1.05
NeMo-Tekken (131k) 23.12 13.30 11.99 0.00
T-Free (Ours) 0 0 0 0

Table 6: Additional evaluations of overlap of full tokens occuring multiple times, only with capitalization or
whitespace in difference. Note that there are still plenty more redundancies with sub-token reconstructions. Cf.
Sec. 4.3.

(a) Classic Tokenizer.

(b) T-FREE.

Figure 5: Exemplary comparison of classic tokenizer (v = 64k) training loss curve (top) and T-FREE (v = 16k)
training loss (bottom). Overall we noticed less spikey training behavior when using T-FREE. Both 3B models were
trained on same slimpajama data, token-batchsize and learning rate 4.5e-4.
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(a) Classic Tokenizer.

(b) T-FREE.

Figure 6: Pytorch Profiler Memory Footprint of a single
forward and backward pass on a 1B, each with batch
size 8 and 4k sequence length. Top is classical tokenizer
version with 64k vocab size, bottom trigram with 8k
vocabulary. Note how AdamW aggregates peak memory
consumption until 68GB for classic tokenizer, while
ours remains at 38GB.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Difference to Unigram Baseline on 18 Benchmarks

vocab size v
1k
2k
4k
8k
16k
32k

Improvement over Baseline

Figure 7: Further ablations on hyper paramters in ac-
cordance to Fig. 3. Note that after peaking at v = 8k,
performance slightly decreases again, which may be at-
tributed to the undertrained stage of the model trainings.

Albeit pretty scarse, some more hyper-parameter
ablations are found in Fig. 7,8.

We will continue to polish and add more...

I Some Statistics

Trigram combinatorics. As there are more than
v possible words, there will naturally be some over-
lap in the activations between words. However,
assuming an embedding dimension of v ≈ 8, 000,
m ≈ 8 activations per trigram, and a word of length
n = 5, there are (in theory)

(
v

n·m
)
≈ 10108 unique

activation patterns.
This overlap can be interpreted as an interpola-

tion between input states. For entirely independent
inputs, this overlap should be kept small as the re-

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Difference to Unigram Baseline on 18 Benchmarks

v = 2000,m = 6, k = 2

v = 2000,m = 10, k = 0
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v = 4000,m = 10, k = 0

v = 4000,m = 10, k = 4

v = 8000,m = 6, k = 2

v = 8000,m = 10, k = 0

vocab size v
2k

4k

8k

Improvement over BaselineConfiguration

Figure 8: Further ablations on hyper paramters.

sults cannot benefit from the states of the shared
activations. As such, we require a robust hash func-
tion on text, i.e. a mapping from text into sparse
activation patterns, for which the overlapping of
activations is proportional to the similarity of the
input words. We model this through trigrams, and
as such, letter-similarity.

Tokenizer Duplicates. Tab. 7 shows the curse of
token-based vocabularies: to produce all 64 upper
and whitespace variations of the word “_words”,
one requires on average 3 tokens per writing.

Dataset-Coverages. Fig. 9 shows the covered
percentages of the entire dataset, by word-lengths,
for all slimpajama datasets. If we successfully can
encode all words of length ≤ 10, we can cover
≥ 95% of the entire slimpajama dataset. Or con-
versely, we would only require 5% outlier handling/
additional splits for longer words (cf. Sec. 7).

Fig. 10 and Fig. 11 show dataset coverage (y-
axis) of top-n words and trigrams (x-axis) for each
slimpajama category. Notably 10k trigrams, and
100k words consistently cover > 95% of each
slimpajama category.

J More Benchmarks

We used the code of the eleuther eval harness, and
evaluated each benchmark in 0-shot and 2-shot. All
18 benchmarks, namely arc (easy and challenge),
hellaswag, winogrande, triviaqa, xnli, truthfulqa,
boolq, copa, openbook, piqa, multirc, lambada
(openai and standard), race, rte, wic, webqs are vi-
sualized in Fig. 12 and Fig. 13 for a baseline model
trained on english slimpajama only and continued
finetuning on german occiglot. Arc-challenge, hel-
laswag, xnli and truthfulqa are also evaluated in ger-
man translations. Detailed numbers can be found
in Tab. 8,9 and 10.

21845



Figure 9: Top 5 and top 10 occuring word lengths (x-axis) per slimpajama data category, with coverage-percentage
(y-axis). Headline indicates total percentage covered by top n-length words. With words of length ≤ 5, one always
covers ≥ 74% of all occuring words. With all words of length ≤ 10, one achieves ≥ 95%.

10^0 10^2 10^4 10^6 10^8
0.70

0.75

0.80

0.85

0.90

0.95

1.00
Crawl  12554 *10^3

10^0 10^2 10^4 10^6 10^8
0.70

0.75

0.80

0.85

0.90

0.95

1.00
Exchange  914 *10^3

10^0 10^2 10^4 10^6 10^8
0.70

0.75

0.80

0.85

0.90

0.95

1.00
C4  6401 *10^3

10^0 10^2 10^4 10^6 10^8
0.70

0.75

0.80

0.85

0.90

0.95

1.00
Github  1433 *10^3

10^0 10^2 10^4 10^6 10^8
0.70

0.75

0.80

0.85

0.90

0.95

1.00
Wikipedia  621 *10^3

10^0 10^2 10^4 10^6 10^8
0.70

0.75

0.80

0.85

0.90

0.95

1.00
ArXiv  1719 *10^3

10^0 10^2 10^4 10^6 10^8
0.70

0.75

0.80

0.85

0.90

0.95

1.00
Book  756 *10^3

roc plot for num words covering datasets

Figure 10: Most-frequent word coverage of Slimpajama categories. Title shows the total number of words per
dataset sample, x-axis the top-n chosen words, y-axis the percentage covered within dataset. With only 100k words
we can consistenly cover > 95% of each category.
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Figure 11: Number of trigrams (x-axis) required to cover (y-axis) percentage of the categories of slimpajama (total
number words sampled in title). With only 10k trigrams we can cover > 95% of all occuring words.

string token id
‘_’ 49594

‘_w’ 15997
‘W’ 40669
‘_W’ 46854
‘w’ 63048

‘Wo’ 7411
‘_wo’ 14297
‘_WO’ 14883
‘wo’ 34034

‘_Wo’ 39790
‘WO’ 44468

‘WOR’ 1916
‘_WOR’ 6606
‘_Wor’ 40813

‘_Word’ 1971
‘Word’ 3212
‘_word’ 14272
‘WORD’ 48022

‘word’ 49922
‘_words’ 12555
‘words’ 28689

‘WORDS’ 32751
‘_Words’ 37912
‘Words’ 51858

Table 7: The 24 possible first tokens to construct up-
percase and whitespace variations of “_words”, where
“_” denotes a whitespace. In total, there are 64 ways to
write “_words”, which requires 32 · 6 + 32 · 5 = 342
characters. The tokenizer requires in total 194 tokens, of
which 37 are unique, leading to an average (neglecting
the occurrence frequencies) of ≈ 3 tokens per writing.
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Figure 12: Detailed benchmark results on evaluations of Sec. 4.4.
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Figure 13: Further detailed benchmark results on evaluations of Sec. 4.4.

Model english benchmarks german benchmarks
arcch hella xnli tfmc1 tfmc2 arcch hella xnli tfmc1 tfmc2

ba
se T-Free 34.5/36.2 63.1/62.2 33.4/34.8 25.9/- 44.1/- 24.3/25.0 27.7/28.1 37.1/32.7 31.1/- 44.3/-

Unigram 32.6/34.8 64.5/64.8 31.4/32.1 22.3/- 38.8/- 22.5/23.5 26.8/27.0 35.7/33.1 31.3/- 43.1/-

5k

T-Free 34.7/35.1 63.0/61.9 32.5/33.2 24.7/- 44.1/- 30.9/32.5 28.3/28.4 38.1/34.9 31.1/- 44.3/-
Unigram 31.3/36.1 63.8/64.7 31.1/31.5 22.6/- 39.6/- 25.2/25.1 26.6/27.2 37.3/35.0 31.3/- 43.2/-

10
k T-Free 34.1/35.1 61.9/61.1 32.2/33.8 24.2/- 44.1/- 32.1/33.4 29.6/29.7 35.7/34.0 30.0/- 44.3/-

Unigram 31.7/35.0 63.9/64.5 32.0/32.9 22.5/- 39.4/- 25.1/26.6 26.9/27.8 37.0/33.5 31.5/- 43.1/-

15
k T-Free 33.9/36.3 61.8/61.8 32.3/34.9 24.2/- 44.1/- 33.2/33.9 30.7/30.4 35.9/35.1 30.8/- 44.3/-

Unigram 30.6/35.8 63.5/63.9 31.4/30.5 22.6/- 39.4/- 25.3/26.4 26.9/27.6 36.5/33.4 30.2/- 43.2/-

20
k T-Free 35.3/35.5 62.2/59.9 32.4/35.1 24.4/- 44.1/- 32.0/33.7 31.9/31.5 35.6/35.9 29.1/- 44.2/-

Unigram 30.6/33.2 58.9/59.3 33.1/31.9 22.6/- 40.2/- 25.7/26.5 26.3/26.1 36.0/36.9 30.7/- 44.4/-

Table 8: Accuracy scores of english and german translated benchmarks for continued pre-training. First value
denotes 0-shot, second value 2-shot (if available). Notably, the T-Free baseline model slightly outperforms (or
performs on par with) the Unigram baseline model on all of these tasks. On german evals of arc and hellaswag, the
T-Free baseline outperforms Unigram, and achieves larger gains during continued training on the german/ english
data mix. The german versions of xnli and truthfulqa mostly remain unchainged.

Model english benchmarks
arcez boolq copa wino obook piqa trivia mrc

ba
se T-Free 62.1/69.4 62.9/59.8 70.0/71.0 58.7/58.3 35.4/35.0 74.0/73.8 15.7/29.3 36.0/38.1

Unigram 61.3/68.4 59.2/55.8 72.0/68.0 59.0/60.4 38.8/37.6 76.5/76.0 17.2/25.6 40.9/42.4

5k

T-Free 60.8/64.8 62.6/60.7 70.0/70.0 59.0/57.9 35.2/35.4 73.0/73.0 13.1/22.9 37.8/36.9
Unigram 62.0/68.0 58.7/53.5 70.0/70.0 59.2/61.6 36.4/39.0 77.1/75.9 15.2/25.5 34.1/43.5

10
k T-Free 58.8/66.3 60.5/60.6 71.0/73.0 59.2/57.8 34.2/34.2 74.4/72.9 10.9/22.8 38.0/36.6

Unigram 59.0/67.7 61.2/61.4 70.0/74.0 58.4/63.2 36.0/37.8 76.2/75.9 11.4/25.6 34.1/44.6

15
k T-Free 60.2/66.6 63.8/60.0 72.0/76.0 58.6/59.3 34.4/35.6 73.9/73.3 13.8/24.9 38.6/37.3

Unigram 59.4/67.8 59.0/52.6 72.0/68.0 59.9/62.2 38.4/38.6 76.2/75.5 15.7/25.4 34.0/43.8

20
k T-Free 62.5/66.0 62.0/62.6 70.0/72.0 57.9/57.1 35.6/36.5 74.6/74.1 12.5/22.4 39.7/36.7

Unigram 60.1/66.0 63.8/62.9 72.0/71.0 58.5/61.8 35.0/37.4 73.5/74.2 13.4/21.3 34.0/42.7

Table 9: Accuracy scores of english benchmarks for continued pre-training. First value denotes 0-shot, second value
2-shot. Notably, the T-Free model performs on par to the Unigram model on all of these tasks, throughout the entire
continued training.
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Model english benchmarks
lbdoai lbdoaiclz lbdstdr lbdstdrclz race rte wic webqs

ba
se T-Free 53.9/46.4 18.5/42.9 48.0/44.8 12.2/39.3 37.8/39.1 58.5/55.2 50.0/53.8 5.7/26.5

Unigram 54.3/47.6 5.2/35.8 47.8/44.9 4.7/24.9 38.6/39.7 56.7/54.9 49.8/49.5 5.2/14.6

5k

T-Free 52.7/45.7 6.6/41.9 45.6/43.0 7.8/44.0 38.4/40.8 59.6/55.6 50.0/54.5 7.6/20.8
Unigram 54.4/47.1 3.9/33.4 44.6/43.2 3.5/24.0 38.7/38.9 54.5/53.4 50.0/53.6 3.0/14.3

10
k T-Free 53.1/47.3 13.1/42.8 46.2/44.7 7.5/44.7 37.3/39.9 56.7/54.9 50.0/54.7 5.4/19.8

Unigram 51.6/47.6 4.3/34.1 46.0/44.3 5.2/29.4 39.0/39.9 54.5/54.5 49.7/53.9 3.0/13.8

15
k T-Free 52.8/46.2 12.5/40.4 44.7/42.6 9.5/42.7 37.1/40.0 57.4/50.9 50.0/54.2 7.6/21.8

Unigram 53.6/47.7 4.8/30.1 46.5/42.0 5.4/23.5 39.0/38.5 53.4/53.4 49.8/50.6 3.0/14.6

20
k T-Free 53.5/46.0 9.9/36.2 46.1/44.6 11.9/41.6 37.4/39.1 54.9/55.6 50.0/54.5 7.4/20.3

Unigram 52.2/45.2 3.7/30.8 40.1/36.4 1.0/16.6 38.8/38.8 54.2/57.0 49.5/53.9 3.2/13.1

Table 10: Accuracy scores of english benchmarks for continued pre-training. First value denotes 0-shot, second
value 2-shot. The T-Free model performs on par with the Unigram model on all of these tasks, throughout the entire
continued training. Notably, the clozed variants of lambada are most fragile, at which T-Free outperforms.
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Figure 14: Comparison of the end-to-end LLM processing steps for the standard LLama3-8B model versus a
proposed trigramified version. In particular, the two biggest matrices of the model, the embedding layer and the head
can be significantly compressed, which can half the training resources when using standard libraries (c.f. Fig. 6).
Otherwise, the training execution time is mostly on par. For decoding, the proposed T-Free version requires an
additional step to predict the next word. We assumed a vocabulary of 512k entries with an average of 50 activations
per entry. This leads to additional 25M nonzero parameters that can be casted into a sparse matrix format (c.f.
Fig. 15). The overall inference run-time increases slightly when averaging the entire pipeline processing time, but
the biggest consumption remains at the actual transformer backbone. However, note that in addition training and
inference time benefit from the improved fertility factors of T-Free. Furthermore, depending on the use case, smaller
dictionaries, faster sparse hardware accelerators, or different decoding strategies may be applicable.
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∘= = ℎ𝑜𝑢𝑡
′
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Figure 15: “Greedy” text-decoding example for T-Free (top) and classic decoder LLMs (bottom). T-Free applies
a head of significantly reduced parameters which results in less dense matrix multiplications and smaller vector
sizes. As an additional step, during inference, T-Free computes the average activation score h′

out, which is sparsely
computed by multiplying (and averaging) the once precomputed decodable dictionary with the sigmoid scores of
the head. Finally, in both cases argmax is taken to lookup the resulting word.
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Figure 16: Hybrid “T-Free” (tokenizer-free/adaptable) LLM Backbone applying large scale (500k+) tokenizers.
Major advantages of a T-Free backbone in a hybrid setting are the compression of embedding and head matrices,
and the potential flexibility to lateron exchange (with some finetuning) the tokenizer — the backbone remains with
the same tokenizer-free encoding rules.
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