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Abstract

Recent advances in automatic quality estima-
tion for machine translation have exclusively
focused on written language, leaving the speech
modality underexplored. In this work, we for-
mulate the task of quality estimation for speech
translation, construct a benchmark, and evalu-
ate a family of systems based on cascaded and
end-to-end architectures. In this process, we
introduce a novel end-to-end system leverag-
ing pre-trained text LLM. Results suggest that
end-to-end approaches are better suited to esti-
mating the quality of direct speech translation
than using quality estimation systems designed
for text in cascaded systems. More broadly, we
argue that quality estimation of speech transla-
tion needs to be studied as a separate problem
from that of text, and release our data and mod-
els to guide further research in this space.1

1 Introduction

Recent progress in quality estimation (QE) (Spe-
cia et al., 2010) makes it possible to automatically
rate the quality of machine translation (MT) given
only the input and output of an MT system. QE rat-
ings have been found to correlate well with human
judgments, sometimes as well as reference-based
metrics (Kepler et al., 2019; Rei et al., 2020, 2023).
However, this work has focused on text translation.

Meanwhile, the rapid development of speech
technology (Radford et al., 2023; Seamless Com-
munication et al., 2023) has expanded the use of
speech translation (ST) applications in daily life,
thus increasing the need to predict the reliability of
their output. This raises the question of whether
quality estimation for ST can be performed using
a combination of state-of-the-art automatic speech
recognition (ASR) and text-based QE (text-QE or
MTQE) methods. However, relying on a cascade
of ASR and text-QE systems presents two major
issues: (1) The current top-performing ST models

1https://github.com/h-j-han/SpeechQE

Direct
Speech 

Translation 

hyp: It is inside 
street look…

text: Está dentro 
de cada mirada… 

0.67  
“street” 
-- major

Text
Translation

hyp: It is inside 
street look…

audio:

Text
QE(t,h)

Speech
QE(a,h)

0.67  
“street” 
-- major

How good is this 
text/speech 
translation?

Figure 1: Quality Estimation for Speech Translation
(SpeechQE) vs. Text Quality Estimation (text-QE).

directly translate the audio input into target lan-
guage text without transcribing the audio, making
it inefficient to run an additional ASR system to
generate an input for the text-QE module. (2) ASR
transcriptions of the audio input may not match the
gold transcription, potentially misleading the text-
QE system. Hence, we hypothesize that end-to-end
approaches might be better suited for this task.

In light of these issues, we formulate the task
of quality estimation for speech translation
(SpeechQE or STQE, Figure 1) and explore both
cascaded and end-to-end (E2E) systems for this
task (Figure 2). While we rely on existing ASR
and text-QE modules for the cascaded system, we
introduce a novel E2E SpeechQE model architec-
ture to address the lack of a dedicated end-to-end
system for this task. Our design incorporates a pre-
trained speech encoder and a large language model
(LLM) to leverage their existing capabilities in ex-
tracting high-quality audio features and handling
translation-related tasks.

To conduct a thorough evaluation, we contribute
an evaluation benchmark and training data for
SpeechQE from diverse ST outputs scored with
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Figure 2: Comparing cascaded and end-to-end approaches to Quality Estimation for Speech Translation (SpeechQE).

reference-based metrics. Results show that E2E
models outperform the cascaded system based on
a state-of-the-art (SOTA) ASR module in corre-
lation with both (1) human direct assessment rat-
ings and (2) metric scores. Additionally, our E2E
model can detect error spans to some extent in a
zero-shot fashion, though the best results are still
achieved by cascaded systems with SOTA ASR.
Qualitative analysis highlights the robustness of
E2E models against wrong speech representation
in score prediction, error span detection, and sever-
ity prediction. Based on this evidence, we argue
that SpeechQE should be studied as a distinct prob-
lem from text-QE.

2 Background

Quality estimation makes it possible to assess trans-
lation quality without reference translations, which
is essential for practical use cases (Specia et al.,
2010; Callison-Burch et al., 2012). QE signals
can benefit end users by helping them decide how
to rely on outputs in casual and high-risk settings
alike (Specia et al., 2022; Mehandru et al., 2023).
They can also benefit downstream tasks or enhance
MT itself (Fernandes et al., 2022).

The QE task has been framed in various ways,
including predicting sentence-level quality ratings
(Callison-Burch et al., 2012) or word-level binary
tags of OK/BAD (Bojar et al., 2013). While a
wealth of methods have been developed for these
tasks, recent work has shown the benefits of devel-
oping solutions to address them jointly. OpenKiwi
(Kepler et al., 2019) streamlined QE by supporting
both word-level tagging and regression toward a
sentence-level score within a unified toolkit (Kim
et al., 2017). It was further improved with a train-
ing recipe that better supports multilingual general-
ization (Rei et al., 2020, 2023). Together with the
development of learned metrics for reference-based

evaluation (Rei et al., 2020; Sellam et al., 2020),
this set the stage for a single or family of models
that flexibly rate the quality of MT output with or
without access to a reference human translation
(Guerreiro et al., 2024; Juraska et al., 2023) with
high correlations with human quality ratings (Fre-
itag et al., 2023). xCOMET (Guerreiro et al., 2024)
even integrates both sentence-level evaluation and
error span detection capabilities while categorizing
error spans, thereby enriching the quality measures.

Meanwhile, quality estimation for speech transla-
tion remains understudied. Le et al. (2016) address
the task of tagging each word in an ST output as
good or bad, using ASR and MT features. Their
approach can be viewed as a cascaded SpeechQE
system, which propagates a confidence score in
a pipeline of ASR and statistical machine trans-
lation (SMT) modules. BLASER2.0 (Seamless
Communication et al., 2023) produces a similarity
score between a translation output and input, using
SONAR sentence-embeddings that can compare ei-
ther speech or text (Duquenne et al., 2023). While
this enables SpeechQE, this approach was initially
designed for speech-to-speech translation (Chen
et al., 2023), and was exposed to only a small
amount of training data with quality labels.

With advances in ST technology and their grow-
ing use (Rubenstein et al., 2023), there is a need
for QE to support ST scenarios where intermediate
automatic speech recognition (ASR) outputs are
not available, along with new evaluations to cor-
rectly gauge the effectiveness of quality estimation
in speech translation.

3 SpeechQE: Task and Models

We define the task of estimating the quality of
speech translation (SpeechQE or STQE2), before

2We choose to use terms SpeechQE and text-QE as main
instead of alternative terms STQE and MTQE to emphasize
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introducing our cascaded and E2E systems.
In this work, we focus on predicting sentence-

level scores and measuring the correlation of ref-
erence ratings provided by humans or reference-
based metrics (Fonseca et al., 2019). Additionally,
we will explore an error span detection task (Blain
et al., 2023) in Section 5.4, to broaden the scope of
QE beyond holistic numerical ratings.

We refer to a reference-based metric as metric.
Given a reference target text r, an MT hypothesis
h and optionally the MT source text t, the metric
rates the quality of h as a score m:

m = metric(h, r) or m = metric(t, h, r) (1)

Likewise, we refer to a text quality estimation
system as text-QE. It produces an output score q
given only a source text t and an MT hypothesis h.

q = text-QE(t, h) (2)

In the SpeechQE task (Figure 1), given the source
audio a and the translation hypothesis h, a system
outputs the quality score q for this hypothesis:

q = SpeechQE(a, h) (3)

3.1 Cascaded SpeechQE System
We first consider cascaded SpeechQE systems that
output the score qcas from a text-based QE system
with the input of transcribed text ASR(a) from an
ASR system and hypothesis text h (Figure 2).

qcas = text-QE(ASR(a), h) (4)

While the cascaded systems offer a straightfor-
ward approach to SpeechQE, they present several
issues. First, efficiency is a concern, as there are no
naturally occurring intermediate ASR transcripts in
the case of direct ST, necessitating additional ASR
runs to generate inputs for the text-QE component.
This introduces latency that may be undesirable in
user-facing quality estimation applications. Sec-
ond, source transcriptions produced by a separate
ASR do not always accurately represent the spo-
ken input, making the text-QE system vulnerable
to the wrong speech representation. Third, there is
a modality mismatch, as the text-QE component is
not adapted to spoken language, which exhibits dif-
ferent styles or errors from written language. These
challenges motivate us to explore end-to-end (E2E)
SpeechQE solutions.

the contrast between speech and text and to facilitate easier
reading. More discussion of the terminology in Appendix E.

3.2 End-to-End SpeechQE System

We introduce the architecture and training scheme
for our E2E SpeechQE model.

Model Architecture Rather than training an in-
tegrated model from scratch, we choose to lever-
age a pre-trained speech encoder and a large lan-
guage model (LLM) to utilize their abilities in ex-
tracting high-quality audio features and handling
translation-related tasks, respectively. This ap-
proach is particularly useful when there is limited
or no data available for training from scratch, as it
enables the transfer of knowledge from text-based
large language models (text-LLM) to the speech
domain. We adopt a popular configuration for inte-
grating speech modality into text-LLM that trains
a lightweight modality adapter (Wu et al., 2023;
Fathullah et al., 2023; Wang et al., 2023a,b), but the
optimal architecture for SpeechQE or even broadly
for integrating speech modality into text language
model remains an open question.

Figure 2 shows the overview of E2E system ar-
chitecture. The E2E SpeechQE model has three
parts: pre-trained speech encoder, modality adapter,
and pre-trained text-LLM. The speech encoder ex-
tracts the audio feature from the raw audio, where
we initialize with existing competitive speech mod-
els. The modality adapter subsamples the au-
dio features to compress the audio sequence and
bridges the speech representation to the text em-
bedding space to output speech embeddings. We
fix the speech encoder for all experiments, while
the weights of the adapter and text-LLM can be
updated depending on the training settings. The
input of the text-LLM model is the concatenation
of text and audio embedding sequence.

Training Supervised SpeechQE training and
evaluation requires triplets of audio inputs, ST hy-
potheses, and quality ratings. We build a corpus
by generating hypotheses with direct ST systems
of varying quality and obtain automatic quality la-
bels from reference-based metric (§ 4.1).3 We train
the E2E model with the SpeechQE task, comple-
mented with the ASR and ST tasks which provide
supervision of mapping between text and speech
modality. We consider two training strategies. The
first is a simple single-phase approach where we
train a modality adapter (and optionally update

3This is intended to minimize any bias from the written
text domain, rather than augment speech modality with TTS
on existing text datasets with human scores.
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CoVoST2/CV4 ASR ST SpeechQE

es2en 297k 79k 546k
en2de 305k 290k 589k

Table 1: Number of instances of training corpus of each
speech related tasks. CoVoST2 for ST and SpeechQE,
and Common Voice 4 for ASR. SpeechQE set is gener-
ated from the subset of ST by seven translation systems.

Es2En diect ST systems CoVoST2 FLEURS

whisper-large-v3 39.05 22.45

whisper-large-v2 39.53 23.62

whisper-large 38.11 22.89

whisper-medium 37.39 21.93

whisper-small 31.27 17.78

whisper-base 16.93 11.67

whisper-tiny 7.81 6.86

En2De direct ST systems CoVoST2 FLEURS

seamless-m4t-v2-large 43.12 32.21

seamless-m4t-large 40.55 31.41

seamless-m4t-medium 38.39 26.83

s2t-wav2vec2-large-en-de 26.98 19.92

s2t-medium-mustc-multilingual-st 8.08 13.43

s2t-small-mustc-en-de-st 7.82 12.34

s2t-small-covost2-en-de-st 14.19 9.50

Table 2: The list of seven direct ST models and their
BLEU scores for generating training corpus and test
benchmarks of SpeechQE.

text-LLM) with all three tasks. The second is a
two-phase approach where we first train only an
adapter with ASR and ST tasks while freezing text-
LLM to focus solely on mapping between text and
speech modality. Then, we continue training with
the SpeechQE task to let the LLM learn the un-
seen task of QE. In the second phase, the adapter
pre-trained in the previous phase can be frozen or
updated, while text-LLM is always trained with
LoRA (Hu et al., 2022).

We now turn to the empirical evaluation to de-
termine whether the E2E model successfully over-
comes the efficiency and modality alignment issues
raised by cascaded systems.

4 Experimental Settings

In this section, we describe the construction of the
SpeechQE benchmark as well as the configuration
of the evaluated systems.

4.1 Building SpeechQE Benchmark

We build a training corpus and test benchmark
for SpeechQE from CoVoST2 (Wang et al., 2021)
which is a speech translation corpus based on Com-
mon Voice 4 ASR datasets (Ardila et al., 2020).
We consider two translation directions: Spanish-
to-English and English-to-German. We subsam-
ple about 80k segments from the training set and
500 from the dev and test of CoVoST2, then run
seven different direct ST models to generate the
ST hypotheses. The direct ST models are off-the-
shelf models of a wide range of translation qual-
ity including Whisper (Radford et al., 2022) for
Es2En, and Seamless-M4T (Seamless Communi-
cation et al., 2023) and Fairseq S2T (Wang et al.,
2020) for En2De. The details of ST models are in
Table 2.

Given the generated hypothesis text, reference
text, and gold transcription text, we get automatic
quality labels from (reference-based) metrics since
reference-based scores are generally known to be
better correlated with human judgment on trans-
lation quality than reference-free scores (Freitag
et al., 2023). For training, we choose xCOMET-
XL (Guerreiro et al., 2024) as metric because it
is one of the best-performing submissions in the
WMT23 metric shared task. The final statistics for
the training dataset are in Table 1. For the test,
we obtain metric scores from both xCOMET-XL
and MetricX-23-XL (Juraska et al., 2023) as two
distinct types of quality labels to avoid biased com-
parison with the cascaded system.

4.2 Cascaded Modeling

For the cascaded system, we use the same set of
Whisper models that generates the Es2En ST hy-
pothesis as the ASR module for both the Es2En
and En2De cascaded experiments. For QE mod-
ules, we use the same metric models that generate
reference-based quality labels in Section 4.1 but
with reference-free inputs: source and hyothesis.4

4.3 E2E Modeling

We initialize the speech encoder from Whisper-
large-v2 and freeze it for all experiments. The
text-LLM is TowerInstruct-7B (Alves et al., 2024)
which is continued pre-training and finetuned with
instructions relevant to translation processes from

4We choose to report QE decoding of MetricX-23-XL
instead of the dedicated QE model of MetricX-23-QE-XL as
the former has higher correlations with human DA and the
findings in the Results sections are the same.
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ρ = corr(q,m) mxCOMET = xCOMET(gold t, h, r) Es2En En2De
mMetricX = MetricX(h, r) mxCOMET mMetricX mxCOMET mMetricX

Cascaded SpeechQE Systems Correlations ρcas = corr(qcas,m)

qcas = xCOMET-qe(gold t, h) 0.929 0.812 0.967 0.872
qcas = xCOMET-qe(ASR(a), h) 0.892 0.782 0.910 0.821
qcas = MetricX-qe(gold t, h) 0.834 0.844 0.908 0.932
qcas = MetricX-qe(ASR(a), h) 0.803 0.803 0.854 0.871
qcas = text-BLASER2.0-qe(gold t, h) 0.813 0.739 0.870 0.833
qcas = text-BLASER2.0-qe(ASR(a), h) 0.776 0.711 0.813 0.771

End-to-End SpeechQE Systems Correlations ρe2e = corr(qe2e,m)

qe2e = BLASER2.0-qe(a, h) 0.780 0.712 0.856 0.819
qe2e = TowerInstruct-Fixed+Adapter(a, h) 0.862 0.797 0.882 0.848
qe2e = TowerInstruct-LoRA+Adapter(a, h) 0.882 0.818 0.914 0.867
qe2e = TowerInstruct-LoRA+Adapter-pt(a, h) 0.890 0.833 0.922 0.872
qe2e = TowerInstruct-LoRA+Adapter-pt-Fixed(a, h) 0.895 0.834 0.925 0.873

Table 3: Correlations (ρ) between SpeechQE system scores (q) and metric scores (m) for quality of ST on CoVoST2
test. ASR is whisper-large-v3, the cutting-edge model. E2E systems outperform ASR cascaded systems and even
some cascaded ones with gold transcriptions. Overlines in cascaded correlation mean that the best E2E system
outperforms the corresponding cascaded system. Bolded text in E2E indicate the best score within each column.

Llama 2 (Touvron et al., 2023). This model has
not trained on the task of predicting the quality
score of a given translation (QE) but has trained on
the error span detection task. We either freeze the
TowerInstuct model or train it with LoRA (r = 16,
α = 32). The modality adapter consists of three
1-dimensional convolutional layers followed by a
512-dimensional bottleneck layer (Houlsby et al.,
2019), following Wang et al. (2023a). The adapter
is initialized randomly and unfrozen unless stated.

All our E2E models are trained on a single
A6000 GPU with a batch size of 8 updated in fixed
steps (140k steps for the single phase strategy, and
120k+80k steps for the two-phase strategy). In
addition to the SpeechQE training set, we use Com-
mon Voice 4 and CoVoST2 for ASR and ST. We
use language modeling loss with fixed instruction
prompts for each task for all settings, following the
chat template of TowerInstruct. More experimental
details are in Appendix D including the instruction
prompt templates for each task (Figure 3).

As another baseline, we use the BLASER2.0-qe
to experiment with both cascaded and E2E scenar-
ios. The inputs of E2E setting are SONAR embed-
ding of source speech and target text, while all text
embedding is for the cascaded setting.

4.4 Evaluation

We evaluate all models on the SpeechQE test set
built in Section 4.1, which has two types of met-

ric labels from xCOMET-XL and MetricX-XL. A
lower score of MetricX indicates better quality,
while that of xCOMET and E2E systems indicates
the opposite. To simplify our analysis, we multiply
MetricX scores by negative one, which allows us
to focus on the extent of correlation without con-
sidering the direction. We use the Spearman as the
primary measurement following Blain et al. (2023).

For evaluation on quality labels by human judge-
ment instead of metric, we compare human direct
assessment (DA) score on IWSLT ACL set from
Sperber et al. (2024) which is based on Salesky
et al. (2023).5 This dataset is based on presenta-
tion videos describing their ACL papers, thus in-
cluding highly technical terms and having domain
mismatches between our main training corpus. It
contains the source-based DA ratings of 416 hy-
potheses from each of the ten ST systems, resulting
in a total of 4,160 instances. We include additional
QE and metric models including sentence BLEU
and Comet(KiWi) (Rei et al., 2022a,b, 2023).

5 Results

We first present our main results by comparing
SpeechQE ratings with reference-based metrics
(§ 5.1), then turn to using human ratings of transla-
tion quality (§ 5.2). We add the results of varying
model sizes and architecture of the cascaded sys-

5https://huggingface.co/datasets/IWSLT/da2023
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tem. (§ 5.3). Finally, we evaluate our models on
a zero-shot error detection task (§ 5.4) and con-
duct a qualitative analysis of outputs (§ 5.5). We
additionally evaluate and train our systems with
out-of-domain settings (Appendix A and B).

5.1 Correlation with Reference-based Metrics

Table 3 shows correlations between metric scores
as quality labels and SpeechQE system output
scores, where the input of metric includes gold
transcription source text and reference text.

Cascaded. For metric and text-QE scores, we
cross-compare two metric scores (xCOMET and
MetricX) as quality labels and two QE scores
(xCOMET-qe and MetricX-qe) within cascaded
configurations since the matching QE and metric
model could favor the output from the model sim-
ilar to its own. For example, the xCOMET is a
single model for both metric and QE with different
inputs, showing higher correlation values in the
metric-QE model matching configuration (0.929 in
Es2En) than mismatch (0.834 or 0.812).

E2E. Among four E2E models, LoRA train-
ing the text-LLM with a fixed pre-trained speech
adapter (TowerInstruct-LoRA+Adapter-pt-Fixed)
performs the best in all language pairs and metric
types. The simplest training of fixing LLM and up-
dating only the adapter with all three tasks in a sin-
gle phase (TowerInstruct-Fixed+Adapter) shows
the lowest correlations followed by similar methods
but LoRA training the text-LLM (TowerInstruct-
LoRA+Adapter). This suggests that a separate train-
ing phase for mapping speech-to-text perception is
critical and that the weight updates are necessary
when a text-LLM is not fine-tuned for the target
task and therefore lacks the required capabilities. In
this case, TowerInstruct is not fine-tuned with QE
tasks, therefore, updating it is necessary. All vari-
ants of our E2E system outperform BLASER2.0,
perhaps due to its limited exposure to diverse trans-
lation quality at training time.

E2E vs Cascaded. The end-to-end SpeechQE
systems consistently outperform the cascaded
system which included the SOTA ASR system
(whisper-large-v3). The best E2E system not only
outperforms ASR-based cascades, but cascaded
systems that use gold transcriptions in all QE(row)-
metric(column) mismatched settings of both lan-
guage pairs. For instance, 0.834 of E2E versus
0.812 of xCOMET-qe(gold t,h) cascaded in Es2En

IWSLT23-ACL En2De Test set Human DA
ρ = corr(x, d) score d

Metric and Human DA correlation ρ = corr(m, d)
m = xCOMET(gold t, h, r) 0.557
m = MetricX(h, r) 0.539
m = wmt22-comet-da(gold t, h, r) 0.544
m = sentBLEU(h, r) 0.336

Cascaded SpeechQE and Human DA ρ = corr(qcas, d)
q = xCOMET-qe(gold t, h) 0.544
q = MetricX-qe(gold t, h) 0.556
q = wmt23-cometkiwi-da-xl(gold t, h) 0.576
q = wmt22-cometkiwi-da(gold t, h) 0.580
q = xCOMET-qe(ASR(a), h) 0.485
q = MetricX-qe(ASR(a), h) 0.495
q = wmt23-cometkiwi-da-xl(ASR(a), h) 0.503
q = wmt22-cometkiwi-da(ASR(a), h) 0.486
q = text-BLASER2.0-qe(ASR(a), h) 0.428

E2E SpeechQE & Human DA correlation ρ = corr(qe2e, d)
q = BLASER2.0-qe(a, h) 0.420
q = TowerInst-LoRA+Adapter-pt(a, h) 0.492
q = TowerInst-LoRA+Adapter-pt-Fixed(a, h) 0.509

Table 4: Correlations (ρ) between human direct assess-
ment scores (d) from IWSLT23-ACL and metric/QE
scores (m or q) for English-to-German speech transla-
tion. E2E SpeechQE scores correlate better with human
labels than cascaded approaches.

MetricX column. Similarly, BLASER2.0 with the
E2E setting of speech input and text output outper-
forms the cascade system with the text input-output
setting (text-BLASER2.0).

Overall, the correlation analysis underscores the
advantage of end-to-end SpeechQE systems over
cascaded ones. The strong correlations with metric
scores across various configurations indicate its
reliability as a measurement for quality estimation
in automatic speech translation tasks, highlighting
the potential of end-to-end approaches.

5.2 SpeechQE Correlation with Human DA

In Table 4, we compare the output quality scores
from SpeechQE systems with human direct assess-
ment (DA) scores from the IWSLT-ACL test set,
instead of metric scores as in the previous sections.
We use the ASR output provided by Salesky et al.
(2023).6 Overall correlations in the IWSLT-ACL
setting are lower compared to the prior section.

6We tried Whisper ASR systems, but the output quality
was not acceptable, likely due to the IWSLT23-ACL set being
out-of-domain and covering highly technical NLP topics. The
ASR provided is Azure API speech-to-text service, which we
believe performs comparably to SOTA ASR models.
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ρ = corr(q,m or d) CoVoST2 Es2En Test IWSLT23

mxCOMET-XL mxCOMET-XXL mMetricX-XL mMetricX-XXL En2De d

Cascaded Model with XXL Size vs E2E speech-LLM
qcas = ASR (1.5B) → xCOMET-XL-qe (3.5B) 0.892 0.800 0.782 0.788 0.485

qcas = ASR (1.5B) → xCOMET-XXL-qe (10.7B) 0.787 0.873 0.708 0.734 0.486

qcas = ASR (1.5B) → MetricX-XL-qe (3.7B) 0.803 0.758 0.803 0.766 0.495

qcas = ASR (1.5B) → MetricX-XXL-qe (13B) 0.700 0.677 0.652 0.694 0.502

Cascaded text-LLM vs E2E speech-LLM
qcas = ASR (1.5B) → text-TowerInstruct-LoRA (7B) 0.852 0.816 0.780 0.785 _

qe2e = TowerInstruct-LoRA+Adapter-pt-Fixed (7.5B) 0.895 0.827 0.834 0.834 0.509

Table 5: Impact of model size and architecture choices. The table reports correlations (ρ) between SpeechQE system
scores (q) and either metric scores (m) or human direct assessment scores (d, right-most column). Regardless of the
size of the text-QE model, the E2E SpeechQE system mostly outperforms the cascaded system. Also, the cascaded
system with a similar architecture of text-LLM shows lower performance than E2E SpeechQE system.

We hypothesize that this may be due in part to the
out-of-domain nature of this test set (NLP technical
talks), and to the fact that the direct assessment task
performed by human judges differs from the tasks
performed to obtain the gold ratings that informed
our QE and metric model (MQM and WMT DA).

Metric vs Gold-QE. The best correlation be-
tween human DA and cascaded text-QE with gold
transcription (0.580) shows a higher coefficient
than the best metric-human correlation (0.557), un-
like the assumptions that metric scores would bet-
ter correlate with human scores as in Freitag et al.
(2023). This could result from the annotation pro-
cess, such as source-based DA, where annotators
are shown the source text and the translated target
text but not the reference text, or they are shown
re-segmented translation system output along with
the previous and next system outputs as described
in Sperber et al. (2024).

E2E vs Cascaded. The best E2E SpeechQE sys-
tem outperforms all ASR cascaded systems in cor-
relation with human DA. The ASR + WMT23-
CometKiWi combination shows the highest correla-
tion among the ASR-based configurations (0.503),
but it is still slightly lower than the best E2E sys-
tem (0.509). Notably, this best E2E system is also
the top performer in the previous section. Over-
all, the data suggests that the best-practice E2E
system is more effective in aligning with human
judgments on translation quality compared to all
cascaded systems with ASR.

5.3 Cascaded Model Size and Architecture

Is the dominance of E2E over cascaded models due
to the E2E parameter size rather than its end-to-end
nature? We address this question by varying the
model size and architectural similarity between the
cascaded and E2E SpeechQE system.

Cascaded with XXL Size. In Table 5, we
evaluate cascaded systems based on bigger text-
QE models—text-TowerInstruct-qe(7B), xCOMET-
XXL-qe (10.7B), and Metric-23-XXL-qe (13B))—
resulting in cascaded SpeechQE systems whose
total size is bigger than that of E2E (e.g. total
14.5B of cascaded MetricXXL vs 7.5B of E2E).
We also extend the size of metric models in the
CoVoST2 comparison. The larger text-QE sys-
tem generally correlates better with human quality
score than smaller cascaded system (rightmost col-
umn); however, the performance is still below that
of the E2E. Similarly in CoVoST2 test results, the
E2E system outperforms the cascaded system re-
gardless of the size of the text-QE model, except
for the case where xCOMET-XXL metric favors
the QE scores of the same model.

Overall, E2E models tend to show a higher
correlation than the cascaded systems with
similar/bigger-sized text-QE models, showing the
advantages of the E2E system extend across effi-
ciency considerations.

Cascaded with text-LLM. We LoRA fine-tune
the TowerInstruct model in Spanish-to-English
direction with similar training methods to E2E
SpeechQE model but only with text modality in-
put. This produces a text-based QE model based
on the same TowerInstruct-7B model as the E2E
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ESD for ST Precision Recall F1 Score

Cascaded Systems
txt-ESD(gold t, h) 0.438 0.591 0.503
txt-ESD(w-large-v2(a), h) 0.434 0.550 0.485
txt-ESD(w-medium(a), h) 0.429 0.540 0.478
txt-ESD(w-small(a), h) 0.413 0.535 0.466
txt-ESD(w-base(a), h) 0.385 0.550 0.453

End-to-End Systems
TowerInst-Fixed+Adt(a, h) 0.411 0.542 0.467

Table 6: Zero-shot error span detection for speech trans-
lation (SpeechESD) on CoVoST2 Spanish-to-English
test. Even without being explicitly trained by the
SpeechESD task, E2E model performs decently sug-
gesting that text-LLM ability is transferable to speech
LLM in a zero-shot manner.

SpeechQE model. Pairing it with ASR results in
a cascaded SpeechQE system with 8.5B parame-
ters as opposed to 7.5B for the E2E system. Yet,
the E2E system still outperforms this version of
cascaded model. Besides the efficiency advantage,
we can also conclude that the improvements are
coming from the E2E nature of the approach rather
than the LLM-based solution, reaffirming that E2E
system is better suited for SpeechQE task than the
cascaded system.

5.4 Zero-Shot Error Span Detection for ST

Simply providing the quality score may offer a
straightforward indication of translation quality, but
it can be difficult to interpret when trying to identify
specific issues (Lu et al., 2024). To broaden the
scope of QE beyond overall numerical ratings, we
further explore an error span detection (ESD) for
ST task (SpeechESD) that predicts the error span
within the hypothesis (Blain et al., 2023).

We test our E2E model in a zero-shot manner
where SpeechESD is an unseen task during the
speech adaptation. Since the TowerInstruct is fine-
tuned from its base model with several translation-
related tasks including error span detection, we
can see how effectively the method of injecting
speech modality generalizes the capability of text-
LLM to speech LLM without explicitly training
the target speech task. We evaluate quantitatively
in this section and also qualitatively in Section 5.5.

Experimental Settings. We use the error span
output of the xCOMET metric function as
reference-based error span labels and compare the
E2E and cascaded system where TowerInstruct is

a text-ESD model.7 We use the same test set as
SpeechQE. The input of the ESD task is source
and hypothesis as in the QE task. We calculate
the F1 score following Blain et al. (2023). For the
E2E model, we only run the model that fixes the
text-LLM, as the model performs exclusively on
a few trained tasks when the weights of text-LLM
are updated with those tasks. Also, we build an ad-
ditional SpeechQE train set from FLEURS train set
(Conneau et al., 2022) and include it into a single
phase SpeechQE training to have better meaningful
results in ESD, especially in qualitative analysis.

E2E vs Cascaded. We show F1 score, recall, and
precision in Table 6. Cascaded systems show the
best performance in SpeechESD indicating that
they remain the preferred choice for achieving the
highest performance when we do not have speech
training data for the target task. Still, even without
being explicitly trained by the SpeechESD task,
the E2E model performs decently by outperform-
ing cascaded with medium-quality ASR in recall
and cascaded with whisper-small in F1-sore. This
suggests that text-LLM ability is transferable to
speech LLM in a zero-shot manner.

5.5 Example Analysis

We analyze the examples of how E2E and cascaded
SpeechQE systems score the speech translation
quality and detect the error spans. Table 7 shows
examples of Spanish-to-English speech transla-
tion from whisper-large-v2 and quality estimations
of SpeechQE systems, where the ASR model of
the cascaded system is whisper-medium. We use
xCOMET metric outputs of scores, error spans, and
severity as the quality and error labels, similar to
the setting of Section 5.1 and 5.4.

The example translation has two major errors in
“Calpaniado” and “camp”, which are supposed to be
translated into “Carpanedo” and “championship”.
However, the cascaded system estimates the quality
of this translation as high as 0.93, and could not de-
tect the error spans or its severity correctly. These
issues primarily arise because ASR incorrectly tran-
scribed the name “Calpaniado” as“Calpaniado” and
the word “campeonato” (meaning “championship”)
as “campamento” (meaning “camp”) In contrast,
E2E SpeechQE system is not affected by these is-
sues and correctly detects those major errors. We

7We did not compare with text-xCOMET-qe in this case as
we are not training SpeechESD explicitly like SpeechQE and
xCOMET-qe output are similar to that of xCOMET-metric.
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Spanish-to-English ST Example

Gold transcription Carpanedo participó en dos carreras individuales del campeonato aparte de la competencia
del miércoles.

ASR Calpaniado participó en dos carreras individuales del campamento, aparte de las competencias
del miércoles.

Hypothesis Calpaniado participated in two individual races of the camp, apart from the Wednesday races.
Reference Beyond Wednesday’s event, Carpanedo competed in two individual races at the Championships.

Systems SpeechQE Scores Error Span Detection

Quality/Error Span Labels 0.611 Calpaniado – major, of the camp – major, races–major
Cascaded Predictions 0.932 camp–minor, race–minor
E2E Predictions 0.497 Calpaniado – major, camp – major

Table 7: Example of Spanish-to-English speech translation and quality estimations of SpeechQE systems. Bolded
text represents the wrong ASR or ST spans while underlined indicates the correct ones. Cascaded SpeechQE
incorrectly estimates the translation quality of the hypothesis due to speech recognition error, while E2E could
correctly catch the errors in the ST.

discuss another example of En2De in Appendix C.
This example shows that the E2E system is more

robust to speech representation error in estimating
quality and indicating the error spans for ST.

6 Related Work

Recent work has explored how to inject additional
modalities into a model pre-trained on a single
modality. Various configurations have been pro-
posed to meet different demands including speech
modality into text-LLM (Wu et al., 2023; Wang
et al., 2023a,b), visual modality into text-LLM (Liu
et al., 2023; Li et al., 2023), visual modality into
speech foundation model (Seo et al., 2023; May
et al., 2023; Han et al., 2024), and audio-visual
modalities into text-LLM (Zhang et al., 2023).

When injecting the speech modality into text-
LLM, the main challenges are aligning long speech
signals to corresponding text sequences with the
same semantic contents, while avoiding overfitting
to default training tasks like ASR and ST. Several
methods of compressing and aligning the speech
and text sequence include the use of convolutional
layer (Wang et al., 2023a), CTC compression (Wu
et al., 2023; Pan et al., 2023), and random down-
sampling (Wang et al., 2023b). Many mention the
problem of task overfitting to homogeneous fixed
instruction training on limited tasks. They suggest
training on many diverse tasks (Chu et al., 2023;
Tang et al., 2024) or tuning on diverse speech in-
structions with TTS-augmented instruction datasets
(Wang et al., 2023b; Pan et al., 2023).

However, most of these works focus on ASR,
ST, QA, and general instruction following within

speech comprehension tasks (Gaido et al., 2024).
This paper initiates their application to the under-
studied SpeechQE problem.

7 Conclusion

This work focused on the task of SpeechQE, eval-
uating the quality of speech translation using both
cascaded systems and end-to-end systems. We de-
veloped an E2E SpeechQE model, proposing meth-
ods for corpus creation, training strategies, and
architectural design. Our findings indicate that
E2E systems are generally better suited to estimate
the quality of direct speech translation. Addition-
ally, we examined the error span detection task for
ST finding that E2E speech model transfer abil-
ity from text-based LLM while cascaded systems
with state-of-the-art ASR still hold advantages in
performance. We conclude that SpeechQE needs
dedicated attention separate from text-QE, due to
the growing use cases of ST and the significant
potential for further improvements in this field.

Quality estimation in the speech domain opens
up a wide range of potential applications. In addi-
tion to the promise of helping people use speech
translation systems more reliably in their daily
lives, quality estimation can enhance speech trans-
lation itself, for instance by enabling prefix-to-
prefix quality estimation for re-translation and si-
multaneous speech translation. We contribute data,
code, and models to support future work that broad-
ens the scope of the translation-related tasks for the
speech domain.
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Limitations

This work assumes that we can use quality eval-
uation schemes designed for text translation and
port them directly to speech to distill the quality
estimation ability while adapting it to the speech
domain. However, some errors might matter more
when translating text than when translating speech
(e.g., punctuation, capitalization), while speech in-
puts might raise new issues (e.g., segmentation). In
future work, we encourage the collection of quality
annotations specifically designed for speech trans-
lation and look forward to investigating how to
transfer knowledge from text-QE systems in those
settings.

Our E2E models are trained with an A6000
GPU with 8 instances per batch updating up to
200k steps. Training with larger number of GPUs
and batch size, as is often the case with speech
LLM training, could show better performance in
SpeechQE.

Our training tasks include ASR, ST, and
SpeechQE with fixed instructions which interfere
with the success of downstream zero-shot tasks like
error span detection. Further augmenting the train-
ing tasks with speech instruction tuning and diverse
speech question answering tasks could enhance the
performance of ESD.

We experimented with two language pairs,
English-to-German and Spanish-to-English, both
of which are European languages. We could ex-
pand language diversity in future work by including
non-European languages, which would help assess
the generalizability and robustness of our models
across different linguistic and cultural contexts.

We have explored a single type of architecture
for speech LLM. Investigating various architectural
approaches could help better understand their im-
pact on performance and robustness in SpeechQE
performance and transferability of knowledge.
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Out-of-Domain Test set (FLEURS) Es2En

SpeechQE score q ↓ mxCOMET mMetricX

Cascaded SpeechQE Systems ρcas = corr(qcas,m)

xCOMET-qe(gold t, h) 0.945 0.849

xCOMET-qe(whspr-large-v3(a), h) 0.919 0.824

xCOMET-qe(whspr-large-v2(a), h) 0.919 0.825

xCOMET-qe(whspr-medium(a), h) 0.906 0.813

xCOMET-qe(whspr-small(a), h) 0.895 0.804

xCOMET-qe(whisper-base(a), h) 0.852 0.776

MetricX-qe(gold t, h) 0.855 0.893

MetricX-qe(whspr-large-v3(a), h) 0.834 0.858

MetricX-qe(whspr-large-v2(a), h) 0.833 0.860

MetricX-qe(whspr-medium(a), h) 0.815 0.840

MetricX-qe(whspr-small(a), h) 0.791 0.810

MetricX-qe(whspr-base(a), h) 0.709 0.726

End-to-End SpeechQE Systems ρe2e = corr(qe2e,m)

TowerInst-LoRA+Adapter-pt(a, h) 0.897 0.858

TowerInst-LoRA+Adt-pt-Fixed(a, h) 0.892 0.849

Adding FLEURS to E2E Training
TowerInst-LoRA+Adapter-pt(a, h) 0.904 0.872

TowerInst-LoRA+Adt-pt-Fixed(a, h) 0.906 0.873

Table 8: Correlations on out-of-domain (OOD) test set
of Spanish-to-English FLEURS. Cascaded shows better
audio domain robustness than E2E as E2E models are
trained on limited data. Still, E2E outperforms gold-
cascaded when compared with cross QE-metric cascade
configuration in different model families. We also ex-
periment with additional FLEURS training, which in-
creases (now in-domain) FLEURS test correlation score.

A Robustness to Out-of-Domain Test Sets

We also explore how the SpeechQE systems are ro-
bust to the domain changes. We build a test set with
FLEURS (Conneau et al., 2022) for out-of-domain
(OOD) evaluation following the same protocol as
an in-domain test set. Table 8 shows correlations
between SpeechQE system score and metric score
on the out-of-domain test set of FLEURS.

Effect of ASR quality in Cascaded. We present
cascaded results with a wide quality range of ASR,
from whisper-large v3 to whisper-base. The corre-
lations are proportional to the ASR performances,
while gold cascaded is an upper bound.

Robustness Effect of Training E2E Adapter with
Target Task In contrast to Section 5.1, the best-
performing E2E model is the model that updates
the pre-trained adapter weight in the final training
stage with the SpeechQE task. We note that the
training of the adapter and the final E2E model is

based solely on Common Voice audio, where the
adapter is trained with ASR and ST tasks and the
final E2E model is only trained with the SpeechQE.

We conclude that E2E models become more ro-
bust to audio domain shift if the speech adapter
is trained with the target task—SpeechQE in this
case—instead of being frozen.

E2E vs Cascaded. The results suggest that cas-
caded systems have better domain robustness when
comparing the correlation between matching QE
and metric models like the pair of ASR + xCOMET-
qe and xCOMET metric scores. In those cases, the
E2E system (e.g. 0.858 in MetricX) only outper-
forms the cascaded system with medium-quality
ASR systems (e.g. 0.840 with whisper-medium
ASR). This advantage is likely due to ASR systems
being trained on a broader domain of audio corpora,
whereas E2E systems are limited to Common Voice
domain. Nevertheless, the E2E system shows com-
petitive correlations in settings with non-matching
QE and metric models (e.g., xCOMET-qe and Met-
ricX metric), outperforming the cascaded systems
of gold transcription and text-QE.

B Adding FLEURS set to E2E Training

Training a model on a single speech domain may
lead to learning domain-specific speech representa-
tion, such as particular accents or speaking styles.
We experiment with an additional SpeechQE train-
ing set to verify whether the conclusion from single-
domain experiments holds in broader settings. We
create an additional SpeechQE training set from
the FLEURS dataset (20k), which is relatively
small compared to CoVoST2 (more than 500k).
We include it into a single phase SpeechQE train-
ing, which is the same corpus setting described in
Section 5.4. We present the evaluation results on
CoVoST2 and IWSLT23-ACL in Table 9 and on
FLEURS in Table 8, specifically in the last two
rows of each table.

First, adding the FLEURS domain shows higher
correlations on the FLEURS domain as anticipated
(last two rows of Table 8). In contrast, it reduces
performance on the CoVoST2 domain but still
outperforms the cascaded SpeechQE systems (Ta-
ble 9). Interestingly, the correlation between the
human score of IWSLT-ACL and the SpeechQE
system score (rightmost column in Table 9) shows
that adding even a small set from another domain
slightly increases the alignment with human judg-
ments. Although this improvement may not be
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ρ = corr(q,m or d) CoVoST2 Es2En CoVoST2 En2De IWSLT23
mxCOMET mMetricX mxCOMET mMetricX En2De d

Cascaded SpeechQE Systems Correlations ρcas = corr(qcas,m) ρcas = corr(qcas, d)
qcas = xCOMET-qe(ASR(a), h) 0.892 0.782 0.910 0.821 0.485
qcas = MetricX-qe(ASR(a), h) 0.803 0.803 0.854 0.871 0.495

End-to-End SpeechQE Systems Correlations ρe2e = corr(qe2e,m) ρe2e = corr(qe2e, d)
qe2e = TowerInstruct-LoRA+Adapter-pt(a, h) 0.890 0.833 0.922 0.872 0.492
qe2e = TowerInstruct-LoRA+Adapter-pt-Fixed(a, h) 0.895 0.834 0.925 0.873 0.5085

Adding FLEURS to E2E Training
qe2e = TowerInstruct-LoRA+Adapter-pt(a, h) 0.893 0.828 0.916 0.868 0.501
qe2e = TowerInstruct-LoRA+Adapter-pt-Fixed(a, h) 0.888 0.826 0.920 0.871 0.5091

Table 9: CoVoST2 and IWSLT23-ACL results of the E2E models trained on a single-domain of CoVoST2 corpus
(first two rows of E2E section) and multi-domain corpus including CoVoST2 and FLEURS (last two rows). Adding
the FLEURS domain decreases performance on the CoVoST2 domain but slightly improves in correlation with
IWSLT23-ACL human direct assessment scores, while still outperforming the cascaded SpeechQE system.

statistically significant, it suggests that training on
multiple speech domains (CoVoST2 + FLEURS)
increases robustness against domain shifts during
testing (as IWSLT ACL is also out-of-domain).

In conclusion, the findings from single-domain
experiments remain valid after incorporating the
FLEURS set into training, while also indicating
increased robustness to domain shifts.

C Additional Examples in En2De

Table 10 shows examples of English-to-German
speech translation results from s2t-medium-mustc-
multilingual-st in Table 2. The translation has sev-
eral major errors and both cascaded and E2E sys-
tems are able to detect the errors. However, the
cascaded system incorrectly predicts the severities
as minor and ends up estimating the quality score to
be 0.852. One could be partly due to an ASR error
where it incorrectly transcribed “GBP” as “GPP”,
which might trigger the cascaded system to set its
severity as a minor for the translation of “GP”.

D Additional Experimental Details

For E2E training, we use a learning rate of 5e-5
and a weight decay of 0.05. For LoRA training,
we update q|k|v|o projection in each attention layer
with the rank of r = 16 and a scaling parameter of
α = 32. The size of the resulting E2E SpeechQE
model is about 8.5B given that TowerInstruct text-
LLM is 7B and whisper-large-v2 is 1.5B. For de-
coding, we use a temperature of 0.1 and set the
maximum new tokens up to 500. The presented
numbers in all tables are a single run for cascaded

where the outputs do not change with the same in-
put and the mean of three runs for E2E. We use
off-the-shelf models from the huggingface hub and
use torch and transformer libraries for the im-
plementation.

E Discussion of the Task Terminology

In the research area of machine translation (MT),
the term QE traditionally stands for machine trans-
lation quality estimation, though the more precise
acronym is MTQE. Also, MT typically indicates
text-to-text translation, while ST refers to speech-
to-text translation. Given the implications of QE,
we add “speech” to indicate the task of quality esti-
mation for speech translation, where the more ac-
curate acronym would be STQE. We use SpeechQE
for speech translation quality estimation and text-
QE for machine translation quality estimation as
main wordings instead of (more accurate) alterna-
tives of STQE and MTQE to emphasize the con-
trast between speech and text and to facilitate eas-
ier reading. While SpeechQE could be ambiguous
considering that it can be QE either for ASR or ST,
previous works on ASR quality estimation (Negri
et al., 2014; Rubenstein et al., 2023) use the phrase
“ASR-QE”, which safely distinguishes them from
STQE or SpeechQE.
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English-to-German ST Example

Gold transcription The official Falklands currency is the Falkland pound (FKP)
whose value is set equivalent to that of one British pound (GBP).

ASR The official Falklands currency is the Falkland Pound, FKP,
whose value is equivalent to that of a British Pound, GPP.

Hypothesis Die offizielle Fäklins Währung ist ein Fäklin Pfund, FKP,
der uns wertvoll ist, genauso wie ein britischer Pfund, GP.

Reference Die offizielle Währung der Falklandinseln ist das Falkland Pound (FKP),
dessen Wert in Einklang mit dem Wert des Britischen Pfunds (GBP) festgelegt wird.

Systems SpeechQE Scores Error Span Detection

Quality/Error Span Labels 0.539 “e Fäklins W” – major, “hrung ist ein Fäklin Pfund, FKP,
der uns wertvoll ist, genauso wie ein britischer Pfund, GP.” – major,

Cascaded Predictions 0.852 “e Fäklins Währung” – minor, “ein Fäklin Pfund” – minor, FKP – minor,
“der uns wertvoll ist, genauso” – minor, “britischer Pfund, GP” – minor

E2E Predictions 0.550 Fäklins – major, FKP – major, “uns wertvoll ist” – major,
“genauso wie” – major, “britischer Pfund – major, GP – major

Table 10: Example of English-to-German speech translation and quality estimations of SpeechQE systems. Both
cascaded and E2E SpeechQE systems could detect errors. However, the cascaded system estimates the severity
lower than that of the metric labels partly due to ASR error while E2E could estimate the quality closely to labels.

# QE4ST task, training and testing

Given the German translation of the speech, estimate the quality of the translation as a 
score between 0 to 1.

English: [[audio input]]

German translation: Wir modellieren den grasweisen, obstruktiven Summize-Ansatz mit zwei 
verschiedenen Methoden.

# desired output in training or example output in testing

0.851

# ASR task, training

Transcribe the following audio from English into English text.

Spanish: [[audio input]]

Spanish: Durante la ocupación trabajo en teatro y filmes.

# ST task, training

Translate the following audio from Spanish into English text.

Spanish: [[audio input]]

English: During the occupation, he worked in theaters and movies.

# Error Span Detection for ST task, only testing

You are an annotator for machine translation quality. Your task is to identify errors and 
assess the quality of the translation.

Source (Spanish): [[audio input]]

Translation (German):  Calpaniado participated in two individual races of the camp, apart 
from the Wednesday races.

Each error may consist of several consecutive words and must be categorized as either 
'minor' or 'major'. Minor errors refer to smaller imperfections, and purely subjective 
opinions about the translation while major errors impact the usability or understandability 
of the content.

Based on the above source and translation pair, list the errors you find. If you find no 
errors, simply output 'Translation has no errors.

# example output

Calpaniado -- major

camp -- major

Figure 3: Prompt template of SpeechQE (quality estimation for speech translation), ASR, ST, and SpeechESD (error
span detection for ST) task.
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