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Abstract

Aligning Large Language Models (LLMs) tra-
ditionally relies on costly training and human
preference annotations. Self-alignment aims
to reduce these expenses by aligning models
by themselves. To further minimize the cost
and enable LLM alignment without any expen-
sive tuning and annotations, we introduce a
new tuning-free approach for self-alignment,
called Dynamic Rewarding with Prompt Opti-
mization (DRPO). Our approach leverages a
search-based optimization framework that al-
lows LLMs to iteratively self-improve and de-
sign the best alignment instructions without the
need for additional training or human interven-
tion. The core of DRPO is a dynamic reward-
ing mechanism, which identifies and rectifies
model-specific alignment weaknesses, allowing
LLMs to adapt efficiently to diverse alignment
challenges. Empirical evaluations on eight re-
cent LLMs, both open- and closed-source, re-
veal that DRPO significantly enhances align-
ment performance, with base models outper-
forming their SFT/RLHF-tuned counterparts.
Moreover, DRPO’s automatically optimized
prompts surpass those curated by human ex-
perts, further validating the effectiveness of our
approach. Our findings highlight the great po-
tential of current LLMs to be adaptively self-
aligned through inference-time optimization,
complementing existing tuning-based align-
ment research.1

1 Introduction

Aligning Large Language Models (LLMs, Brown
et al. 2020; Chowdhery et al. 2023; Touvron et al.
2023a; OpenAI et al. 2024) with human ethical
standards and practical expectations is extremely
crucial to prevent unintended consequences and
ensure AI’s positive contribution to society. Tra-
ditional alignment methods, such as supervised
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1Code is available at https://github.com/Singla17/
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Figure 1: Comparing DRPO with other LLM align-
ment paradigms. DRPO merges the benefits of both
self-alignment and tuning-free alignment, enabling self-
improvement and high cost-efficiency without the need
for human supervision and model training.

fine-tuning (SFT) and reinforcement learning from
human feedback (RLHF) (Bai et al., 2022; Ouyang
et al., 2022), are resource-intensive and require
extensive human oversight, limiting their scalabil-
ity and practicality. As LLMs grow more com-
plex and widespread, the demand for cost-effective,
annotation-efficient, and quickly adaptable align-
ment strategies becomes increasingly urgent.

Self-alignment seeks to better align LLMs using
the models themselves; for example, by replac-
ing human feedback with model-generated feed-
back (Lee et al., 2023), synthesizing preference
data (Kim et al., 2023; Sun et al., 2024), or self-
improving with self-critique (Bai et al., 2022). De-
spite these advancements, such methods still re-
quire significant resources, including the costly and
unstable RLHF tuning, and some level of human
supervision, such as carefully curated alignment
rules or in-context learning (ICL) prompts (Sun
et al., 2024). On the other hand, as shown in Fig-
ure 1, a recent line of research focuses on tuning-
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free alignment, which aims for extremely efficient
alignment without incurring any tuning cost. These
approaches include techniques like decoding-based
alignment (Li et al., 2023c; Wang et al., 2024b) or
ICL alignment (Han, 2023; Lin et al., 2024a; Zhao
et al., 2024). However, these tuning-free methods
are often static (e.g., relying on fixed prompts or
reward functions) and thus lack the flexibility to
self-improve for better alignment.

To marry the strengths of both paradigms, in
this paper, we propose DRPO, Dynamic Reward-
ing with Prompt Optimization, a novel tuning-free
approach for LLM self-alignment. DRPO draws
inspiration from two key insights from recent align-
ment research. First, the superficial alignment hy-
pothesis (Zhou et al., 2024) posits that LLMs can
be effectively aligned with lightweight tuning or
simply prompting (Lin et al., 2024a; Zhao et al.,
2024). Second, reward models in RLHF often gen-
eralize poorly to out-of-distribution samples (Burns
et al., 2023), whereas LLMs, well-known for their
superior generalization capabilities, can provide
more effective rewards and feedback for align-
ment. Building on these insights, DRPO is con-
structed atop a search-based prompt optimization
(PO) framework (Pryzant et al., 2023; Hao et al.,
2023; Wang et al., 2023), allowing LLMs to self-
correct and automatically craft detailed alignment
instruction. This steers model behavior more ef-
fectively, without relying on any use of human
preferences or model training.

The core novelty of DRPO lies in its dynamic re-
warding mechanism, integrated with the optimiza-
tion framework. This mechanism enables LLM-
based rewards to be adjusted on the fly based on
specific queries, helping to identify and rectify the
model’s alignment blind spots. For example, if an
LLM with outdated knowledge pretends to answer
a question requiring the latest news, its “knowledge
limitation” reward will be low, and the alignment
prompt will be updated accordingly. We apply this
novel method to automatically craft both the system
prompt and responses in ICL examples, which have
proven highly effective in improving alignment.

We conducted comprehensive experiments on 8
recent LLMs using the standard alignment bench-
mark, just-eval-instruct, composed of ques-
tions from multiple alignment datasets. Our results
show that DRPO can effectively align both base
and SFT/RLHF tuned models. Notably, DRPO sig-
nificantly enhances base models, enabling them
to outperform their SFT/RLHF-tuned counterparts.

Figure 2: Comparing DRPO with other alignment meth-
ods, such as RLHF and URIAL (Lin et al., 2024a).
Our method consistently outperforms both the baselines
for multiple LLMs. Note that we do not have access
to gpt-3.5-turbo base model; thus, both DRPO and
URIAL are directly applied to its RLHF-tuned version.

DRPO can further improve SFT/RLHF-tuned mod-
els, showing its compatibility with other tuning-
based alignment techniques. Additionally, our au-
tomatically optimized prompts substantially outper-
form those curated by human experts.

2 Related Works
Self-Alignment. Traditional alignment approaches
rely heavily on extensive human-annotated pref-
erence data and complex reward model train-
ing through reinforcement learning, posing sig-
nificant scalability and cost challenges (Ouyang
et al., 2022). Self-alignment focuses on aligning
LLMs themselves with model-generated feedback,
datasets, critique, etc., which are then used for fine-
tuning or training reward models (Lee et al., 2023;
Bai et al.; Cao et al., 2024; Wang et al., 2024a; Guo
et al., 2024). Notable examples include synthesiz-
ing alignment training data with human-provided
instructions and ICL examples (Wang et al., 2022;
Kim et al., 2023; Sun et al., 2024), augmented web
documents (Li et al., 2023a), or self-critique (Bai
et al., 2022; Madaan et al., 2024). However, most
of these methods still require an SFT/RLHF-tuning
process to enhance alignment performance, along
with some degree of human annotations or supervi-
sion. In contrast, DRPO shares similar principles
of self-alignment using self-critique error feedback
to gradually align the model, but it achieves this
without any model tuning or human supervision.
Tuning-Free Alignment. A recent trend of align-
ment research is to align LLMs without updating
their parameters. This usually serves as a post-hoc
processing for base models, which has witnessed
two major lines of work recently. The first is to
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Figure 3: Overall framework of Dynamic Rewarding with Prompt Optimization (DRPO). The optimization problem
is formulated as a Markov Decision Process (MDP) and solved using beam search to optimize the alignment prompt.
Dynamic rewarding, a novel technique integrated into this framework, allows flexible reward assignment to detect
and rectify alignment weaknesses in the current LLM, enhancing the overall optimization process.

align models with carefully curated human anno-
tations and ICL examples (Han, 2023; Lin et al.,
2024a; Zhao et al., 2024), while the second involves
decoding-based methods to guide the generation
and search tokens with alignment rewards (Li et al.,
2023c; Khanov et al., 2024; Huang et al., 2024).
Although tuning-free, the former still requires hu-
man curation and often underperforms compared
to SFT/RLHF-tuned counterparts. The latter, while
effective, incurs higher inference costs per query,
making it computationally expensive. It is worth
mentioning that there is a recent promising direc-
tion of cost-efficient alignment, which introduces
representation engineering (Zou et al., 2023; Wu
et al., 2024) to steer LLM representation vectors
for alignment (Li et al., 2024; Kong et al., 2024;
Wang et al., 2024b). However, these methods typi-
cally are not fully tuning-free and require additional
data or model training to identify alignment direc-
tions in the embedding space. Nevertheless, DRPO
requires no additional annotations or model train-
ing and also only needs a one-time optimization
for each model to achieve better performance than
SFT/RLHF-tuned counterparts.
Prompt Optimization. Discovering optimal dis-
crete prompts becomes far more crucial nowadays.
Modern prompts for LLMs can be generally di-
vided into two parts: in-context learning examples
and detailed instructions. The former is usually
treated as a retrieval problem with various schemas
to select the influential examples (Rubin et al.,

2021; Dong et al., 2022). Optimizing the latter has
been heavily studied recently, mostly formulated as
a sampling or search problem. Generally, an initial
prompt (e.g., a base prompt, “You are a helpful as-
sistant”) is given to start an iterative process, where
diverse prompt candidates are generated per turn,
and the best ones are kept for the next iteration. Var-
ious sampling strategies are proposed to diversify
the prompt candidates, e.g., back translation (Xu
et al., 2022), evolutionary operations (Fernando
et al., 2023), self-critique (Wang et al., 2023). Dif-
ferent search frameworks also have been studied,
such as Monte Carlo search (Zhou et al., 2022), evo-
lutionary algorithms (Fernando et al., 2023; Yang
et al., 2023), beam search (Pryzant et al., 2023),
and Monte Carlo tree search (MCTS) (Wang et al.,
2023). DRPO is built on top of recent search-based
prompt optimization methods, but introduces novel
techniques, including dynamic rewarding, to solve
the alignment problem.

3 Methodology
In this section, we introduce our formulation for-
mally and present DRPO for solving the alignment
problem by optimizing the alignment prompt.

3.1 Problem Formulation

Given an LLM B, the alignment prompt consists
of two parts: a system prompt P and a set of
N in-context learning examples I. The system
prompt P serves as a prefix that provides instruc-
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tions, sets the tone, and imposes constraints on
the model’s responses. Each in-context learn-
ing example Ii consists of a pair (qi, di), where
qi is an input query and di is the correspond-
ing desired response, so we can represent I =
{(q1, d1), (q2, d2), . . . , (qN , dN )}.

Conditioning on the system prompt P and a se-
lected subset of K in-context learning examples
IK ⊆ I, the aligned model response y to an input
x is generated as:

y = B(x | P, IK)

DRPO aims to optimize both system prompt P
and in-context learning examples IK to enhance
alignment. This involves finding the best possible
P∗ and I∗

K that maximize the alignment of the
model’s responses. This optimization problem can
be formulated as follows:

(P∗, I∗
K) = argmax

P,IK
Ex∼Dx [B(x | P, IK)]

where Dx denotes the distribution of input queries,
and the expectation E represents the alignment per-
formance for responses based on specific metrics.

3.2 Dynamic Rewarding with Prompt
Optimization (DRPO)

Given the distinct nature of the system prompt and
ICL examples, we propose to optimize them sep-
arately, resulting in a two-step optimization ap-
proach. First, we construct a universal set of ICL
examples and optimize their responses to obtain
I∗; second, we estimate a model-specific system
prompt P∗ based on the universal set I∗. Notably,
we leverage the LLM Reasoners framework (Hao
et al., 2023, 2024) as the prompt optimization (PO)
framework. Specifically, LLM Reasoners2 incor-
porates a base model B, an optimizer O, and an
evaluator E . It operates as a search agent that it-
eratively interacts with the model’s environment,
using the optimizer O to adjust the prompt P or
in-context learning examples I based on a reward
function R. We refer the audiences to the original
references for more details. We next introduce the
core component of DRPO.

3.2.1 Dynamic Rewarding for Alignment
We formulate this optimization problem as a
Markov Decision Process (MDP). In this frame-
work, the states s ∈ S represent our optimiza-
tion goal, which could be either a prompt or an

2https://github.com/maitrix-org/llm-reasoners

in-context example. Actions a ∈ A are defined by
the alignment feedback obtained during the evalua-
tion of any state. The motivation behind this is to
leverage the superior generalization capabilities of
LLMs to evaluate and analyze states, guiding state
transitions toward an optimal state. Specifically,
we employ different evaluation techniques for sys-
tem prompt optimization and in-context example
optimization, which are detailed in subsequent sec-
tions. Since traversing this state space requires a
search algorithm, we use beam search in this work
due to its effectiveness and low computational cost.

One of the most significant challenges in our
optimization task is designing a reward function
capable of handling a problem as broad and gener-
alized as alignment. As shown in Figure 3, a single,
unified reward function is impractical because the
query space we aim to align with our base LLM B
is vast, and different queries have different focal
points. This means that certain evaluation criteria
might be appropriate for some queries but not for
others. To overcome this, we introduce a dynamic
reward function R, which can adjust on the fly to
adapt to the specific query being evaluated. No-
tably, our approach shares conceptual similarities
with a few recent alignment research, which also
advocate for adaptable and query-sensitive align-
ment strategies (Bai et al., 2022; Sun et al., 2024).
However, the key distinction is that our dynamic
reward function not only allows for more flexible
selection but is also formally defined to be seam-
lessly integrated into an optimization framework.

Specifically, we first predefined a set of reward
criteria R, from which the model dynamically se-
lects the most relevant rewards, while also retaining
the flexibility to propose new ones when necessary.
Formally, for a given query q, the dynamic reward
function R evaluates the model’s response σ based
on a dynamically selected or proposed rewards Rq,
where Rq ⊆ R ∪ R∗ and R∗ represents newly pro-
posed rewards. The reward function is defined as:

R(σ | Rq) =
1

|Rq|
∑

r∈Rq

r(σ)

Here, Rq denotes relevant rewards tailored for
the given query q and r(σ) denotes the score of a
specific reward when evaluating any response σ.

This allows us to flexibly score and evaluate re-
sponses based on the most relevant criteria for each
specific query, ensuring that the evaluation remains
contextually appropriate and comprehensive.
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3.2.2 ICL Example Optimization
To optimize in-context learning examples, we start
with a set of base in-context learning examples
Ibase = {(q1, b1), (q2, b2), . . . , (qN , bN )}, where
qi is a query and bi is a base response to the query,
N is the number of in-context examples. Our over-
all goal is to find a universal set I∗ that maximizes
alignment across various models.

Specifically, we optimize each in-context learn-
ing example (qi, bi) individually. The initial state
of the optimization tree for an ICL example is de-
fined as the base response to the query, i.e., s0 = bi.
At any time t, the state of the optimization tree, st,
is the response of the example. This allows us to
systematically monitor and evaluate the response
at any given time t. The state space S encompasses
all possible responses to the query qi.

To evaluate and improve the alignment, we use
the dynamic reward function R. The relevant re-
wards Rqi for the query qi are specifically selected
or potentially proposed new rewards. The reward
function R and evaluator E then evaluates the state
st based on these rewards, providing a reward rt
and alignment feedback at:

rt = R(st | Rqi)

at = E(st | Rqi)

Notably, in practice, the evaluation and reward
generation are performed simultaneously using one
single prompt, so the evaluation is also considered
dynamic. The transition function T , implemented
by the optimizer O, then updates the state:

st+1 = T (st, at)

The detailed pseudo-code for this optimization
process is provided in Algorithm 1 in Appendix
C and the prompts used by our algorithm can be
found in Appendix E.

3.2.3 System Prompt Optimization
The optimization process for the system prompt
is similar to the optimization of the ICL example.
For the system prompt optimization, we use K op-
timized in-context learning examples I∗

K ⊆ I∗,
where the K in-context learning examples are cho-
sen using similarity-based retrieval. We collect a
set of seed samples X = {x1, x2, . . . , xN}, where
xi is a query that will be used to test the align-
ment of the base model B. The goal of this process
is to find the optimal prompt P∗ (given that we
already have access to I∗

K), such that alignment

of LLM B is maximized. This prompt is specific
to the base model B and will provide the model
with actionable insights and guidance to improve
its alignment.

The optimization process begins by defining the
initial state s0 as the basic system prompt (i.e.,
“You are a helpful assistant.”). At any time t,
the state st represents the current system prompt,
and the state space S includes all possible system
prompts for the given LLM B.

Similarly, for a given state st, we sample a query
xt from the seed samples X . The relevant rewards
Rxt for the query xt are specifically selected or
potentially proposed new rewards. The reward
function R and the evaluator E then evaluate the re-
sponse generated by the model B given the system
prompt st and the selected in-context examples I∗

K ,
providing a reward rt and alignment feedback at:

rt = R(B(xt | st, I∗
K) | Rxt)

at = E(B(xt | st, I∗
K) | Rxt)

Using the optimizer O as a transition function,
we update the state:

st+1 = T (st, at)

The detailed pseudo-code for this optimization
process is provided in Algorithm 2 in Appendix C.

4 Experiments

4.1 Experimental Setup

Evaluation Dataset. We use the standard align-
ment benchmark, just-eval-instruct (Lin et al.,
2024a), which merges five popular alignment
datasets to provide a comprehensive, and explain-
able evaluation for the alignment of LLMs. This
benchmark consists of 1000 examples: the first
800 assess the models’ helpfulness, and the remain-
ing 200 evaluate their harmlessness. The first 800
examples are evaluated based on five fine-grained
aspects: helpfulness, clarity, factuality, depth, and
engagement, while the remaining 200 are evalu-
ated using the safety aspect. We use GPT-4 Turbo
(gpt-4-1106-preview), one of the latest GPT-4
models during our experiments, to evaluate both
types of examples using the prompts specified
in the original URIAL paper (Lin et al., 2024a).
The scoring scale ranges from 1 to 5, indicating
“strongly disagree”, “disagree”, “neutral”, “agree”,
and “strongly agree”. Notably, we use a more re-
cent version of GPT-4 compared to URIAL, which

21893



[Tuned] Model Method K Helpful Clear Factual Deep Engage Avg.

[✗] Mistral 7b Base 0 2.20 2.51 2.29 1.69 1.80 2.10
[✗] Mistral 7b URIAL 3 3.62 4.32 3.75 2.70 3.41 3.56
[✗] Mistral 7b DRPO 2 4.23 4.56 3.97 3.68 3.84 4.06
[✓] Mistral 7b (Instruct) Base 0 3.98 4.44 3.64 2.97 3.26 3.66
[✓] Mistral 7b (Instruct) URIAL 3 3.94 4.51 3.69 2.99 3.75 3.78
[✓] Mistral 7b (Instruct) DRPO 2 4.22 4.60 3.80 3.68 3.99 4.06
[✗] Llama 2 70bq Base 0 2.07 2.55 2.35 1.50 1.63 2.02
[✗] Llama 2 70bq URIAL 3 4.25 4.67 4.03 3.08 3.80 3.97
[✗] Llama 2 70bq DRPO 2 4.42 4.72 4.23 3.81 3.98 4.23
[✓] Llama 2 70bq (chat) Base 0 4.36 4.71 3.95 3.56 3.76 4.07
[✓] Llama 2 70bq (chat) URIAL 3 4.32 4.72 4.08 3.50 4.25 4.17
[✓] Llama 2 70bq (chat) DRPO 2 4.46 4.75 4.10 4.11 4.37 4.36
[✗] Llama 3 8b Base 0 1.82 2.27 2.20 1.38 1.48 1.83
[✗] Llama 3 8b URIAL 3 3.94 4.51 3.69 2.99 3.75 3.78
[✗] Llama 3 8b DRPO 2 4.02 4.40 3.84 3.50 3.65 3.88
[✓] Llama 3 8b (Instruct) Base 0 4.43 4.72 3.98 3.45 3.76 4.07
[✓] Llama 3 8b (Instruct) URIAL 3 4.48 4.81 4.19 3.55 4.27 4.26
[✓] Llama 3 8b (Instruct) DRPO 2 4.54 4.81 4.16 4.08 4.40 4.40
[✓] gpt-3.5-turbo Base 0 4.56 4.89 4.41 3.30 3.55 4.14
[✓] gpt-3.5-turbo URIAL 3 4.30 4.77 4.41 3.44 4.11 4.21
[✓] gpt-3.5-turbo DRPO 2 4.67 4.92 4.53 4.07 4.58 4.55
[✓] gpt-4-0613 Base 0 4.71 4.93 4.52 3.49 3.53 4.24

Table 1: Performance on just-eval-instruct benchmark. “Tuned” represents whether the model has been
SFT/RLHF tuned. Models are evaluated on multiple aspects: “Helpful” (Helpfulness), “Clear” (Clarity), “Factual”
(Factuality), “Deep” (Depth), and “Engage” (Engagement). The base method indicates a basic alignment prompt.
Our method consistently outperforms baseline methods across multiple aspects and overall.

enhances the strictness and accuracy of our eval-
uation pipeline. Thus, we re-benchmark URIAL
within our setting for all results.
Seed Samples. When optimizing the alignment
prompt with DRPO, we leverage a sampled dataset
X to evaluate the performance of prompts at each
time step. This seed dataset, consisting of 180
examples, is built using data from AlpacaEval
(Li et al., 2023b), LIMA (Zhou et al., 2024), and
HH-RLHF-redteam (Ganguli et al., 2022); more de-
tails about the construction of this dataset can be
found in Appendix A.
Models. We benchmark 6 open-source LLMs in
our experiments: Mistral 7b (v0.1), Mistral 7b (In-
struct) (Jiang et al., 2023), Llama 2 70bq, Llama 2
70bq (chat) (4-bit AWQ (Lin et al., 2024b) quan-
tized models) (Touvron et al., 2023b), Llama 3
8b, Llama 3 8b (Instruct) (AI@Meta, 2024) and 2
closed-source models: OpenAI’s GPT-3.5 Turbo
(gpt-3.5-turbo) and GPT-4 (gpt-4-0613). Mod-
els without the “chat” or “instruct” tag are base
models, i.e., untuned by SFT/RLHF. For evalua-
tion, we use greedy decoding (temperature = 0) to

ensure reproducibility.
Baselines. We first apply DRPO with the base
model; thus, a natural baseline is the SFT/RLHF-
tuned counterparts without DRPO. For instance,
we compare Mistral 7B + DRPO and Mistral 7b (In-
struct). Additionally, we have two more baselines:
(1) The base method, where a basic prompt is ap-
plied without using ICL examples. (2) URIAL (Lin
et al., 2024a), where we use the prompt and ICL
examples proposed by authors. We also provide
extensive ablation baselines of our method, such as
changing the search algorithm from Beam search
to Greedy Search or Monte Carlo search and us-
ing “static rewarding” to understand the effect of
dynamic rewarding; the exact details of these can
be found in Appendix A.
Implementation details: We use GPT-4-turbo
(gpt-4-0125-preview) as the optimizer O, and
evaluator E unless specified otherwise. Ibase
contains 16 examples and is formed by us-
ing the 3 in-context learning examples from
URIAL (Lin et al., 2024a) and 13 generated us-
ing gpt-4-0125-preview; more details about de-
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Model Mistral Llama Base
Prompt Prompt Prompt

Mistral 7b 4.06 4.03 4.04
Llama 2 70bq 4.19 4.23 4.17

Table 2: Effect of prompt transfer on base LLMs. We
can see that the best performance is obtained by using
the prompt optimized specifically for the base LLM.

sign choice made for Ibase can be found in Ap-
pendix A. We use sentence transformers (Reimers
and Gurevych, 2019) to retrieve K in-context learn-
ing examples from I∗. We use D as the beam
depth, W as the beam width, and M as the number
of action samples per state (to grow the tree for the
next iteration). The exact hyper-parameters can be
found in appendix A.

4.2 Results

Comparison with baselines. Table 1 presents the
performance comparison of DRPO with the base-
lines. DRPO outperforms both the baselines across
all tuned and un-tuned models. As shown in Fig-
ure 2 using DRPO on strong base models such as
Mistral 7b and LLama 2 70bq can surpass even
the RLHF/SFT tuned models under base setting.
It is noteworthy that DRPO achieves performance
surpassing URIAL (Lin et al., 2024a) even while
using fewer in-context learning examples, depict-
ing the quality of optimization by DRPO. Note that
while evaluation on just-eval-instruct also generates
a safety metric, we are not reporting it because, in
our analysis, we found that the safety metric is sat-
urated, and all the methods (RLHF/SFT, URIAL,
and DRPO) lead to high scores on it. This satura-
tion is a good sign and depicts that using tuning-
free methods such as DRPO can result in very safe
models that adhere to human values.
Categorized performance. Appendix B depicts
the performance of models mapped to multiple
domains. In this experiment, we use base models
with DRPO and compare their performance across
multiple domains that are valuable to humans and
alignment. DRPO depicts a strong performance
surpassing RLHF/SFT tuned models across most
domains for all the models consistently.
Prompt transfer. We also conduct experiments
on prompt transfer, i.e., evaluating the performance
of a prompt optimized for a model on a different
model. Table 2 presents the results of transfer-
ring multiple optimized prompts to Mistral 7b and
Llama 2 70bq. The best results are expected on

Model System ICL Avg.Prompt (K = 2)

Mistral 7b ✓ ✓ 4.06
Mistral 7b (Instruct) ✓ ✓ 4.06

Llama 2 70bq ✓ ✓ 4.23
gpt-3.5-turbo ✓ ✓ 4.55

Mistral 7b ✗ ✓ 4.04
Mistral 7b (Instruct) ✗ ✓ 4.04

Llama 2 70bq ✗ ✓ 4.17
gpt-3.5-turbo ✗ ✓ 4.42

Mistral 7b (Instruct) ✓ ✗ 3.67
Llama 2 70bq ✓ ✗ 3.63

gpt-3.5-turbo ✓ ✗ 4.34

Table 3: Ablation study on the effect of removing opti-
mized system prompt and in-context learning examples
learned using our method. We provide the model with a
basic system prompt for the case of optimized system
prompt removal. Our method consistently outperformed
all the ablations for all the models.

using a prompt optimized specifically for a model,
but transferring an optimized prompt can also lead
to some degree of alignment improvement, as seen
in the case of Llama 2 70bq tested on the prompt
optimized for Mistral 7b.
Ablation on system prompt and ICL examples.
Table 3 presents the effect of removing system
prompt and in-context learning from DRPO. Us-
ing both system prompt and in-context learning
examples gave the best performance, underscor-
ing the importance of both in alignment. It is
worth pointing out that performance degradation
on the removal of in-context learning examples was
higher when compared to the removal of the system
prompt, hinting that in-context learning examples
are more important in alignment. Given this, our
optimized in-context learning examples are a valu-
able asset and will be released publicly to facilitate
further alignment research.
Ablation on search algorithms. Table 4 presents
the effect of search algorithms on prompt optimiza-
tion. We have kept the state and action definitions
the same and have only changed the underlying
search algorithm. In this experiment, we have en-
sured that MC and Beam sample the same number
of prompts, i.e., same cost, whereas greedy search
has a lower cost because the beam width is fixed at
1; more implementation details can be found in ap-
pendix A. DRPO with beam search gives the best
results, depicting the need for thoughtful search
and optimization for optimal results.
Methodological ablations. We also perform some
methodological ablations to prove the effective-
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Model Search Avg.

Mistral 7b (Instruct) Beam 4.06

Mistral 7b (Instruct) MC 4.02
Mistral 7b (Instruct) Greedy 4.02

Table 4: Ablation study on Search methods. MC: Monte
Carlo Search; Greedy: greedy search; Beam: beam
search. Our method outperformed all the other search
algorithms we ablated with.

Model
Dynamic Dynamic

Avg.Reward Reward
Prompt ICL

Mistral 7b (Instruct) ✓ ✓ 4.06

Mistral 7b (Instruct) ✗ ✓ 4.02
Mistral 7b (Instruct) ✓ ✗ 3.86

Table 5: Performance comparison of methodological ab-
lations: removing dynamic rewarding from the system
prompt and ICL examples optimization. Our method
with dynamic rewarding-based prompts and ICL exam-
ples outperforms both ablations.

Figure 4: Performance of Mistral 7b (Instruct) on vary-
ing the number of ICL examples. Two examples give us
the best performance with a lower context length cost.

ness of design choices in DRPO. Table 5 depicts
that DRPO, with its current setting of using dy-
namic rewards for system prompt and ICL opti-
mization, works the best. The in-context examples
and prompts without using Dynamic rewarding are
also optimized by ‘static rewarding’ for a fair com-
parison, i.e., we ask the Optimizer to optimize all
the aspects all the time; more details about imple-
mentation can be found in appendix A.
Effect of the number of in-context examples. Fig-
ure 4 visualizes the effect of changing the number
of in-context learning examples on alignment per-
formance. The choice of K = 2 resulted in the
best overall performance for Mistral 7b, ensuring
strong alignment at a lower context length cost.
Also, as observed in Figure 4, higher K does not

Optimized Alignment Prompt

As a helpful and ethical assistant, your primary goal is to provide
responses that are accurate, engaging, clear, and emotionally reso-
nant across a wide range of queries.
- Strive to make complex topics understandable and emotionally
engaging, communicating in a human-like and relatable manner.
Organize your responses to enhance readability and emotional
connection, avoiding overly technical jargon.
- Always acknowledge the limitations of your knowledge, espe-
cially when speculating about historical ’what-ifs’, future predic-
tions, or interpreting emotions.
- Aim for a balance between detailed, informative content and a
conversational, engaging tone. Incorporate storytelling elements,
examples, analogies, and direct questions to make information
relatable.
- Avoid overwhelming the user with excessive information; struc-
ture your responses to be clear, well-organized, and mindful of the
user’s cognitive load.

Table 6: Snippets from the system prompt optimized
for gpt-3.5-turbo. We can clearly observe alignment
strengthening in the new prompt, potentially fixing
alignment weaknesses of the model.

necessarily improve performance, hinting that the
quality of ICL examples is more important. The
importance of quality is also highlighted in Table
1, where DRPO outperforms URIAL at a lower K.
Qualitative analysis of optimized prompts. We
present qualitative results to show DRPO can iden-
tify the weak points of a model and tailor the
prompt to target those weak areas as shown in Table
6 for gpt-3.5-turbo. The text marked by colors
in the table shows that DRPO was able to identify
weaknesses of gpt-3.5-turbo and provide action-
able insights. Notably, it highlights knowledge lim-
itations of the model, tips to improve engagement
and technical verbiage. For a weaker model like
Mistral 7b, DRPO identifies the problem of repeti-
tive tokens, which is absent in a strong model like
gpt-3.5-turbo. Complete optimized prompts for
both models and detailed labels on differences of
both prompts can be found in Appendix D.

5 Conclusion
This paper introduced Dynamic Rewarding with
Prompt Optimization (DRPO), a tuning-free ap-
proach for self-aligning LLMs. DRPO integrates a
novel dynamic rewarding mechanism into a search-
based prompt optimization framework, enabling
LLMs to self-improve its own model-specific align-
ment weakness adaptively. Experiments on eight
LLMs show that DRPO-enhanced base models out-
perform SFT/RLHF-tuned counterparts, and its op-
timized prompts surpass those by human experts.
DRPO’s adaptability and efficiency offer a promis-
ing path toward more personalized AI systems.
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Limitations

While DRPO demonstrates significant advance-
ments in tuning-free self-alignment of LLMs, there
are a few potential limitations to discuss.
Optimization cost. Tuning-free alignment does
not come as a free lunch. Ideally, optimizing the
alignment prompt for each query would probably
be more effective, but its computational overhead is
prohibitive. This concern is similar to the decoding-
based alignment, where alignment-guided decod-
ing needs to run per query. However, DRPO re-
quires only a one-time optimization for each LLM,
allowing the optimized alignment prompt to be
stored in the LLM memory for future use, signifi-
cantly reducing the overhead. A detailed analysis
of the cost of DRPO can be found at A.5.
Computational overhead. Compared to SFT /
RLHF-tuned models, the increase of input context
for the optimized and complex prompt in DRPO
induces a marginal computational overhead. With
advancements in modern LLMs, such as larger
context windows, we believe this computational
overhead is manageable. Moreover, once an op-
timized prompt is available with DRPO, prompt
compression techniques can further reduce the
prompt length without sacrificing the performance,
which future works can explore.
Automatic rewarding. Another potential limita-
tion we noticed is the potential oversight of the
internal rewarding process in DRPO, which is fully
automatic. For example, imprecise rewards might
be assigned by dynamic rewarding, leading to un-
desirable behaviors. We acknowledge this potential
issue and have manually reviewed the optimized
prompt, finding no severe issues associated with
this automatic optimization process. Future work
should develop systematic methods to monitor and
ensure the accuracy of the reward assignments and
the resulting model behaviors.
Self-correction ability of LLMs. The self-
correction ability of LLMs may also be a po-
tential limitation. When optimizing the system
prompt and in-context examples, we rely on LLM-
generated feedback, which may occasionally be
inaccurate. Upon analyzing feedback traces, we
observed that while some feedback was overly criti-
cal, it was predominantly constructive. Importantly,
the search process mitigates the impact of such
overly critical or incorrect feedback on the over-
all optimization quality. Future work may explore
additional guardrails to further ensure the correct-

ness and reliability of LLM-generated feedback
throughout the process.
Combination with fine-tuning. One may natu-
rally wonder whether DRPO can be used to syn-
thesize alignment data and combined with fine-
tuning methods to further boost the alignment per-
formance. The answer is yes; however, as high-
lighted in the paper, one of DRPO’s unique advan-
tages is its adaptivity, allowing quick adaptation to
a new set of reward or user-specific requirements.
We value such property and leave the combina-
tion of DRPO with fine-tuning methods for future
works.
Capacity assumptions of models. There are cer-
tain assumptions on the models involved in DRPO.
First of all, DRPO leverages a strong LLM, specif-
ically GPT-4, as the optimizer to maximize the
performance of dynamic rewarding and alignment
feedback. Future research could explore other
optimizer models, including open-source options,
to democratize the application of DRPO. Addi-
tionally, DRPO imposes certain capacity require-
ments on the base models. Given the complex-
ity of our optimized alignment prompt, smaller
and less powerful LLMs, such as LLaMA-7b (Tou-
vron et al., 2023a), may not experience dramatic
improvements through DRPO, although some en-
hancement is still possible. Our assumption is that
better pre-trained and instruction-following models
have greater potential to be augmented by DRPO.
We leave such a meaningful question to future re-
search, studying the alignment potential and thresh-
old of LLMs.

Finally, future work may explore further en-
hancements to the dynamic rewarding mechanism
and broader applications of DRPO across different
domains and tasks.
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A More Implementation Details

A.1 Hyper-parameters for DRPO

Experiment W M D

ICL optimization 1 1 5
System Prompt optimization 2 3 20

Table 7: All the hyper-parameters used by DRPO during
ICL optimization and system prompt optimization.

A.2 Baselines

Monte Carlo Search: Monte Carlo search per-
forms directionless 1-step sampling multiple times.
The sampling method was kept the same as DRPO,
we sampled 120 prompts in this method to keep the
cost the same as DRPO and ensure a fair compari-
son.
Greedy Search: Greedy search is the special case
of beam search with beam width W fixed as 1, the
sampling method, number of action samples per
state M was kept the same as DRPO but still as
the beam width has decreased in this method the
overall cost is lower.
Static Rewarding: In this method, we keep the
search algorithm the same as DRPO. Instead of
choosing dynamic aspects, we always provide a
fixed set of aspects to the optimizer and evaluator.
The fixed set of aspects was chosen as helpfulness,
clarity, factuality, depth, engagement, and safety
i.e. the evaluation aspects. This allowed the static
rewarding method to perform the best on evaluation
metrics and establish a strong baseline. Note, that
we keep number of in-context learning examples
as 2 while evaluating this baseline.

A.3 Seed Samples

Out of the 180 samples in the sampled dataset,
47.8% of samples comes from AlpacaEval, 28.9%
from LIMA, and the rest from HH-RLHF-redteam.
We ensure a fair evaluation by only sampling exam-
ples that are not present in the evaluation dataset.

A.4 Base ICL Examples

Examples in Ibase are classified into two groups:
“unethical”, which teaches the model to handle ma-
licious queries, and “informative”, which teaches
the model to present relevant information in an ac-
ceptable format. Ibase, contains an equal number
of “unethical” queries and “informative” queries.

A.5 Cost Analysis of DRPO
System Prompt Optimization. Our optimization
process leverages a beam search strategy, with the
number of sampled prompts being determined by
the parameters W (beam width), M (number of
action samples per state), and D (beam depth).
Specifically, these parameters result in:

1. W ×M ×D API calls to the optimizer LLM
O for prompt sampling.

2. D API calls to LLM for reward selection of
seed samples.

3. W×M×D calls to base LLM B for response
generation corresponding to each of the sam-
pled prompt.

4. W ×M ×D API calls to the evaluator LLM
E for sampled prompt evaluation using seed
samples.

Thus, the overall cost (Csystem), including both
API calls and base LLM inferences, for system
prompt optimization can be expressed as:

Csystem =W ×M ×D︸ ︷︷ ︸
prompt sampling

+ D︸︷︷︸
reward selection

+

W ×M ×D︸ ︷︷ ︸
response generation

+W ×M ×D︸ ︷︷ ︸
prompt evaluation

Notably, the reward selection cost is incurred
only once, as these results are cached and reused
across all models. Moreover, the system prompt
optimization is also a one-time process for each
model; once optimized, the prompts can be reused
without incurring additional costs. This approach
ensures that the incurred cost is limited and does
not scale with the number of subsequent uses.
ICL Optimization. Similar to System prompt op-
timization we can also use beam search for ICL
optimization. The cost for optimizing one ICL ex-
ample is as follows:

1. A single API call to LLM for reward selection
of the example.

2. W ×M ×D API calls to the evaluator LLM
to evaluate the ICL example. (amounting to 5
given the hyperparameters)

3. W ×M ×D API calls to the optimizer LLM,
for optimizing the ICL example.
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Thus, the total cost (CICL) for ICL optimization
can be expressed as:

CICL = ( 1︸︷︷︸
reward selection

+W ×M ×D︸ ︷︷ ︸
evaluation

+

W ×M ×D︸ ︷︷ ︸
eptimization

)×N

where N denotes the number of examples we
want to optimize.

ICL examples are model-agnostic and can be
reused across different models, thus making the
optimization cost a one-time expense per example.

B Categorized Performance

B.1 Mistral 7b

Figure 5: Categorized performance of Mistral 7b across
various domains. Using DRPO we see a strong im-
provement in performance across all domains. Notably,
we can see that domains like Humanities, Reasoning,
STEM improves significantly. This highlights the fact
that base models can benefit a great deal from DRPO.
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B.2 Llama 2 70b

Figure 6: Categorized performance of Llama 2 70bq

across various domains. Using DRPO we see an im-
provement in performance across all domains barring
math where we see a small drop. The performance us-
ing DRPO strongly improves domains such as Info-seek,
Coding, and Finance.

B.3 gpt-3.5-turbo

Figure 7: Categorized performance of gpt-3.5-turbo
across various domains. The results for gpt-3.5-turbo
are promising because using DRPO, the performance
has improved across all domains.
Note: DRPO method has been applied to RLHF-tuned
gpt-3.5-turbo as we don’t have access to the base
model.
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C Optimization Algorithms

C.1 ICL optimization

Algorithm 1: ICL Optimization
Input: Ibase, N , O, E , R, D, W , M , T
Output: I∗

Definitions
Ibase: base ICL examples;
N : number of ICL examples;
O: optimizer;
E : evaluator;
R: reward function;
D: beam depth;
W : beam width;
M : number of action samples per state;
T : S ×A → S: transition function

for i = 1 to N do
(qi, bi) = Ibase[i];
s0 = bi ; // Initialize state
Initialize beam with s0;
for t = 1 to D do

next_beam = [];
for j = 1 to min(len(beam), W ) do

st−1j = beam[j];
rt−1j = R(st−1j | Rqi);
Repeat (sample) M times:

at−1j = E(st−1j | Rqi);
stj = T (st−1j , at−1j );
Add stj to next_beam;

beam = top W states from
next_beam;

s∗D = final state of the top beam;
I∗[i] = (qi, s

∗
D);

return I∗

C.2 System Prompt Optimization

Algorithm 2: System Prompt Optimization
Input: I∗, B, O, E , R, X . P , D, W , M , T
Output: P∗

Definitions
I∗: optimized ICL examples;
B: base LLM;
O: optimizer model;
E : evaluator model;
R: reward function;
X : seed dataset;
P: initial system prompt;
D: beam depth;
W : beam width;
M : number of action samples per state;
T : S ×A → S: transition function

s0 = P ; // Initialize state
Initialize beam with s0;
for t = 1 to D do

xt−1 = X [t− 1];
I∗
K = K examples most similar to xt−1

from I∗; // example selection
next_beam = [];
for j = 1 to min(len(beam), W ) do

st−1j = beam[j];
rt−1j = R(B(xt−1 | st−1j , I∗

K) |
Rxt−1);

Repeat (sample) M times:
at−1j = E(B(xt−1 |
st−1j , I∗

K) | Rxt−1);
stj = T (st−1j , at−1j );
Add stj to next_beam;

beam = top W states from next_beam;

s∗D = final state of top beam;
P∗ = s∗D;
return P∗
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D Optimized Prompt Case Study

Model Optimized Prompt

Mistral 7b As a helpful and ethical assistant, your mission is to provide
responses that are not only accurate and safe but also deeply en-
gaging, empathetic, and rich in content. Your role is to thoroughly
understand the context of each query, offering insights that demon-
strate a comprehensive grasp of the subject matter while being
mindful of ethical considerations. Your responses should enrich
the user’s understanding, promote positive outcomes, and foster
a deep connection, all within the bounds of your capabilities. It’s
crucial to directly address the user’s query, providing concise yet
comprehensive information,and to be transparent about your limi-
tations.Enhance the user experience by making your responses as
engaging, creative, and human-like as possible. - You do not have
access to the internet or real-time data, and you are unable to take
physical actions. Refrain from attempting to answer queries that
require such capabilities. - Avoid engaging with queries that could
promote illegal activities, harm to others, or unethical behavior. In-
stead, offer explanations or suggest legal and positive alternatives.
- Strive for creativity by using vivid language, incorporating story-
telling elements, and providing relatable examples that resonate
with the user. - Avoid a robotic tone by varying sentence structure,
using a conversational style, and including elements of warmth
and empathy in your responses. - Prioritize clarity and conciseness,
ensuring your responses are accessible to all users while avoiding
unnecessary repetition. - Encourage critical thinking by presenting
multiple viewpoints or considerations, inviting users to explore
the topic further. - Be transparent about the speculative nature of
certain responses and your limitations, suggesting areas for further
inquiry or related topics that might offer additional insights.

gpt-3.5-turbo As a helpful and ethical assistant, your primary goal is to provide
responses that are accurate, engaging, clear, and emotionally res-
onant across a wide range of queries. Your responses should be
deeply rooted in factual information while also offering thought-
ful speculation and exploration of topics when appropriate. It’s
essential to delve into authorial intent, historical contexts, and
cultural significance to add depth and foster critical thinking.Strive
to make complex topics understandable and emotionally engaging,
communicating in a human-like and relatable manner. Organize
your responses to enhance readability and emotional connection,
avoiding overly technical jargon. When faced with limitations or
requests for harmful information, prioritize safety, legality, and eth-
ical considerations. Always acknowledge the limitations of your
knowledge, especially when speculating about historical ’what-
ifs’, future predictions, or interpreting emotions. Be transparent
about your inability to access real-time data or perform physical
actions, and suggest alternative, safe, and legal topics of interest.
Aim for a balance between detailed, informative content and a
conversational, engaging tone. Incorporate storytelling elements,
examples, analogies, and direct questions to make information re-
latable. Avoid overwhelming the user with excessive information;
structure your responses to be clear, well-organized, and mindful
of the user’s cognitive load.

Table 8: Comparison of the optimized prompts by
DRPO for Mistral 7b and gpt-3.5-turbo. DRPO cus-
tomizes the prompt to identify and fix alignment weak-
nesses specific to any model. (The semantics for color
labels can be found below.)

We highlight different aspects of the optimized
prompts with colors, including Limitations such
as no access to real-time data, Guidance to avoid
repetition tailored for a small model like Mistral
7b, Guidance to avoid jargon tailored for a large
model like gpt-3.5-turbo, Ethical guidance, Gen-
eral guidelines for an AI assistant, Tips to enhance
engagement of responses.

E Meta Prompts

E.1 Rewarding Prompt

In this section, we present the prompt used to com-
pute the overall reward. The reward prompt uses
components like eval_dict and reward selection
prompt. We first use the reward selection prompt
as shown in section E.1.2 to select the appropri-
ate rewards, then an eval_dict with the format as
shown in section E.1.1 is created for the selected
rewards. Finally, with the list of rewards and eval
dict we use the reward prompt as shown below to
compute dynamic rewards.

Please act as an impartial
judge and evaluate the quality
of the responses provided.
You will rate the quality
of the output based on
several selected aspects.

## Query:
[QUERY]

## Output:
[OUTPUT]

## Evaluate
### Aspects

Below is a list of
aspects for evaluating
the quality of the response:
[ASPECT_LIST]

These aspects are selected
for the following reasons:
[ASPECT_REASON]

### Format

Given the query, please rate the
quality of the output by scoring it
from 1 to 5 individually on **each
aspect**.

- 1: strongly disagree
- 2: disagree
- 3: neutral
- 4: agree
- 5: strongly agree
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Now, please output your scores and a
short rationale below in a JSON
format by filling in the
placeholders in []:

```
[EVAL_DICT]
```

E.1.1 Eval Dict

{"Helpfulness": {
"rationale": "[your thoughts on

the helpfulness of the
response]",

"score": "[your helpfulness
score]"

},
"Clarity": {

"rationale": "[your thoughts on
the clarity of the
response]",

"score": "[your clarity score]"
},
"Factuality": {

"rationale": "[your thoughts on
the factuality of the
response]",

"score": "[your factuality
score]"

},
"Depth": {

"rationale": "[your thoughts on
the depth of the response]",

"score": "[your depth score]"
},
...... for all chosen rewards

}

E.1.2 Reward selection Prompt

Please act as an impartial judge and
select the most relevant aspects
for providing a high-quality
response to the given query. Choose
at least 2 and at most 5 aspects
from the list below, or propose new
aspects if you believe they are
important for crafting the best
possible response.

## Aspects

- Helpfulness: The response should
directly address the user's query
and provide a relevant and
practical solution or guidance.

- Clarity: The response should be
well-structured and articulate,
with ideas presented in a clear,
understandable, and coherent manner.

- Factuality: Information provided must
be accurate, truthful, and based on
reliable sources, acknowledging any
uncertainties where applicable.

- Depth: The response should offer an
appropriate level of detail and
thoroughness, providing a
comprehensive understanding of the
topic.

- Engagement: The conversation should
be engaging, maintaining the user's
interest with a natural,
conversational tone and possibly
interactive elements.

- Conciseness: Information should be
conveyed efficiently, avoiding
unnecessary complexity or verbosity
while maintaining completeness.

- Safety: Responses must adhere to
ethical guidelines, promoting
positive interactions and avoiding
harmful, inappropriate, or
sensitive content.

- Compliance: The response should be in
line with the instructions provided
in the query, ensuring user
expectations are met unless there
are ethical or safety concerns.

- Limitations: The response should
recognize and acknowledge the AI
system's limitations, such as
lacking up-to-date information,
inability to perform searches or
physical actions, or any other
relevant constraints if applicable.

- Critical-Thinking: The response
should question and analyze the
information and assumptions
presented in the user's query
critically, rather than accepting
them at face value.

- Creativity: Responses should
demonstrate originality and
innovation, offering unique
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perspectives or solutions where
appropriate.

- Interactivity: Where applicable, the
AI should employ interactive
elements like questions, prompts,
or actionable suggestions to engage
users actively in the conversation.

- Empathy: The AI should aim to
recognize and appropriately respond
to the user's emotional state and
context, fostering a supportive and
understanding interaction.

- Sensitivity: Responses should be
culturally aware and sensitive,
avoiding assumptions and
generalizations while respecting
diversity.

## Query:
[QUERY]

## Aspect Selection
Given the query, please analyze its

content, intent, and potential
challenges in providing a suitable
response. Consider the following:

1. What is the main topic or subject of
the query?

2. What is the user's intent or goal in
asking this question?

3. Are there any potential ambiguities,
uncertainties, or missing/wrong
information in the query?

4. What type of information or response
format would best satisfy the
user's needs?

5. Are there any potential challenges
or limitations in providing a
comprehensive response?

Based on your analysis, select the most
relevant aspects for providing a
high-quality response. Provide your
reasoning for choosing these
aspects.

Output your analysis and aspect
selection in the following JSON
format:

```
{

"query_analysis": {
"main_topic": "[main topic or

subject of the query]",
"user_intent": "[user's intent

or goal]",
"ambiguities": "[potential

ambiguities, uncertainties,
or missing information]",

"response_format": "[type of
information or response
format needed]",

"challenges": "[potential
challenges or limitations in
providing a response]"

},
"aspects_selection": {

"reasoning": "[your rationale
for selecting the aspects
based on the query
analysis]",

"selected_aspects": ["aspect1",
"aspect2", ...]

}
}
```
Note: The "selected_aspects" array

should contain at least 2 and at
most 5 aspects.

E.2 State Transition Prompt

This section describes the prompt used
to leverage a LLM as a transition func-
tion. Note, that in the prompt we supply
‘[CURRENT_SYSTEM_PROMPT]’ i.e. the
current state and the alignment feedback
‘[OUTPUT_EVALUATION] to generate the next
state.

I am designing a system prompt for a
language model to generate
responses to user queries. The goal
is to optimize the quality of the
responses across multiple aspects.

The current system prompt is:
[CURRENT_SYSTEM_PROMPT]

When using this prompt to answer the
query below:

[QUERY]
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The model generates the following
output:

[OUTPUT]

Below are the evaluations of the output
on multiple aspects:

[OUTPUT_EVALUATION]

There are a list of former system
prompts including the current one,
and each of them is improved from
the previous one:

[FORMER_SYSTEM_PROMPTS]

Based on all the information above, you
need to design a new system prompt
following the general guidelines
below:

1. Make sure the new system prompt is
better than the current one.

2. Feel free to modify existing
prompts, integrate freshly new
instructions, or conceive a
completely new one.

3. An evaluation score of 5 in an
aspect indicates the best quality,
while a score of 1 indicates the
worst quality.

4. Try to make the system prompt
balance out the quality across all
aspects.

5. The prompt MUST be a general one
suited for all kinds of queries,
NOT specific to the current query.

While designing the system prompt make
sure to structure it in a way that
it abides to the instructions below:

1. Write some general
instructions/statements to the
model about what it is supposed to
do and it's capabilities in the
start.

2. Mention some limitations like no
access to internet/real-time data,
unable to take physical actions,
avoiding answering malicious
questions, etc. using bullet points.

3. Try to list the model capabilities
in the bullet points i.e mention
that it is better to refuse to
answer things it is not capable of

answering than giving an unrelated
response.

4. Try to generate a prompt in a
structure as follows:

General Instructions about being a
helpful, ethical assistant that
helps the model to perform
better in all the aspects of
evaluation provided.

- Bullet Points containing
important and specific
instructions to keep in mind.

5. Try to make some bullet points
giving instructions/tips to the
model on how to make the responses
more engaging and human-like, like
some pitfalls to avoid sounding
robot-like.

6. Try to make some specific tips from
the outputs and their evaluation
you see above, you can list things
to follow or to avoid to make the
response better suited as per the
evaluation remarks.

7. Try to make the bullent points of
the prompt you design to be
informative while being succinct.

8. General Instructions you give at the
beginning can be detailed or long
and should try to cover as many
aspects/issues as possible.

9. When adding bullet points to the
system prompt, do NOT add more than
2 bullet points at once.

10. When deleting bullet points, do not
remove bullet points which are
relevant to overall goal but
irrelevant to current query,
instead modify/merge those.

11. Do NOT make more than 8 bullet
points, if necessary
add/modify/merge bullet points.

Please output your new system prompt in
the format below by filling in the
placeholders in [] in the following
JSON format:

```
{
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"analysis": "[carefully examine the
evaluation scores and the
current system prompt to
identify the areas of
improvement]",

"thought": "[your thoughts about
how you can improve the current
system prompt]",

"new_system_prompt": "[your new
system prompt]"

}
```
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