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Abstract

Language models are prone to dataset biases,
known as shortcuts and spurious correlations in
data, which often result in performance drop on
new data. We present a new debiasing frame-
work called “FAIRFLOW” that mitigates dataset
biases by learning to be undecided in its pre-
dictions for data samples or representations as-
sociated with known or unknown biases. The
framework introduces two key components: a
suite of data and model perturbation operations
that generate different biased views of input
samples, and a contrastive objective that learns
debiased and robust representations from the
resulting biased views of samples. Experiments
show that FAIRFLOW outperforms existing de-
biasing methods, particularly against out-of-
domain and hard test samples without compro-
mising the in-domain performance1.

1 Introduction

Existing computational models developed for nat-
ural language processing (NLP) tasks are vulner-
able to dataset biases and spurious correlations in
data, often referred to as “shortcuts.” These short-
cuts enable models to achieve high performance
on NLP datasets by exploiting surface-level cor-
relations between features and labels. However,
they also result in a significant performance drop
on hard or slightly modified test data (Naik et al.,
2018). For example, in the area of natural language
inference (NLI), models like BERT (Devlin et al.,
2019) tend to misclassify premise-hypothesis pairs
that contain “negation” words in their hypotheses
as “contradiction,” which happen to be predictive
features associated with the contradiction label in
certain NLI datasets (Gururangan et al., 2018; Po-
liak et al., 2018; Modarressi et al., 2023).

Existing debiasing approaches can detect
known (Clark et al., 2019; Sanh et al., 2021;

1Our code is available at https://github.com/
CLU-UML/FairFlow.
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Figure 1: An example highlighting the concept of “un-
decided learning” using two types of data perturbation
techniques. Given a premise-hypothesis pair in NLI,
the model is expected to correctly classify their entail-
ment relationship. However, given only the hypothesis,
a robust model should be undecided, i.e., refrain from
making a definite judgment about the relationship be-
tween an unknown premise and the given hypothesis.
Similarly, given a severely corrupted representation, a
robust model should be undecided about the relation
between a corrupted premise and hypothesis pair. Mod-
els that retain confidence in assigning labels to such
inputs are likely to rely on shortcuts. FAIRFLOW takes
an undecided stance against such inputs.

Karimi Mahabadi et al., 2020; Modarressi
et al., 2023) and previously unidentified or un-
known (Utama et al., 2020b; Sanh et al., 2021)
biases in training data. They mitigate dataset bi-
ases by re-weighting examples (Sanh et al., 2021;
Karimi Mahabadi et al., 2020), learning robust rep-
resentations (Gao et al., 2022; Du et al., 2023),
learning robust feature interaction patterns (Wang
et al., 2023), or reducing the effect of biased model
components (Meissner et al., 2022).

Despite the significant progress made in address-
ing dataset biases, existing models have certain
limitations: (a): they often adopt a single view to
dataset biases and primarily focus on specific types
of biases (Clark et al., 2019; Karimi Mahabadi
et al., 2020). However, rich sources and diverse
types of dataset biases can be present in the data.
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(b): existing approaches that are based on weak
learners (Utama et al., 2020b; Sanh et al., 2021;
Ghaddar et al., 2021; Meissner et al., 2022) rely
on a single weak learner to identify biases, which
inevitably tie their performance to the capabilities
of the chosen weak learner. (c): prior works of-
ten evaluate debiasing methods using BERT-based
models, which may limit their generalizability to
other model architectures.

We tackle the above challenges by develop-
ing FAIRFLOW–a multiview contrastive learning
framework that mitigates dataset biases by being
undecided in its prediction for biased views of data
samples (see Figure 1). Specifically, the proposed
method employs several data perturbation operators
to generate biased views of intact data samples and
integrate them into the training data and learning
process. When presented with biased inputs, the
model is trained to be undecided about the possible
labels by making a uniform prediction across the la-
bel set. At the same time, the model is encouraged
to be confident about intact inputs, which often
serve as a reference for unbiased samples. There-
fore, the approach encourages learning representa-
tions that are more attentive to the true signal of the
underlying tasks rather than relying on shortcuts
that are specific to certain datasets. In addition, the
inherent randomness of the implicit perturbations
in FairFlow (§2.4.1) exposes the model to a diverse
range of perturbations and prevents it from overfit-
ting to specific types of biases present in the data.

The contributions of this paper are:

• categorization of dataset biases: we categorize
prevalent data biases in NLU and model them
using data perturbation operations;

• bias mitigation as an “undecided learning”
problem: we formulate the bias mitigation
problem as an “undecided learning” problem,
which encourages reliance on genuine and
task-related signals for effective debiasing;

• robust performance on challengng samples:
our approach shows robust results on harder
test data while maintaining strong in-domain
performance across several NLU tasks.

The experimental results show that FAIRFLOW

obtains substantial improvement over competing
models. Specifically, it achieves an average perfor-
mance gain of 10.2 points on stress test datasets
across several NLU tasks while maintaining per-
formance on the original test sets. In addition,

models trained using our framework show strong
transferability, resulting in an average gain of 3.7
points in transfer testing experiments across differ-
ent datasets and domains. Furthermore, we show
that existing methods can be further improved by
incorporating the proposed perturbation operators
within their original objectives, resulting in a sub-
stantial average improvement of 5.8 points on stress
test sets across datasets.

2 Method

2.1 Problem Formulation

We consider a dataset D = {(xi, yi)|ni=1}, where
xi is the i-th input consisting of several constituents
xi = (x1i , x

2
i , . . . , x

p
i ), |xi| = p > 1, and yi is the

corresponding output for xi. For example, in case
of NLI, p = 2 represents premise and hypothesis
in each input and yi reflects the entailment or no-
entailment relationship between the input pair. Our
goal is to develop a model that is robust against
different types of dataset biases in D. We note that
the model can be applied to a more general setting
where input xi does not explicitly consist of several
constituents, see §2.3.1.

2.2 Overview

We categorize dataset biases as explicit and implicit
biases. Explicit biases are readily discernible and
understandable by humans, such as high degree of
lexical overlap between the premise and hypoth-
esis in case of NLI. On the other hand, implicit
biases are often subtle, indiscernible to humans,
and more challenging to detect. For example, any
word in input has the potential to act a shortcut,
resulting in spurious correlations. We introduce
different types of explicit and implicit biases that
are task-independent and generally applicable to
bias mitigation across NLP datasets (§2.3). Given
such categorization, we propose a debiasing frame-
work that mitigates dataset biases by learning gen-
uine task-related representations that are attentive
to the true signal of the tasks rather than biases and
shortcut solutions in datasets. The key novelty of
our approach is in imposing a downstream model
to adopt an “undecided” (“uncertain”) stance in
its predictions when presented with biased views
of inputs. The framework achieves this goal by
assigning a uniform probability across the labels,
see Figure 2. Specifically, the model regularizes
the loss of the target task with a contrastive loss
which draws biased predictions closer to a uniform
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Figure 2: Architecture of the proposed model. (a) Explicit and implicit perturbations are applied to inputs to obtain
biased prediction zBiased. (b) Biased predictions are drawn closer to uniform distribution, while predictions for
intact input are pushed away from uniform distribution through contrastive learning.

distribution while pushing other predictions away
from uniform distribution (§2.4).

2.3 Bias Modeling
We present a series of data perturbation operations
to generate biased views by corrupting intact inputs.
These perturbations can be explicit or implicit. In
explicit perturbation, we directly corrupt the in-
put data, while in implicit perturbation, we corrupt
the representations of the input data. These pertur-
bation techniques impose controlled variations on
the data, which enable us to conduct a thorough
analysis of their effects on bias mitigation.

2.3.1 Explicit Biases
Ungrammatical Perturbation Recently, Sinha
et al. (2021) showed that traditional and recent
neural language models can be largely invariant to
random word order permutation in their inputs. An
ungrammatical input is often not understandable
by humans and can potentially lead to explicit bi-
ases when models confidently predict outcomes for
such inputs. For example, a model making a con-
fident prediction about the contradiction class for
the following perturbed premise-hypothesis pair
from Figure 1 may attribute its confidence to the
negation term in the hypothesis: (“children fun
for”, “children fun adults but for not”). To
obtain an input with grammatical biases, we design
the perturbation operation PGra that corrupts the
word order in each input xi. We encode the shuf-
fled input using the shared encoder f and transform
it with a branch-specific MLP as follows:

zGra = MLPGra

(
f
(
PGra(xi)

))
. (1)

Sub-input Perturbation In NLP tasks that in-
volve multi-part inputs (such as NLI), it is crucial
to use the information from all parts of the input
for prediction, i.e., all constituents should collec-
tively contribute to accurate prediction. More im-
portantly, an incomplete input should not lead to a

confident prediction, as important information may
be removed. Therefore, an explicit bias arises when
the model makes confident predictions based on
incomplete input, such as predicting the entailment
relation when only the hypothesis is provided as in-
put in case of NLI. Sub-input biases can arise from
any part of the input, denoted as {xji}

p
j=1, or from

various text spans within different sub-parts. To re-
alize sub-input biases, we define the PSub operator
that takes one of the constituents of xi, which is
hen encoded with a shared encoder f and further
transferred with a constituent-specific Multi-Layer
Perceptron MLPSub as follows:

zSub = MLPSub

(
f
(
PSub(xi)

))
. (2)

We note that this operator is applicable to a more
general setting where input xi does not explicitly
consist of several constituents, e.g., in general text
classification problems. In such cases, each xi can
be divided into p > 1 text segments. However, we
acknowledge that there are tasks in which one sub-
input, i.e. xji for a specific j, is enough to make a
correct prediction for the complete input xi, and
therefore remaining undecided may seem counter-
intuitive. Nevertheless, by training the model to be
undecided when presented with incomplete infor-
mation, we minimize the risk of biased predictions
based solely on partial information, which can, in
turn, make the model more robust against potential
biases associated with incomplete data.

The idea of implicit perturbations is to obtain
biased representations of intact data, without ex-
plicitly perturbing the input. We introduce model-
and representation-based implicit perturbation.

Model-based Perturbation This approach
largely perturbs a given model by converting it
into a much weaker model, using mechanisms
such as sparsification and layer dropping (Pool and
Yu, 2021). A weaker model is believed to capture
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more biases than a stronger model (Ghaddar et al.,
2021; Sanh et al., 2021; Utama et al., 2020b).
While existing methods require training a weak
learner in advance (Utama et al., 2020b; Sanh et al.,
2021; Meissner et al., 2022), our method obtains
biased predictions through the same deep neural
model (f ) and can be trained end-to-end. Formally,
we design a model-based perturbation operator
PMod that uses only the first k layers of the
shared encoder f , which results in a substantially
weakened model with reduced representation
power. This branch encodes the intact input
using the perturbed model and transform it with a
branch-specific MLP as follows:

zMod = MLPMod

(
PMod(f)(xi)

)
. (3)

Representation-based Perturbation This per-
turbation encodes the intact input with the original
encoder f but significantly corrupts the generated
representations. Given this severely damaged and
much less meaningful representation, the model
should not be able to predict the correct label. We
design a representation-based perturbation operator
PRep that corrupts the intact representation, f(xi),
and creates a severely perturbed representation. We
then transform the perturbed representation with a
branch-specific MLP as follows:

zRep = MLPRep

(
PRep

(
f(xi)

))
. (4)

Table 1 summarizes the above perturbation oper-
ators and provides details of their implementations.

2.4 Supervised Contrastive Debiasing
Given the explicit and implicit biased views of data
samples, we expect a robust debiasing model to
maintain an “undecided” stance across labels for
biased inputs while providing confident predictions
for intact inputs xi,∀i. Based on this intuition, the
outputs of the bias branches should approximate a
uniform distribution (U ) across classes, while the
output of the original branch should align with its
corresponding gold distribution, i.e., the label yi.
To achieve this goal, we adapt the supervised con-
trastive loss (Khosla et al., 2020), which operates
by first grouping samples based on their respective
labels, and then encouraging predictions (logits) of
pairs within the same group to become closer while
pushing logits of pairs across different groups fur-
ther apart, i.e. forming positive pairs within the
same group while creating negative pairs using all
other pairs:

Operator Type Implementation

PGra Explicit Shuffle tokens in xi randomly
PSub Explicit Drop 1/p of tokens from xj

i randomly
PSub Explicit Drop xj

i , j = 1 . . . p

PMod Implicit Use only first k of layers of f
PRep Implicit Zero out m% of values in f(xi)

Table 1: Implementations of proposed perturbations

2.4.1 Implicit Biases
We adapt this loss function for bias mitigation as
follows (described for a single perturbation for sim-
plicity): given a batch of n non-perturbed examples,
we perturb them using a perturbation technique de-
scribed in Table 1. The perturbed examples form
a single group as they all have the same label (a
uniform distribution across all classes), and the
non-perturbed examples with the same label form
separate groups.2 As illustrated in Figure 2, we en-
courage the model to be undecided about the label
of perturbed inputs by adding a dummy example
that has a “fixed” uniform distribution across all
labels to the group of perturbed examples, resulting
in a batch of 2n+1 examples (I). We compute the
contrastive loss as follows:

LDebias =
∑

i∈I

−1

|G(i)|
∑

j∈G(i)
log

exp(zi · zj/τ)∑
k∈A(i) exp(zi · zk/τ)

,

(5)

where G(i) is the set of examples that are in the
same group as i (having the same label as i);
A(i) = I\{i} is the set of all examples except
i; z indicates the logit of an example, which for
perturbed examples is obtained from one of the
Equations (2)–(4); and τ denotes the temperature
parameter.3 The dummy example in the perturbed
group has a fixed uniform distribution across all
labels as its z. This formulation encourages the
model to be undecided about the label of perturbed
inputs, while being confident about the labels of
intact inputs, allowing it to effectively distinguish
between different groups of examples.

2For example, four groups in case of NLI: perturbed
examples, non-perturbed examples labeled as ‘entailment’,
non-perturbed examples labeled as ‘contradiction’, and non-
perturbed examples labeled as ‘neutral’.

3We note that the summation over all samples except i in
the denominator of (5) is motivated by noise contrastive esti-
mation and N-pair losses (Khosla et al., 2020; Gutmann and
Hyvärinen, 2010; Sohn, 2016), in which the ability to discrim-
inate between signal and noise (negative class) is improved by
adding more examples of negative class.
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Finally the model learns the debiasing task in
an end-to-end manner by minimizing the standard
cross-entropy loss with predictions of intact input
zIntact = f(xi) and the debiasing loss, weighted
by a balancing hyperparameter λ as follows:

θ∗ = argmin
θ

LCE(zIntact, yi) + λLDebias. (6)

Compatibility and Difference with Other Debi-
asing Objectives and Training Methods Our
framework is designed to be compatible with de-
biasing objectives in existing literature. Notably,
it can incorporate objectives such as the product
of experts (PoE) (Karimi Mahabadi et al., 2020;
Clark et al., 2019), debiased focal loss (Karimi Ma-
habadi et al., 2020), and other possible objectives,
see Appendix B for more details. In experiments,
we show that our framework can further improve
these well-performing baseline models. One major
difference with existing debiasing objectives is that
prior works use a biased model to measure how
much biases present in input, while FAIRFLOW

encourages robust models to be undecided given
known biased inputs, obtained by the proposed
perturbations. Moreover, we do not impose any
restriction on the parametrization of the underlying
model f , making our framework flexible to work
with a wide range of training methods and network
architectures (Table 6-7 in Appendix).

3 Experiments

Setup We employ BERT (Devlin et al., 2019)
as the commonly-used base model in previous
works. In addition, we extend our evaluation to
RoBERTa (Liu et al., 2019) and GPT-2 (Radford
et al., 2019) for a more comprehensive analysis.

Datasets We evaluate our debiasing framework
on three NLP datasets including MNLI (Williams
et al., 2018), paraphrase identification using Quora
question pairs (QQP) (Sharma et al., 2019), and
relation extraction using gene-phenotype relation
(PGR) (Sousa et al., 2019). These datasets are used
for in-domain (ID) evaluation.

Stress Test Sets We assess the robustness of mod-
els against spurious correlations using “stress test
sets,” specifically designed with hard examples to
challenge models. We use the stress test set for
MNLI from (Naik et al., 2018), and use the same
approach to generate the stress test set for QQP.
For PGR, the label-preserving rules from previous
tasks do not apply due to the nature of this dataset.

However, given the long-tail distribution of entity
appearances, we create a stress test set for PGR
by selecting test examples in which both entities
appear less than five times in the training set.

OOD Test Sets We assess the performance of
models on existing out-of-distribution (OOD) test
sets, which serve as another challenge bench-
mark. For MNLI, we use HANS (McCoy et al.,
2019), which is designed to test models’ capabili-
ties against lexical and syntactic heuristics in data.
For QQP, we employ the PAWS dataset (Zhang
et al., 2019), which focuses on paraphrase identi-
fication in cases of high lexical and surface-level
similarity between question pairs.

Transfer Test Sets We evaluate the performance
of models in maintaining strong transferability
across datasets. We use SNLI (Bowman et al.,
2015) and MRPC (Dolan and Brockett, 2005) as
the transfer set for MNLI and QQP, respectively.

Baselines We consider the following baselines:
• FINETUNE standard finetuning without debias-

ing based on the base model used.
• E2E-POE (Karimi Mahabadi et al., 2020),

which trains a biased model on the hypothesis
only and trains a robust model using Product
of Experts (PoE) (Hinton, 2002).

• DEBIASMASK (Meissner et al., 2022), which
first trains a weak learner and then prunes the
robust model using PoE.

• KERNELWHITENING (Gao et al., 2022), which
learns isotropic sentence embeddings using
Nyström kernel approximation (Xu et al.,
2015) method, achieving disentangled correla-
tion between robust and spurious embeddings.

• LWBC (Kim et al., 2022), which learns a debi-
ased model from a commitee of biased model
obtained from subsets of data.

• IEGDB (Du et al., 2023), which mitigates
dataset biases with an ensemble of random
biased induction forest; the model induces a
set of biased features and then purifies the
biased features using information entropy4.

• READ (Wang et al., 2023), which assumes that
spuriousness comes from the attention and
proposes to do deep ensemble of main and
biased model at the attention level to learn
robust feature interaction.

4While this method does not have a publicly released code,
we tried our best to reproduce their approach and results with
a few points lower than reported.
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Model MNLI (Acc.) QQP (F1) PGR (F1) Avg.
ID Stress OOD Transfer ID Stress OOD Transfer ID Stress ID Stress OOD Transfer

FINETUNE 84.3 61.7 59.7 78.7 88.6 63.3 47.7 65.1 64.3 55.2 79.1 60.1 53.7 71.9

DEBIASMASK 83.5 59.7 59.7 78.3 88.1 64.6 50.3 68.5 64.1 51.7 78.6 58.7 55.0 73.4
KERNELWHITENING 84.0 60.9 60.2 78.4 88.8 65.1 51.2 69.6 64.3 51.8 79.0 59.3 55.7 74.0
E2E-POE 83.4 61.3 62.3 77.5 88.5 64.5 51.4 70.5 63.0 53.6 78.3 59.8 56.8 74.0
LSWC 80.7 59.4 59.3 77.7 87.1 65.8 49.6 70.0 63.3 52.8 77.0 59.3 54.5 73.8
IEGDB 84.1 61.8 62.7 78.1 87.6 63.5 53.0 68.3 64.2 54.9 78.6 60.1 57.9 73.2
READ 80.8 61.5 63.4 75.1 87.0 66.7 53.6 68.2 63.0 54.4 76.9 60.9 58.5 71.7

FAIRFLOW-POE 84.6 64.3 64.3 79.5 88.8 71.0 53.9 70.4 64.9 55.9 79.4 63.7 59.1 75.0
FAIRFLOW-FOCAL 84.9 64.8 64.3 79.3 89.5 71.3 54.9 70.7 65.4 56.5 79.9 64.2 59.6 75.0
FAIRFLOW 85.1 65.4 64.9 79.6 90.4 72.0 56.0 72.4 65.9 56.6 80.5 64.7 60.5 76.0

Table 2: Experimental results on three datasets averaged across three architectures. Results for each architecture are
shown in Table 5-7 in Appendix. The best performance is in bold and the second best is underlined.

4 Results and Discussions

Robust Debiasing Model The main results in
Table 2 shows our model with three objectives:
contrastive learning (FAIRFLOW), product of ex-
perts (FAIRFLOW-POE) and focal loss (FAIRFLOW-
FOCAL), see §2.4. They all achieve high perfor-
mance across all datasets and test sets including in-
domain (ID), stress, and out-of-distribution (OOD)
test sets. By adopting the undecided learning ob-
jective, the model learns debiased and robust repre-
sentations without loss of in-domain performance.
Across three datasets, our best-performing model
(FAIRFLOW) outperforms DEBIASMASK, KER-
NELWHITENING, E2E-POE, IEGDB, READ ap-
proaches by 2.0, 6.1 and 5.5; 1.5, 5.5 and 4.7; 2.2,
4.9 and 3.6; 1.9, 4.7 and 2.7; 3.6, 3.8 and 1.9 ab-
solute points on the ID, stress and OOD test sets
respectively. We attribute these gains to the use of
biased branches and undecided learning, realized
through the proposed contrastive objective.

We note that IEGDB and READ provide debi-
asing gains at the cost of ID performance, with a
performance drop of 0.2, 1.0 and 0.1; 3.5, 0.4 and
1.3 compared to FINETUNE on MNLI, QQP, PGR
respectively. Specifically, we attribute the large
performance drop of READ to the deep ensem-
ble (compared to logit ensemble of E2E-POE and
FAIRFLOW-POE) of the target and biased model
at the attention level, which may impose excessive
regularization on the model. However, our model
learns robust representations without loss on ID
test sets across all three objectives.

In addition to better debiasing performance, our
approach shows stronger transferability compared
to baselines. Specifically, FAIRFLOW outperforms
DEBIASMASK, KERNELWHITENING, and E2E-
POE on transfer test set by 2.7, 2.1 and 2.1, re-
spectively. In addition, FAIRFLOW-POE and FAIR-
FLOW-FOCAL retain strong transfer performance

as well, indicating that our framework does not hurt
models’ transferability.

Comparing different fusion techniques in the
last three rows in Table 2, we observe that the
proposed contrastive objective is more effective
than PoE (Karimi Mahabadi et al., 2020; Clark
et al., 2019; Sanh et al., 2021) and debias focal
loss (Karimi Mahabadi et al., 2020), in particular
on stress and OOD test sets. We also find that de-
bias focal loss almost always outperform PoE on
our datasets, which is inline with previous report
by Karimi Mahabadi et al. (2020).

More Bias Branches, Less Biased Model Un-
like existing approaches that have a single view to
dataset biases, our model employs multiple views,
allowing it to effectively capture and mitigate vari-
ous types of biases present in the data. Specifically,
compared to E2E-POE which only captures one
sub-input bias, FAIRFLOW-POE achieves on aver-
age 1.8, 9.5 and 3.8 absolute points improvement
on ID, stress and OOD test set across three different
datasets. Both methods employ PoE as the fusion
technique. Compared to DEBIASMASK (Meiss-
ner et al., 2022) which only captures bias though
a weak model, FAIRFLOW-POE achieves 1.5, 12.3
and 11.0 points improvement on ID, stress and
OOD test sets, respectively.

Branches Contribute Differently To examine
the contribution of each perturbation branch, we
conduct ablation studies on MNLI. Specifically, we
add one branch at a time to the vanilla model or re-
move one branch at a time from the full model, see
Table 3. The perturbations include DropPremise
and DropHypothesis, which drop the premise and
hypothesis from the input respectively; HalfHalf,
which randomly drops k = 50% of the tokens from
input; Shuffle, which randomly shuffles the input;
DropLayer, which drops all layers after the 2nd
layer; and DestroyRep, which zeros out m = 90%
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Model ID Stress OOD Transfer

No debiasing 84.6 57.3 56.2 80.3

+ DropPremise 84.6 61.6 65.5 80.6
+ DropHypothesis 84.6 61.6 66.3 80.6
+ HalfHalf 84.8 62.1 64.2 80.0
+ Shuffle 84.8 62.1 63.9 80.0

+ DropLayer 84.8 62.0 65.4 80.4
+ DestroyRep 84.8 62.3 66.5 80.0

Full model 84.9 63.6 68.4 81.1

- DropPremise 84.6 61.6 63.2 80.6
- DropHypothesis 84.6 61.6 62.6 80.6
- HalfHalf 84.8 62.1 63.8 80.0
- Shuffle 84.8 62.1 65.3 80.0

- DropLayer 84.5 60.5 62.5 80.4
- DestroyRep 84.5 60.5 62.7 80.4

Table 3: Contribution of each perturbation branch in our
method on MNLI.

of the elements in the intact representation. The
results show that all perturbations contribute pos-
itively to the overall performance on ID, stress,
OOD, and transfer test sets. Specifically, explicit
perturbations can improve the vanilla model on av-
erage by 0.1 and 4.6 absolute point on ID and stress
test sets respectively. While implicit perturbations
improve the vanilla model on average by 0.1 and
4.9 points. In addition, DestroyRep achieves the
best performance on the stress and OOD test sets,
while DropPremise and DropHypothesis achieve
the best performance on the transfer set.

In addition, we investigate the effect of differ-
ent combinations of perturbations. Specifically, we
train our model with one explicit perturbation and
one implicit perturbation at a time. Figure 3 il-
lustrates the relative increase of performance to
standard fine-tuning across ID, stress and OOD test
sets. Two combinations yields better results on the
OOD test set. The first combines DropPremise or
DropHypothesis with DropLayer, while the second
combines perturbation of all inputs (e.g. Shuffle)
and PurturbRep. The improved results likely stem
from the complementary strengths of these diverse
perturbation techniques, which can create a more
robust debiasing model.

Debiased Models Are Still Biased Our results in
Table 2 and prior reports (Mendelson and Belinkov,
2021; Ravichander et al., 2023) show that debiased
methods can still be biased. For example, DEBI-
ASMASK and KERNELWHITENING show higher
levels of biases than FINETUNE by 3.7 and 4.2
points on the stress test set (Naik et al., 2018) re-
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Figure 3: Debiasing performance with different com-
binations of explicit and implicit perturbations. The
values indicate relative accuracy increase compared to
vanilla fine-tuning.

Model Param Time (hr)

FINETUNE 110M + 2K 4.2

DEBIASMASK + 28M + 2K 5.3
KERNELWHITENING + 3K 6.3
E2E-POE + 30K 5.5
IEGDB + 50 × 2K 7.2
READ + 28M + 2K 4.9

FAIRFLOW + 2 × 2K 4.9

Table 4: Efficiency of debiasing models on MNLI.

spectively. These results emphasize the need for
modeling multiple types of biases, and highlights
the advantages of our approach.

FAIRFLOW Maintains Generalization across Bi-
ases Bias in existing methods may be because of
their tendency to over-specialize in specific types
of biases. Table 8 summarizes the performance
of debiasing models across different subsets of the
stress set. FAIRFLOW achieves the maximum av-
erage performance with smaller standard deviation
across these subsets, indicating that it does not over-
fit to specific biases. We attribute such resilience
to FAIRFLOW’s incorporation of both explicit and
implicit perturbations, along with the randomness
in implicit perturbations, which allows the model
to effectively handle diverse set of biases.

Efficiency We evaluate the efficiency of different
debiasing methods in terms of number of train-
able parameters and training time. As Table 4
shows, FAIRFLOW introduces only 4K additional
parameters, which is significantly less than 100K
in IEGDB with 50 classifiers, and 28M in DEBI-
ASMASK and READ with an extra weak model.
This highlights the efficiency gains from the pro-
posed perturbation operations. Furthermore, FAIR-
FLOW has the shortest training time. FAIRFLOW

achieves these efficiencies without requiring addi-
tional training data, operating only by generating
diverse views of the input data.

Perturbation for Data Augmentation The ex-
plicit perturbation operators proposed in our frame-
work offer a valuable opportunity for data augmen-
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tation, leading to improved performances on exist-
ing debiasing methods (See Table 9 in Appendix).

Bias in Different Parts of Inputs In our exper-
iments with single explicit perturbations, we find
that DropPremise and DropHypothesis lead to sim-
ilar performances on MNLI, showing that there ex-
ists dataset bias in premise, potentially as much as
those in hypothesis. However, many existing meth-
ods tend to overlook biases in the premise in NLI
datasets. In addition, biases can often emerge from
the interplay of various parts of inputs, rather than
a single source. HalfHalf and Shuffle perturbations
can capture such types of biases by perturbing the
entire inputs. We note that while additional weak
learners can potentially capture biases from multi-
ple sources (Utama et al., 2020b; Sanh et al., 2021;
Meissner et al., 2022), their effectiveness is likely
limited by the capabilities of the weak models. Our
approach addresses dataset biases through a multi-
view approach to bias, which leads to a more robust
debiasing process.

5 Related Work

Quantifying Bias Several works focus on un-
derstanding dataset bias and deibasing algorithms,
including measurement of bias of specific words
with statistical test (Gardner et al., 2021), identifi-
cation of biased and generation of non-biased sam-
ples with z-filtering (Wu et al., 2022), identifica-
tion of bias-encoding parameters (Yu et al., 2023),
when bias mitigation makes model less or more bi-
ased (Ravichander et al., 2023), bias transfer from
other models (Jin et al., 2021), and representation
fairness (Shen et al., 2022).

Debiasing with Biased Models These ap-
proaches model shortcuts from datasets, and use
biased predictions as a reference to quantify bias
in input data. Bias can be explicit bias in NLI
datasets (Belinkov et al., 2019; Clark et al., 2019;
Karimi Mahabadi et al., 2020; Utama et al., 2020a),
and implicit bias detected by weak models (Ghad-
dar et al., 2021; Sanh et al., 2021; Meissner et al.,
2022; Utama et al., 2020b; Meissner et al., 2022).
Ensemble techniques include Product-of-Experts
(PoE) (Hinton, 2002; Sanh et al., 2021; Cheng et al.,
2024) which takes element-wise multiplication of
the logits, Debiased Focal Loss (Karimi Mahabadi
et al., 2020) and ConfReg (Utama et al., 2020a)
which both down-weight predictions based on the
confidence of biased models.

Debiased Representations Existing methods fo-
cus on weak-learner guided pruning (Meissner
et al., 2022), disentangling robust and spurious
representations (Gao et al., 2022), decision bound-
aries (Lyu et al., 2022), and attention patterns with
PoE (Wang et al., 2023), training biased models
with one-vs-rest approach (Jeon et al., 2023), and
amplifying bias in training set with debiased test
set (Reif and Schwartz, 2023).

Fairness and Toxicity These approaches focus
on protected variable such as race. Existing meth-
ods spans across counterfactual data augmenta-
tion (Zmigrod et al., 2019; Dinan et al., 2020; Barik-
eri et al., 2021), comparisons between network ar-
chitectures (Meade et al., 2022), deibasing with
counterfactual inference (Qian et al., 2021), adver-
sarial training (Madanagopal and Caverlee, 2023),
prompt perturbation (Guo et al., 2023), data balanc-
ing (Han et al., 2022), contrastive learning (Cheng
et al., 2021), detecting toxic outputs (Schick et al.,
2021), performance degradation incurred by de-
biasing methods (Meade et al., 2022), and bench-
marks (Nadeem et al., 2021; Hartvigsen et al., 2022;
Sun et al., 2022). Social debiasing methods may
underperform in OOD settings because OOD exam-
ples may not contain social stereotypes or biases.

6 Conclusion

We investigate bias mitigation in NLU datasets by
formulating the debiasing problem within a con-
trastive learning framework, incorporating explicit
and implicit perturbation techniques and introduc-
ing undecided learning. Through extensive experi-
ments across a range of NLU tasks, we demonstrate
the effectiveness of our method in achieving im-
proved debiasing performance, while maintaining
performance on in-domain test sets. We find that
existing methods (including ours) are still sensitive
to dataset biases, and our experiments show the
limitations of these approaches in fully addressing
dataset biases. These results necessitate investigat-
ing a more systematic evaluation benchmark for
debiasing. Our approach can potentially be im-
proved by investigating more complex biases (Yao
et al., 2023; Gandikota et al., 2023), exploring alter-
native training paradigms such as curriculum learn-
ing (Bengio et al., 2009; Vakil and Amiri, 2022),
and evaluating robustness to unseen biases (Tsirig-
otis et al., 2023). Beyond NLU, our work can
potentially be applied to a broader range of appli-
cations (Cheng and Amiri, 2024; Liu et al., 2024).
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Limitations

Though our framework outperforms baselines,
there is still room for improvement on Stress and
OOD test sets. In addition, we didn’t analyze the
generalizability of the approach to other NLP do-
mains or tasks beyond the three tasks used in the
experiments.

Ethic and Broader Impact Statements

Our research focuses on mitigating dataset biases
in NLP datasets. There are no specific ethical con-
cerns directly associated with this work. However,
we acknowledge and emphasize the ethical mind-
fulness throughout the design, training, and apply-
ing the models investigated in this study on any ap-
plications. The broader impacts of our work are in
advancing dataset fairness and potentially enhanc-
ing decision-making based on data. By addressing
biases, we contribute to improving the reliability of
NLP datasets and the accuracy and transferability
of the models trained using NLP datasets.
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A Implementation Details

For all datasets, we train all methods on the
BERT-base (Devlin et al., 2019) checkpoint, with
a 2e-5 learning rate with linear decay using
AdamW (Kingma and Ba, 2015) optimizer. The
batch size is set to 32. For the baseline models, we
follow their papers for the hyperparameter choices.
All experiments on done on a single A100 GPU.

We implement the proposed perturbation as illus-
trated in Table 1 by randomly dropping 50% of the
tokens from each sentence, dropping all layers af-
ter the second layer (3–12), and zeroing m = 90%
of the elements in the intact representation f(xi).
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Each branch-specific MLP consists of two linear
layers with a ReLU activation function in between.
We use λ = 0.1 in our experiments.

B Other Debiasing Objectives

The idea of existing debiasing objectives is based
on the idea of adjusting the importance of training
examples, i.e. their contribution to loss calcula-
tion. The importance of examples which the model
fails the correctly predict is promoted while the
importance of examples which the model correctly
predicts is reduced.

Product-of-Experts (PoE) (Clark et al., 2019;
Karimi Mahabadi et al., 2020; Sanh et al., 2021)
is one of the most commonly adopted debiasing
objective, which takes dot product of the logits of
the main model and the biased models. Debiasing
Focal Loss (Karimi Mahabadi et al., 2020) down-
weights the main model based on how close the
logits of the biased models is to 1. Confidence
Regularization (Utama et al., 2020b) reduced the
loss scale of examples with a scaling mechanism.

C RoBERTa as Encoder

We conducted experiments on RoBERTa-base (Liu
et al., 2019) using the MNLI dataset to evaluate the
efficacy of FairFlow more effectively. The results
in Table 6 shows that the performance of all models
improved using RoBERTa-base as encoder. We
also observe comparable gains to BERT as encoder
in case of ID and Transfer settings and smaller
gains in case of Stress and OOD settings, which
can be attributed to the use of a more powerful
encoder.

D Perturbation for Data Augmentation

The explicit perturbation operators proposed in
our framework offer a valuable opportunity for
data augmentation. This can be particularly use-
ful in tasks such as NLI. Consider the example
(xpi , x

h
i , yi), where xpi represents the premise, xhi

represents the hypothesis, and yi denotes the label.
To augment the dataset, we create additional data
samples by applying different perturbation opera-
tions, e.g., by dropping the premise: (‘’, xhi , not en-
tailment), dropping the hypothesis: (xpi , ‘’, not en-
tailment), shuffling the data: (PIrr(x

p
i ), PIrr(x

h
i ),

not entailment) and dropping parts of the input:
(PSub(x

p
i ), PIrr(x

h
i ), not entailment). The aug-

mented examples can be added back to the orig-
inal dataset to mitigate the effect of bias during

fine-tuning and potentially enhance model’s gen-
eralizability, leading to improved performance on
existing debiasing methods (See Table 9).
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Model MNLI (Acc.) QQP (F1) PGR (F1)
ID Stress OOD Transfer ID Stress OOD Transfer ID Stress

FINETUNE 84.4 55.8 60.7 80.1 89.1 59.3 40.8 61.8 67.1 54.3

DEBIASMASK 84.7 53.6 60.8 80.5 88.3 60.2 44.7 62.1 65.4 44.6
KERNELWHITENING 83.3 53.5 60.5 80.2 87.6 61.3 45.1 62.7 63.5 42.0
E2E-POE 83.8 57.8 66.3 80.1 89.2 58.9 42.5 63.1 63.2 50.3
LWBC 83.2 58.3 60.2 80.7 89.6 73.2 49.2 67.4 66.5 53.2
IEGDB 84.5 60.1 67.2 79.8 84.6 57.3 50.6 60.5 64.8 54.6
READ 79.6 58.3 68.4 73.0 84.5 65.8 46.7 61.7 62.6 55.0

FAIRFLOW-POE 84.8 62.3 67.5 81.0 89.2 77.5 48.9 63.1 67.4 55.6
FAIRFLOW-FOCAL 84.8 62.8 67.9 80.9 89.6 77.8 49.2 63.1 67.7 56.1
FAIRFLOW 84.9 63.6 68.4 81.1 91.8 78.4 51.5 68.3 67.7 55.8

Table 5: Experimental results on three datasets using BERT as the base model. The best performance is in bold
and the second best is underlined. Note that IEGDB does not release their code. We tried our best to reproduce
the results but failed on HANS, which is 5.2 points lower than the reported 72.4. This is potentially due to
implementation and optimization details which the authors did not release.

Model MNLI (Acc.) QQP (F1) PGR (F1)
ID Stress OOD Transfer ID Stress OOD Transfer ID Stress

FINETUNE 88.1 75.3 66.4 81.0 92.2 63.5 44.7 68.3 69.3 57.1

DEBIASMASK 86.5 72.7 66.9 80.7 92.5 66.1 49.1 68.7 70.2 57.5
KERNELWHITENING 88.1 74.1 67.4 79.9 93.1 66.7 50.2 68.9 71.3 58.3
E2E-POE 88.3 72.6 69.5 80.7 92.4 66.4 50.3 68.5 70.5 57.9
LWBC 84.6 69.3 66.7 81.0 91.7 63.2 43.9 67.4 70.4 54.2
IEGDB 88.2 72.4 69.3 80.3 92.3 66.3 50.2 68.3 70.8 56.3
READ 85.3 73.5 70.3 78.5 91.4 68.1 51.0 67.8 69.3 55.7

FAIRFLOW-POE 88.3 76.1 70.2 81.4 92.5 66.7 50.6 68.3 70.8 58.0
FAIRFLOW-FOCAL 88.2 76.7 70.3 81.4 92.7 67.8 51.3 68.7 71.1 58.3
FAIRFLOW 88.3 77.2 70.4 81.2 93.3 68.4 51.8 68.6 71.4 58.3

Table 6: Results using RoBERTa (Liu et al., 2019) as the base model. The best performance is in bold and the
second best is underlined.

Model MNLI (Acc.) QQP (F1) PGR (F1)
ID Stress OOD Transfer ID Stress OOD Transfer ID Stress

FINETUNE 80.4 54.0 52.1 75.2 84.5 67.3 57.7 65.1 56.5 54.2

DEBIASMASK 79.3 52.8 51.6 73.7 83.6 67.5 57.3 74.9 56.7 53.2
KERNELWHITENING 80.7 55.1 52.8 75.1 85.7 67.4 58.3 77.2 58.3 55.1
E2E-POE 78.1 53.6 51.1 71.9 83.9 68.2 61.5 80.1 55.4 52.7
LWBC 74.5 50.8 51.0 71.4 80.2 61.0 55.8 75.4 53.2 51.0
IEGDB 79.7 52.9 51.8 74.3 86.1 66.9 58.2 76.2 57.1 53.8
READ 77.5 52.7 51.5 73.8 85.2 66.4 63.3 75.2 57.3 52.6

FAIRFLOW-POE 80.9 54.7 55.2 76.2 84.7 68.8 62.3 80.0 56.5 54.1
FAIRFLOW-FOCAL 81.8 55.1 54.9 75.8 86.3 68.5 64.2 80.4 57.4 55.3
FAIRFLOW 82.2 55.6 56.1 76.7 86.3 69.3 64.7 80.4 58.6 55.8

Table 7: Results using GPT-2 as the base model. The best performance is in bold and the second best is underlined.
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Model Avg. Acc (↑) Std. Acc (↓)
FINETUNE 60.1 9.3

DEBIASMASK 58.7 6.7
KERNELWHITENING 59.3 5.9
E2E-POE 60.0 6.1
LSWC 59.4 5.8
IEGDB 60.1 7.3
READ 60.9 5.6

FAIRFLOW-POE 63.8 5.7
FAIRFLOW-FOCAL 64.3 5.2
FAIRFLOW 64.7 5.1

Table 8: Average performance and standard deviation
on each type of stress test averaged across three architec-
tures. The best performance is in bold and the second
best is underlined.
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Model MNLI (Acc.)
ID Stress OOD Transfer

FINETUNE 84.4 55.8 60.7 80.1
FINETUNE + Aug 84.5 59.1 61.0 81.0

DEBIASMASK 84.7 53.6 60.8 80.5
DEBIASMASK + Aug 85.6 55.4 62.2 81.1
KERNELWHITENING 83.3 53.5 60.5 80.2
KERNELWHITENING + Aug 85.1 56.2 60.8 81.0
E2E-POE 83.8 57.8 66.3 80.1
E2E-POE + Aug 84.8 61.1 66.2 80.6
IEGDB 84.5 60.1 65.7 79.8
IEGDB + Aug 85.6 60.8 66.4 80.7
READ 79.6 58.3 68.4 73.0
READ + Aug 79.6 58.3 69.6 77.2

Table 9: Performance when applying data augmentation, which effectively improve existing debiasing methods.
The best performance is in bold.
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