
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 2053–2065
November 12-16, 2024 ©2024 Association for Computational Linguistics

Optimizing Code Retrieval: High-Quality and Scalable Dataset Annotation
through Large Language Models

Rui Li1, Qi Liu1, 2*, Liyang He1, Zheng Zhang1, Hao Zhang1,
Shengyu Ye1, Junyu Lu1, 2, Zhenya Huang1, 2

1State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

{ruili2000, heliyang, zhangzheng, zh2001, ysy007, lujunyu}@mail.ustc.edu.cn
{qiliuql, huangzhy}@ustc.edu.cn

Abstract

Code retrieval aims to identify code from ex-
tensive codebases that semantically aligns with
a given query code snippet. Collecting a broad
and high-quality set of query and code pairs is
crucial to the success of this task. However, ex-
isting data collection methods struggle to effec-
tively balance scalability and annotation qual-
ity. In this paper, we first analyze the factors
influencing the quality of function annotations
generated by Large Language Models (LLMs).
We find that the invocation of intra-repository
functions and third-party APIs plays a signifi-
cant role. Building on this insight, we propose
a novel annotation method that enhances the an-
notation context by incorporating the content of
functions called within the repository and infor-
mation on third-party API functionalities. Ad-
ditionally, we integrate LLMs with a novel sort-
ing method to address the multi-level function
call relationships within repositories. Further-
more, by applying our proposed method across
a range of repositories, we have developed the
Query4Code dataset. The quality of this synthe-
sized dataset is validated through both model
training and human evaluation, demonstrating
high-quality annotations. Moreover, cost anal-
ysis confirms the scalability of our annotation
method. 1

1 Introduction

Code retrieval aims to find the most relevant code
snippet in a database given a user query, facilitat-
ing the reuse of programs in the software devel-
opment process (Bui et al., 2021; Li et al., 2022;
He et al., 2024) and driving recent research on
retrieval-augmented code generation (Zhou et al.,
2022; Zhao et al., 2024). To achieve good per-
formance in practical applications, the key lies in
collecting a wide range of high-quality, dual-modal

*Corresponding Author.
1Our Code and Dataset is available at https://github.

com/smsquirrel/queryAnnotation

def export_nb(nb_path):
exporter = PythonExporter()
output, res = exporter.from_filename(nb_path)

if 'outputs' in res:
for filename, content in res['outputs'].items():

savefile(filename, content)

return output

Code

Query
How to export the content of a Jupyter Notebook file.

Docstring
Export content from a Jupyter notebook file.
Parameters: - nb_path : The file path of the
Jupyter notebook to be exported.

Figure 1: Example of code snippet and corresponding
query and docstring.

pairing data between natural language queries and
code snippets.

An efficient approach to collect code retrieval
datasets involves directly gathering code data from
online repositories (e.g., GitHub2) and processing
it to extract code snippets along with their cor-
responding docstrings. As depicted in Figure 1,
since the docstring serves as a description of the
function code, it can be utilized as a query. How-
ever, a significant difference exists between the
docstring and the user’s query, resulting in a devi-
ation from queries encountered in real-world sce-
narios. To bridge this gap and obtain queries that
closely resemble those of actual users, some re-
searchers (Heyman and Van Cutsem, 2020; Yao
et al., 2018) tend to collect user questions and the
corresponding code snippets from programming
communities such as Stack Overflow3. Another
approach explored by researchers (Rao et al., 2021;
Huang et al., 2021) involves gathering user search
queries from browser logs and subsequently enlist-
ing experts to annotate corresponding code snip-
pets based on these queries. Regrettably, the for-

2https://github.com
3https://stackoverflow.com

2053

https://github.com/smsquirrel/queryAnnotation
https://github.com/smsquirrel/queryAnnotation
https://github.com
https://stackoverflow.com

mer approach often produces code snippets of in-
ferior quality because of the presence of block and
statement-level code within the community. On
the other hand, the latter approach allows for the
acquisition of a high-quality dataset but proves to
be cost-prohibitive and challenging to scale. There-
fore, we pose a question: Can a more efficient,
low-cost method be developed to obtain a high-
quality code retrieval dataset?

The formidable capabilities of Large Language
Models (LLMs) present a remarkable opportunity.
Firstly, previous research (Rodriguez-Cardenas
et al., 2023) has demonstrated the profound code
comprehension ability of LLMs in various code
understanding tasks, such as code summarization
(Geng et al., 2023). Secondly, existing LLMs, em-
ploying preference alignment techniques (Geng
et al., 2023), can generate content that aligns with
human preferences. In the domain of search, some
studies (Bonifacio et al., 2022; Dai et al., 2022)
have proposed generating the query from the docu-
ments, yielding highly promising outcomes. Hence,
a straightforward approach is to employ LLMs
to generate user-like queries from the code snip-
pets. However, there are some differences between
code snippets and traditional documents. For in-
stance, intra-repository function calls refer to the
calls between different functions within a repos-
itory project, as depicted in Figure 1. Function
export_nb calls function savefile, which makes
it challenging for LLMs to comprehend function
export_nb if only provided as input, without con-
sidering the function savefile it calls. Addi-
tionally, third-party API calls involve invoking
functions from external APIs, as shown in Fig-
ure 1. Function export_nb calls the third-party
API PythonExporter.from_filename, and LLM
needs to understand the functionality of this API
for a better understanding of the function.

In this paper, we first analyze the main factors
affecting the quality of annotations for functions in
repositories. Through preliminary experiments on
a development set from 100 selected repositories,
we observe that the presence of intra-repository
function calls exerts a substantial influence on the
quality of annotations, with a greater number of
call relationships resulting in a heightened degree
of impact. Additionally, we uncover that infrequent
third-party calls have the greatest impact on annota-
tion quality. This observation may be attributed to
the limited pretraining knowledge of LLMs regard-
ing these external libraries. Based on these findings,

we propose an annotation algorithm aimed at using
LLMs for high-quality code retrieval query anno-
tations. We start by parsing the relationships of
intra-repository function calls and use a topologi-
cal sorting approach to guide the LLM annotation
sequence. For third-party function calls, we se-
lect third-party functions based on popularity and
use web scraping to annotate features of unpopular
third-party functions, adding this information to
the annotation context.

To substantiate the efficacy of our annotation ap-
proach, we initially employed our method to obtain
a large-scale code retrieval dataset Query4Code,
which includes 237.2K queries and code pairs from
12.3K repositories. We use Query4Code a pretrain-
ing corpus for various code retrieval models. Sub-
sequently, comprehensive evaluations on multiple
real-world benchmarks confirmed that our method
significantly enhances the performance of code re-
trieval models in real scenarios.

2 Related Work

2.1 Code Retrieval Datasets

Representation learning (Zhang et al., 2023b; Gao
et al., 2021; Liu et al., 2023) has achieved sig-
nificant results in multiple fields. The previous
code retrieval methods (Sedykh et al., 2023) of
code retrieval data collection can be summarized
into three categories: 1). Some researchers (Wang
et al., 2023b) parse functions and corresponding
docstrings from online repositories to form pairs.
For example, Husain et al. (2019) collected 2.1M
paired data of 6 programming languages from an
open-source repository on GitHub, constituting the
CodeSearchNet. 2). Others (Yin et al., 2018) gather
questions posted by users on Stack Overflow along
with the accepted code snippets to create datasets
suitable for code searching. Heyman and Van Cut-
sem (2020) attempts this by collecting the most
popular dataset posts on Stack Overflow and gath-
ering code snippets from highly upvoted responses.
3). The use of manual annotation methods: Huang
et al. (2021) initially collects human queries used
in code searches from search engines and then man-
ually gathers relevant code snippets from GitHub
to match these queries.

However, these methods present a trade-off be-
tween data quality and scalability. Therefore, we
propose a low-cost and scalable annotation method.

2054

2.2 Code Retrieval Models

In token-level pre-training methods, CodeBERT
(Feng et al., 2020) attempts to leverage the exten-
sive programming and natural language bimodal
data within repositories for pre-training. Building
upon this, GraphCodeBERT (Guo et al., 2021) en-
deavors to incorporate data flow graph signals to
devise new pre-training tasks, thereby enhancing
the understanding of code semantics. UniXcoder
(Guo et al., 2022) introduces a unified cross-modal
pre-training model specifically designed for pro-
gramming languages. Recently, some studies have
explored the use of contrastive learning approaches
to augment code search tasks. ContraCode (Jain
et al., 2021) and Corder (Bui et al., 2021) employ
semantic-preserving variation techniques for data
augmentation and utilize contrastive learning ob-
jectives to distinguish between similar and dissimi-
lar code snippets. CodeRetriever (Li et al., 2022)
attempts to combine unimodal and bimodal con-
trastive learning to train code search models.

2.3 LLM in Data Annotation

Given the strong generalization capabilities exhib-
ited by Large Language Models (LLMs), they ap-
ply across multiple domains (Samuel et al., 2023;
Zhang et al., 2024) for data synthesis, facilitating
the transfer of rich knowledge from larger mod-
els to smaller ones. In Unnatural Instructions
(Honovich et al., 2023) and Self-Instruct (Wang
et al., 2023a), LLMs utilize to generate the in-
structional datasets required during the fine-tuning
phase. Samuel et al. (2023) utilize a minimal set of
original data to guide LLMs in generating datasets
required for reading comprehension tasks. West
et al. (2022) propose a two-step process for sym-
bolic knowledge distillation rather than the creation
of content-related datasets. In the field of informa-
tion retrieval, Zhang et al. (2023a) utilize LLMs to
generate positive and negative samples during the
training process of contrastive learning.

This paper is the first to use LLMs to annotate
code retrieval dataset, focusing on the key factors
that affect LLMs in generating queries: library calls
and third-party API calls.

3 Preliminary Analysis

The direct use of LLMs for annotating functions of-
ten results in a lack of contextual information about
the annotated functions. Therefore, This section
attempts to analyze the impact of intra-repository

Calls Intra-repo Third-party APIs
Max nums 137 120
Mean nums 5.11 3.24
Proportion 46.5% 53.5%

Table 1: Statistics on the number and proportion of calls
to intra-repository and third-party library APIs.

calls and third-party API calls on LLM annotated
queries. Experiments are conducted using the GPT-
3.5-turbo (Achiam et al., 2023) and CodeLlama-
Instruct 7B (Roziere et al., 2023) models, with all
prompts and detailed information being provided
in Appendix A.

3.1 Setup

Based on the selection of high-quality repositories
identified from prior research (Husain et al., 2019),
we randomly chose 100 repositories to form our
development set. Subsequently, we employ the tree-
sitter4 library to parse code files within these repos-
itories, acquiring all function-level code snippets
and their invocation relationships. These relation-
ships are further categorized into intra-repository
calls and third-party API calls.

[1,5] [6,20] [21, 80] [81, 137]
Call Count

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Sc
or

e

GPT-3.5-turbo
Original
w/ Context

[1,5] [6,20] [21, 80] [81, 137]
Call Count

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Sc
or

e

Code Llama-Instruct 7B
Original
w/ Context

Figure 2: The impact of calls within repositories of
varying quantities on the quality of query annotations.

3.2 Impact of Intra-Repository Function Calls

Due to the existence of multiple functions in the
repository, these functions are usually involved in
complex call relationships. After parsing, from Ta-
ble 1, we can observe the proportion of functions
with call relationships, as well as the average and
maximum call frequencies. We observe that 46.5%
of the code has call relationships, and the maxi-
mum number of calls can reach 137 times. This
highlights the widespread use of function calls in

4https://tree-sitter.github.io

2055

https://tree-sitter.github.io

Parse

(a) Repository

models.py

main.py

datasets

utils

data.pyconfigs

(d) Context Construction

torch.nn.utils.clip_grad_norm_(Parameters, max_norm): Used to clip
the gradients of a model. . "Parameters" is the list of parameters
of the model, and "max_norm" is the maximum norm of the gradients.

API Function Annotation

Annotated function

Intra-repository function calls# file_path: main.py
def contrastive_loss(feature1, feature2, label, margin): Given
features and labels, calculate the contrastive learning loss.

def train_batch(model, inputs, targets):
optimizer = transformers.AdamW(model.parameters(), lr=1e-5)
outputs = model(inputs)
loss = contrastive_loss(outputs, targets)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
...

train

load_data train_batch

test

(b) Function Call Graph

contrastive_loss

(c) API Calls

torch.nn.utils.
clip_grad_norm_ 2
transformers.AdamW 15
... ...

API POP

(e) Pipeline

Context

Step1. Function
Annotation

A python function use
contrastive learning to
train model for a batch
data.

Functionality

Query

How to train models using
Contrastive Learning?

file_path: main.py

Step2. Query Annotation

Step3. Filtering & Explanation
Code

def train_batch(model,
inputs, targets):

...

{"Explanation": "code can satisfy a certain category of query
requirement", "Score": 3}

def train_batch
torch.nn.utils.

Pairing

Figure 3: The overview of our annotation method. (a) Files in the repository. (b) Function call graph obtained from
parsing. (c) API calls obtained from parsing and their corresponding popularity. (d) Construct annotated context
based on call relationships and current API calls. (e) Pipeline for annotation method.

the repository. Subsequently, we analyze the im-
pact of these call relationships on the quality of
final query annotations generated by LLMs. We
use two annotation methods: direct annotation and
adding calling function context for annotation. Af-
ter obtaining the final annotated results, we pair
annotated queries with code and used the GPT-4-
turbo model to score (0-3) and evaluate the quality
of generated queries. The final results are shown
in Figure 2, from which we observe that including
information about called functions significantly af-
fects annotation quality. Furthermore, more call
relationships will lead to a greater degree of influ-
ence, and model capability also significantly affects
the quality of final annotations.

[0.7, 1.6] [1.6, 2.6] [2.6, 3.5] [3.5, 4.2] [4.2, 5.0] [5.0, 5.7] [5.7, 6.4] [6.4, 7.3][7.3, 10.6]
Log Popularity

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

Sc
or

e

GPT-3.5-turbo
Code Llama-Instruct 7B

Figure 4: The impact of third-party APIs with Different
Popularity Levels on LLM Understanding.

3.3 Impact of Third-Party APIs Calls

After analyzing the invocation of third-party APIs
in functions, as shown in Table 1, we observe that
53.5% of the functions involve third-party API
calls, with the maximum number of calls reach-
ing 120 times. We next examine the impact of
third-party APIs on annotation quality. Inspired
by previous research (Mallen et al., 2023), we con-
sider that the impact of APIs on annotation quality
is closely related to the API’s popularity. Therefore,
we initially use the frequency of API calls in the
repositories as a proxy for API popularity. We then
annotate functions in our development set using
LLMs, including all available API documentation.
GPT-4-turbo is used to compare LLM explanations
of API functions against the actual API documen-
tation, with results categorized according to pop-
ularity. Our findings, presented in Figure 4, show
that LLMs often lack a comprehensive grasp of
many API details, particularly for unpopular APIs.
This phenomenon adversely affects the quality of
LLM annotations for queries. And even for models
with stronger performance (e.g., gpt-3.5-turbo), the
understanding of low-popularity APIs is also poor.

4 Approach

4.1 Overview

In the preceding analysis, we demonstrate how the
invocation relationships within a repository and
those in third-party libraries can impact the quality

2056

of Large Language Models (LLMs) in annotating
queries. As shown in Figure 3, we attempt to pro-
pose an annotation method to address these issues.
We endeavor to collect information about functions
with invocation relationships, as well as functional-
ities of unpopular APIs, and incorporate them into
the annotation context. Then, we use this context to
prompt LLMs to generate queries (see the prompt
in Appendix B).

4.2 Task Decomposition
Inspired by previous research work (Wei et al.,
2022), a complex task can be simplified by de-
composing it into multiple simpler tasks, thereby
easing the model’s inference load. For the task of
query annotation, we consider that the model first
needs to understand the code of the currently an-
notated function and then generate queries that a
user might write during the development process
based on this understanding of code semantics. As
shown in Figure 3 (e), we initially use LLMs for
code interpretation and then proceed to annotate
queries based on the interpretation and the content
of the code snippets:

s = LLM(c), q = LLM(s, c). (1)

In the code interpretation stage, we mainly rely on
the LLM’s understanding of the code, while in the
query generation stage, the alignment capability of
LLMs with human intent is primarily utilized.

4.3 Analyzing Function and API Calls
Since in Section 3, we have analyzed that the main
factors affecting the quality of LLM annotations
for queries are function calls within the repository
and third-party API calls. Therefore, as shown in
the upper of Figure 3, for a given repository, we
first use the tree-sitter tool to parse all functions in
the code files within the repository. Then, we ana-
lyze each function’s calls to other intra-repository
functions and third-party APIs separately.

4.4 Annotation Algorithm Based on Function
Call Graph

Having established the function invocation rela-
tionships within the repository, a straightforward
approach would be to include the relevant con-
text of the function to be annotated along with
the query into the LLM’s input context. How-
ever, as shown in Figure 3 (b), there are multi-level
call relationships between functions in the repos-
itory. Understanding the train function requires

knowing the train_batch function because it calls
the train_batch function, which then calls the
contrastive_loss function. Similarly, to grasp
the train_batch function properly, it’s essential
to understand the contrastive_loss function. Di-
rectly incorporating all functions into the context
would pose challenges associated with multi-level
reasoning.

Thus, we propose a novel annotation algorithm
based on topological ordering. The intuition behind
this algorithm is the decoupling of multi-level invo-
cation relationships into single-level relationships.
Specifically, we first construct a directed graph
G(V,E) of function calls, where each node v ∈ V
represents a function in the repository. If function
A is called by function B, there will be a directed
edge e ∈ E from vA to vB . Based on topological
sorting, we first annotate functions without depen-
dency relationships. During the annotation process,
when encountering recursive calls, we randomly
delete an edge to continue with the annotation. Sub-
sequently, we annotate functions with invocation
relationships, thus breaking down multi-level invo-
cation relationships into single-level relationships.
For the annotation context of the function currently
being annotated, it is only necessary to include in-
formation about its directly called functions. We
summarized the algorithm in Algorithm 1.

Algorithm 1 Annotation Algorithm

Input: A directed function call graph, G(V,E);
Output: The annotation order of functions, L;
1: Initialize sorted elements list L← ∅
2: Compute in-degrees din(v),∀v ∈ V
3: Initialize a queue Q← {v ∈ V : din(v) = 0}
4: while Q ̸= ∅ or |L| ≠ |V | do
5: while Q = ∅ and |L| ≠ |V | do
6: e← RandomSelect(E)
7: E ← E \ {e}
8: Q← {v ∈ V : din(v) = 0}
9: end while

10: v ← Dequeue(Q)
11: L← L ∪ {v}
12: for u ∈ Adjacent(v) do
13: din(u)← din(u)− 1
14: if din(u) = 0 then
15: Q← Q ∪ {u}
16: end if
17: end for
18: end while
19: return L

2057

4.5 Collection of Third-Party API
Documentation Based on Popularity

In Section 3, our analysis indicates that LLMs
struggle to understand unpopular APIs. Therefore,
we aim to add descriptions of unpopular third-party
API functionalities in the annotation context. As
shown in Figure 3 (c), first, we need to assess the
popularity of APIs, using the frequency of API
calls in the repository as a basis for popularity. Our
analysis concludes that LLMs understand APIs bet-
ter if they exceed a popularity threshold. Therefore,
we set a popularity threshold and for third-party
APIs below this threshold in the function, we use
the DuckDuckGo5 search engine to look up docu-
mentation and employ LLM to summarize the API
functionalities. Then, we add this information into
the annotation context.

4.6 Data Filtering

To further enhance the quality of generated queries
and improve the explainability of the annotation
process, we attempt to incorporate a reverse vali-
dation and an explanation phase for the query and
code snippet pairs into the annotation framework.
Specifically, as shown in Figure 3 (e), after com-
pleting the annotation to obtain aligned query and
code snippet pairs, we first use LLMs for reverse
validation. Inspired by Huang et al. (2021), we no-
tice that the code in the annotated query-code pairs
cannot fully answer the query. It may exceed, par-
tially satisfy, or completely fail to meet the query
requirements. Specifically, we focus on the follow-
ing four scenarios: 1) If the code can answer and
exceed the query requirements, it is considered a
correct answer. 2) If the code can satisfy certain
categories of query requirements, it is also deemed
a correct answer. 3) If the code satisfies less than
50% of the query requirements, it cannot correctly
answer the query. 4) The code has almost no rel-
evance to the query. Based on this principle, we
construct the CLS prompt language model to obtain
classification results:

f(q, c) = LLM(q, c, CLS). (2)

Then, we will filter out the code snippets of cate-
gories 1 and 2 from the original constructed dataset
C to obtain Cfiltered:

Cfiltered = {c ∈ C | f(q, c) ∈ {1, 2}}. (3)
5https://duckduckgo.com

Dataset Training Validation Test

CoSQA 19.0K 0.5K 0.5K
SO-DS 14.2K 0.9K 1.1K
StaQC 20.4K 2.6K 2.7K
CoNaLa 2.8K - 0.8K
WebQueryTest - - 1.0K

Table 2: The statistics of benchmark datasets.

5 Experiment

5.1 Annotation

To facilitate comparison, we followed the selection
of GitHub repositories in CodeSearchNet (Husain
et al., 2019), choosing only Python repositories for
cost reasons. Please note that the code retrieval
data in the CodeSearchNet dataset consists of pairs
of docstrings and code obtained through syntax
parsing, and does not include manually annotated
queries. We then applied a certain method to fil-
ter high-quality functions within these repositories.
Subsequently, we used the GPT-3.5-turbo model to
generate queries using the annotation method men-
tioned above. Ultimately, we successfully anno-
tated a total of 237.2K pairs of natural language and
code snippets, forming the Query4Code dataset.
Due to filtering operations during the annotation
process, the final Query4Code dataset can be re-
garded as a subset of the CodeSearchNet Python.

5.2 Model Validation

To validate the quality of the Query4Code dataset,
which we obtain through our final annotation pro-
cess, we pre-train existing pre-trained code repre-
sentation models using both the CodeSearchNet
and Query4Code. We aim to evaluate model per-
formance across multiple real-world code retrieval
benchmarks in a zero-shot setting. Furthermore,
we fine-tune the models on real-world datasets to
assess the adaptability of the Query4Code dataset
to downstream benchmarks.

5.2.1 Baseline
To compare the performance differences when pre-
training with the CodeSearchNet and Query4Code
datasets, we pre-trained the following code repre-
sentation models using different datasets and con-
ducted a performance comparison:

• CodeBERT (Feng et al., 2020) is a bimodal
pre-trained model that is pre-trained through

2058

https://duckduckgo.com

Model
CoNaLa SO-DS StaQC CoSQA WebQueryTest

CSN Q4C CSN Q4C CSN Q4C CSN Q4C CSN Q4C
Zero-Shot
CodeBERT 21.65 25.45 18.42 18.98 14.26 15.74 56.34 59.80 32.43 35.61
GraphCodeBERT 23.70 28.88 19.01 21.56 16.90 18.72 56.83 60.24 31.83 35.97
UniXCoder 25.47 29.07 18.78 19.85 16.45 19.07 55.22 58.87 30.18 34.42
StarEncoder 25.72 28.14 17.31 19.65 15.55 18.59 54.27 58.41 31.46 35.80
Fine-Tuning
CodeBERT 22.41 26.83 23.24 25.76 23.75 25.39 67.72 72.91 - -
GraphCodeBERT 25.01 29.15 24.05 25.92 24.41 25.84 67.35 73.64 - -
UniXCoder 26.27 29.96 23.59 25.90 23.38 26.10 68.47 73.30 - -
StarEncoder 26.05 29.58 24.31 26.83 24.07 25.29 67.41 72.65 - -

Table 3: Compare the zero-shot and fine-tune performance of code representation models pre-trained on Code-
SearchNet (CSN) and Query4Code (Q4C) datasets.

two tasks: Masked Language Modeling
(MLM) and Replaced Token Detection (RTD).

• GraphCodeBERT (Guo et al., 2021) proposes
two structure-based pre-training tasks (data
flow edge prediction and node alignment) to
enhance code representation.

• UniXcoder (Guo et al., 2022) proposes to en-
hance code representation using cross-modal
content such as AST and code comments.

• StarEncoder (Li et al., 2023) is pre-trained
on The Stack dataset, using MLM and Next
Sentence Prediction (NSP) as the pretraining
tasks.

5.2.2 Benchmark and Metric
In order to evaluate the performance of the model
in real-world code retrieval scenarios, we have
selected a wide range of benchmarks for valida-
tion. Among them, the datasets CoNaLa (Yin
et al., 2018), SO-DS (Heyman and Van Cutsem,
2020), and StaQC (Yao et al., 2018) are col-
lected from Stackoverflow questions, and queries
in CoSQA (Huang et al., 2021) and WebQueryTest
(Lu et al., 2021) are collected from web search en-
gines. Therefore, the queries in these datasets are
closer to real code search scenarios. The statistics
of benchmark datasets are listed in Table 2. Follow-
ing prior research works (Kanade et al., 2020; Li
et al., 2024), we employed Mean Reciprocal Rank
(MRR) (He et al., 2023) as the evaluation metric:

MRR =
1

N

N∑

i=1

1

ranki
, (4)

where ranki is the rank of the correct code snippet
related to the i-th query.

5.2.3 Training Objective

Given a paired query q and code c+ pair, we adopt
the contrastive learning InfoNCE objective func-
tion commonly used in existing code retrieval tasks
for model training. Furthermore, we employ an
in-batch negative sampling approach for selecting
negative samples c− in contrastive learning:

L = −E
[
log

exp (q · c+)
exp (q · c+) +∑N

j=1 exp (q · c−j)

]
,

(5)
where N represents batch size.

5.2.4 Implementation details

All experiments are implemented using PyTorch.
During the pre-training phase, for all settings re-
lated to model architecture and hyperparameters,
we follow the original paper. During the fine-
tuning phase, to adapt to variations between dif-
ferent datasets, we conducte a grid search on the
downstream dataset to find the learning rate, setting
the range in our experiments as {1e-5, 2e-5, 5e-5},
and utilize the AdamW optimizer. The options
for batch size included {32, 64, 128}. Training
is set for 10 epochs and to prevent overfitting, we
adopte an early stopping strategy. The experiments
described in this paper are conducted with three
random seeds: 0, 1, and 2, and we will report the
average results in the paper. All experiments meet
the p < 0.01 significance threshold. Experiments
are conducted on a GeForce RTX 4090 GPU.

2059

5.2.5 Results

Zero-shot Performance The final zero-shot ex-
perimental results, as shown in Table 3, indicate
that pre-training on the Query4Code dataset sig-
nificantly enhances performance compared to pre-
training on the CodeSearchNet dataset, with im-
provements observed across multiple code repre-
sentation models. Additionally, we note substantial
performance gains on both the CoSQA and Web-
QueryTest datasets. We attribute this improvement
to the fact that the queries in these two datasets
were extracted from logs of real-world search en-
gines, which closely match the distribution of our
annotated queries. Conversely, the improvement
on the SO-DS dataset was minimal, likely due to a
greater disparity between the code snippets in the
SO-DS dataset and our annotated dataset.

Fine-tuning Performance In the fine-tuning ex-
periment, it is worth noting that since the Web-
QueryTest dataset is specifically designed for as-
sessing real-world code retrieval task performance
without available training data, its related results
were not reported. The final experiments demon-
strate that pretraining with the Query4Code dataset
before fine-tuning yielded superior performance
across all other datasets, confirming that models
pretrained through Query4Code exhibit enhanced
adaptability in real-world code retrieval scenarios.

5.3 The potential of the dataset

Cqc Csc Cqc+Csc

CoNaLa 25.45 23.28 26.39
SO-DS 18.98 19.35 20.17
StaQC 15.74 15.92 16.51
CoSQA 59.80 58.46 61.93
WebQueryTest 35.61 35.07 36.55

Table 4: Using different data pairs with Query4Code to
train CodeBERT for zero-shot performance.

Although this paper mainly focuses on generat-
ing annotations for query retrieval of code, our two-
stage annotation method can obtain functional sum-
maries of functions. We are interested in whether
the functional summary of functions can enhance
the ability of the current code retrieval model. As
shown in Table 4, compared with only using (q, c)
pairs (denoted as Cqc) for contrastive learning, us-
ing only (s, c) pairs (denoted as Csc) achieved com-
parable performance and performed better on the

SO-DS and CoSQA datasets. Furthermore, utiliz-
ing both annotated query q and summary c data
achieved the best performance. For detailed experi-
mental settings, please refer to Appendix B.2. This
demonstrates the potential of the our annotation
method.

5.4 Human Evaluation

To evaluate the quality of the data generated by
the annotation algorithm we proposed, we em-
ployed a manual assessment approach. We extracte
200 pairs of queries and code snippets from the
Query4Code dataset and invited three experts to
score them according to the four types mentioned
in Section 4.6. We then calculate the Pearson’s r
and Kendall’s τ correlation coefficients between
the scores and the results generated by the model.
The results are summarized in Table 5. Observa-
tion reveals that the query-code pairs we annotate
demonstrate a strong correlation, confirming the
effectiveness of our filtering method.

To understand the correlation of annotations
among experts, we calculated Krippendorff’s Al-
pha for the scores of three experts, resulting in a
final consistency score of 0.858, which proves that
there is a high level of consistency in the scores
among the experts.

Expert r τ score
Expert1 0.652 0.483 2.47
Expert2 0.630 0.469 2.65
Expert3 0.623 0.471 2.58

Table 5: Results of human evaluation.

5.5 Cost Analysis

Our annotation algorithm surpasses traditional ex-
pert annotation methods in both cost-effectiveness
and time efficiency. The API call cost for the GPT-
3.5-turbo model we used generally ranges from
$0.001 to $0.004, allowing for the processing of
approximately 3K requests per minute. In contrast,
based on crowdsourcing platform rates, the cost
for pairing a query with a code snippet is around
$0.2; meanwhile, the time required for an expert to
annotate, including reading the query and finding
a matching code snippet, typically takes about 3
minutes. This demonstrates the superior scalability
of our method.

2060

Code Docstring Query
def escape_shell_arg(shell_arg):

if isinstance(shell_arg, six.text_type):
msg = "ERROR: escape_shell_arg() expected

string argument but " \
"got '%s' of type '%s'." % (repr(shell_arg),

type(shell_arg))
raise TypeError(msg)

return "'%s'" % shell_arg.replace("'", r"'\''")

"""Escape shell argument shell_arg by placing
it within single-quotes. Any single quotes
found within the shell argument string will be
escaped.
@param shell_arg: The shell argument
to be escaped.
@type shell_arg: string
..."""

Python code for shell argument
escaping with single quotes

Figure 5: Example of code snippet with docstring and annotated query.

5.6 Case Study
As illustrated in Figure 5, there exists a discrepancy
between the docstring of the code snippet and the
query annotated by us. Docstrings are typically
employed to elucidate the function’s purpose and
usage, possibly encompassing descriptions of input
and output parameters. In contrast, a query repre-
sents the functionality requirements described by
users in natural language. We will present more
cases in Appendix C.

6 Conclusion

In this paper, we addressed the trade-off between
quality and scalability inherent in the construction
methods of previous code retrieval datasets by at-
tempting to generate queries based on Large Lan-
guage Models (LLMs). Initially, we analyzed the
key factors affecting the annotation of queries by
LLMs and identified that both intra-repository func-
tion calls and third-party API calls significantly
impacted annotation quality. Based on this un-
derstanding, we had designed an annotation algo-
rithm that constructed appropriate contexts by pars-
ing call relationships to generate function queries.
Moreover, we had utilized existing code snippets
to create the Query4Code dataset. Through model
validation and manual assessment, the high qual-
ity of the Query4Code dataset was confirmed, and
cost analysis had demonstrated the scalability of
our annotation approach.

Limitations

This study primarily focuses on utilizing Large
Language Models (LLMs) for the construction of
code retrieval datasets and demonstrates the signifi-
cant impact of call relations on the understanding
of function-level code snippets in repositories by
language models. However, this paper has certain
limitations. Due to cost considerations, we only
analyzed and annotated a Python dataset. Although

our analytical method is adaptable across differ-
ent programming languages, we cannot guaran-
tee that our conclusions will perform consistently
across various languages. Therefore, we aim to
explore the construction of code retrieval datasets
for other programming languages using LLMs in
future work.

Ethical consideration

This paper explores how large language models
(LLMs) can be used for code retrieval data synthe-
sis, focusing on their advantages and challenges.
One major issue is that LLMs may produce halluci-
nations, meaning that the information they generate
sometimes appears correct but is actually incorrect
or irrelevant. This inaccuracy can undermine the
quality of the synthetic data, leading to errors in
code retrieval. Additionally, using synthetic data
may introduce biases, which could affect the effec-
tiveness of the retrieval process, potentially making
it less accurate or fair.

Acknowledgments

This research was supported by grants from the
National Natural Science Foundation of China
(Grants No. 62337001, 623B1020), the Funda-
mental Research Funds for the Central Universi-
ties, and the CIPSCSMP-Zhipu.AI Large Model
Cross-Disciplinary Fund.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and
Rodrigo Nogueira. 2022. Inpars: Data augmentation
for information retrieval using large language models.
arXiv preprint arXiv:2202.05144.

2061

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-
supervised contrastive learning for code retrieval and
summarization via semantic-preserving transforma-
tions. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 511–521.

Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith Hall,
and Ming-Wei Chang. 2022. Promptagator: Few-
shot dense retrieval from 8 examples. In The Eleventh
International Conference on Learning Representa-
tions.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547.

Weibo Gao, Qi Liu, Zhenya Huang, Yu Yin, Haoyang Bi,
Mu-Chun Wang, Jianhui Ma, Shijin Wang, and Yu Su.
2021. Rcd: Relation map driven cognitive diagnosis
for intelligent education systems. In Proceedings
of the 44th international ACM SIGIR conference on
research and development in information retrieval,
pages 501–510.

Mingyang Geng, Shangwen Wang, Dezun Dong, Hao-
tian Wang, Ge Li, Zhi Jin, Xiaoguang Mao, and Xi-
angke Liao. 2023. An empirical study on using large
language models for multi-intent comment genera-
tion. arXiv preprint arXiv:2304.11384.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 7212–7225.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021.
Graphcodebert: Pre-training code representations
with data flow. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021.

Liyang He, Zhenya Huang, Enhong Chen, Qi Liu, Shi-
wei Tong, Hao Wang, Defu Lian, and Shijin Wang.
2023. An efficient and robust semantic hashing
framework for similar text search. ACM Trans. Inf.
Syst., 41(4).

Liyang He, Zhenya Huang, Jiayu Liu, Enhong Chen,
Fei Wang, Jing Sha, and Shijin Wang. 2024. Bit-
mask robust contrastive knowledge distillation for
unsupervised semantic hashing. In Proceedings of
the ACM on Web Conference 2024, pages 1395–1406.

Geert Heyman and Tom Van Cutsem. 2020. Neural code
search revisited: Enhancing code snippet retrieval
through natural language intent. arXiv preprint
arXiv:2008.12193.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2023. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 14409–14428. Association for Computa-
tional Linguistics.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. Cosqa: 20,000+ web queries for code search
and question answering. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5690–5700.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel,
Joseph Gonzalez, and Ion Stoica. 2021. Contrastive
code representation learning. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 5954–5971.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2020. Learning and evaluating con-
textual embedding of source code. In International
Conference on Machine Learning, pages 5110–5121.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Haotong Zhang, and I. Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. Symposium on Operating
Systems Principles.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Rui Li, Liyang He, Qi Liu, Yuze Zhao, Zheng Zhang,
Zhenya Huang, Yu Su, and Shijin Wang. 2024. Con-
sider: Commonalities and specialties driven multi-
lingual code retrieval framework. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 8679–8687.

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu,
Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang,
Weizhu Chen, and Nan Duan. 2022. Coderetriever:
A large scale contrastive pre-training method for code
search. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 2898–2910.

2062

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.1145/3570725
https://doi.org/10.1145/3570725
https://doi.org/10.18653/V1/2023.ACL-LONG.806
https://doi.org/10.18653/V1/2023.ACL-LONG.806
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165

Jiayu Liu, Zhenya Huang, Chengxiang Zhai, and Qi Liu.
2023. Learning by applying: A general framework
for mathematical reasoning via enhancing explicit
knowledge learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
4497–4506.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December
2021, virtual.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 9802–9822.

Nikitha Rao, Chetan Bansal, and Joe Guan. 2021.
Search4code: Code search intent classification using
weak supervision. In 2021 IEEE/ACM 18th Interna-
tional Conference on Mining Software Repositories
(MSR), pages 575–579. IEEE.

Daniel Rodriguez-Cardenas, David N Palacio, Dipin
Khati, Henry Burke, and Denys Poshyvanyk. 2023.
Benchmarking causal study to interpret large lan-
guage models for source code. In 2023 IEEE Inter-
national Conference on Software Maintenance and
Evolution (ICSME), pages 329–334. IEEE.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Vinay Samuel, Houda Aynaou, Arijit Ghosh Chowd-
hury, Karthik Venkat Ramanan, and Aman Chadha.
2023. Can llms augment low-resource reading com-
prehension datasets? opportunities and challenges.
arXiv preprint arXiv:2309.12426.

Ivan Sedykh, Dmitry Abulkhanov, Nikita Sorokin,
Sergey Nikolenko, and Valentin Malykh. 2023.
Searching by code: a new searchbysnippet dataset
and snipper retrieval model for searching by code
snippets. arXiv preprint arXiv:2305.11625.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023a. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,

pages 13484–13508. Association for Computational
Linguistics.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023b.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena
Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu,
Sean Welleck, and Yejin Choi. 2022. Symbolic
knowledge distillation: from general language mod-
els to commonsense models. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4602–4625.

Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan
Sun. 2018. Staqc: A systematically mined question-
code dataset from stack overflow. In Proceedings of
the 2018 World Wide Web Conference, pages 1693–
1703.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In Proceedings of the 15th interna-
tional conference on mining software repositories,
pages 476–486.

Junlei Zhang, Zhenzhong Lan, and Junxian He. 2023a.
Contrastive learning of sentence embeddings from
scratch. arXiv preprint arXiv:2305.15077.

Zheng Zhang, Qi Liu, Zirui Hu, Yi Zhan, Zhenya Huang,
Weibo Gao, and Qingyang Mao. 2024. Enhancing
fairness in meta-learned user modeling via adaptive
sampling. In Proceedings of the ACM on Web Con-
ference 2024, pages 3241–3252.

Zheng Zhang, Qi Liu, Hao Jiang, Fei Wang, Yan
Zhuang, Le Wu, Weibo Gao, and Enhong Chen.
2023b. Fairlisa: Fair user modeling with limited
sensitive attributes information. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Yuze Zhao, Zhenya Huang, Yixiao Ma, Rui Li, Kai
Zhang, Hao Jiang, Qi Liu, Linbo Zhu, and Yu Su.
2024. RePair: Automated program repair with
process-based feedback. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
16415–16429, Bangkok, Thailand and virtual meet-
ing. Association for Computational Linguistics.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhengbao Jiang,
and Graham Neubig. 2022. Docprompting: Gener-
ating code by retrieving the docs. In The Eleventh
International Conference on Learning Representa-
tions.

2063

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/v1/2024.findings-acl.973
https://doi.org/10.18653/v1/2024.findings-acl.973

A Analysis Settings

We use the CodeLlama-Instruct 7B and GPT-
3.5-turbo, where we load the checkpoint for
CodeLlama-Instruct 7B from huggingface. For
GPT-3.5-turbo, we chose to experiment with the
gpt-3.5-turbo-0613 version. And we use the GPT-
4-turbo model for scoring, where we select the
gpt-4-1106-preview version for experimentation.
For GPT model, we use the official OpenAI API
and employ the default temperature parameters and
sampling methods.

A.1 LLM Inference Details

In the inference process of CodeLlama-Instruct 7B,
we adopt a sampling method with a temperature pa-
rameter of 0.2 and top-p of 0.95. Additionally, we
utilize the vLLM (Kwon et al., 2023) inference
library, which integrates various decoding tech-
niques to accelerate sampling during generation.

A.2 Prompts for Analysis

System Prompt for Directly Generating Query

Please act as a query generator.
For the given function-level code
snippet in the repository, please
provide a query that the user might use.
This query should be able to search for
that function in a search engine.
Note that you should not provide any
other information.

User Input

Code: {code snippet}

System Prompt for Generating Query (w/ Context)

Please act as a query generator.
For the given function-level code
snippet in the repository and the
information about functions called
within those code snippets, please
provide a query that the user might use.
This query should be able to search for
that function in a search engine.
Note that you should not provide any
other information.

User Input

Code: {code snippet}
Called Function: {called code snippet}

Verification System Prompt for Query

Please play the role of a programming
expert. For the given user queries and
function pairs, please judge whether
the code can meet the needs of the
user's query based on the following
principles:
1. The code can answer and exceed the
requirements for query needs (3 points);
2. The code can satisfy a certain
category of query needs (2 points);
3. The code only meets less than 50% of
query needs (1 points);
4. The code is only minimally related
to the query (0 point).
Please provide an explanation along
with corresponding scores, noting that
you need to output in JSON format as
follows: `{"Explanation": <explanation>,
"Score": <score>}`, without providing
any other information

User Input

Code: {code snippet}
Query: {query}

System Prompt for API Explanation

Please provide a detailed explanation
of the functionality of the third-
party library API and the role of its
mandatory parameters. Please note that
you do not need to provide any
additional output.

User Input

API: {API}

System Prompt for API Explanation (w/ Document)

Please summarize the functions of the
API and the roles of its mandatory
parameters based on the API and
document information. Please note that
you do not need to provide any
additional output.

User Input

API: {API}
Document : {doc}

2064

System Prompt for Rating APIs

Please play the role of a programming
expert.
For a given API and its corresponding
documentation explanation, as well as a
user's description of the API's
functionality, please help me confirm
the degree to which the user-provided
description of the API's functionality
matches with what is described in the
documentation. If it completely matches
semantically, award 2 points; if it
partially matches, give 1 point; if
there is no match, give 0 points.
Please provide an explanation along with
corresponding scores, noting that you
need to output in JSON format as follows:
`{"Explanation": <explanation>, "Score":
<score>}`, without providing any other
information.

User Input

API Documentation Explanation: {function}
User-Provided description: {description}

B Method Settings

B.1 Prompts for Method
In the method, for summarizing the functions of
API documentation, see prompt in section A.2.

System Prompt for Generating Query (w/ Summary)

Please act as a query generator.
For a function-level code snippet and its
functional summary (to help you
understand the function's purpose)
provided by the user, please provide a
query that can be used to find the
function on search engine.
Note, do not provide any additional
information.

User Input

Code: {Code}
Code Summary: {summary}

B.2 Dataset potential performance
We used CodeBERT to initialize the model and
constructed three pre-training data settings:

• Using only query q and code c pair data.

• Using only function summary s and code c.

• Construct a triplet (q, c, s). Finally, loss func-
tion as shown in Equation 6.

System Prompt for Generating Summary

Please play the role of a programming
expert.
For the functions in a given repository
and the description of third-party API
functionalities called within those
functions, as well as summaries of
functionalities for functions called
within the repository, please provide a
summary of the specified code's
functionality. Note that you need to
offer a concise summary of the code
rather than step-by-step explanations,
and there is no need to reply with any
additional information.

User Input

Code: {Code}
API Explanation: {explanation}
Called Function Summary: {summary}

Ltri = −E

[
log

exp (q · c+) + exp (s · c+)∑N
j=1 exp (q · cj) +

∑N
j=1 exp (s · cj)

]
.

(6)

C Case Study

Codedef clean_text(text):
maps = {u'\u00d7': u'x', u'\u2013': u'-', u'\u2212': '-’}
for element in maps:

text = text.replace(element, maps[element])
text = re.sub(r'(?<=\w)\'s\b|(?<=\w)s\'(?!\w)', ' ',

text)
logging.debug(u'Clean text: "%s"', text)

return text

Ground Truth: remove all non numeric characters python
Generated Query: Python function to clean text by replacing unicode
characters and genitives
Generated Summary: The clean_text function performs text cleaning
by replacing specific Unicode characters with their ASCII equivalents
and removing genitive constructions. It logs the cleaned text for
debugging purposes and then returns it.

Codedef round_to_int(number, precision):
precision = int(precision)
rounded = (int(number) + precision / 2) // precision *

precision
return rounded

Ground Truth: change letter into number in python
Generated Query: Round to nearest integer python
Generated Summary: The round_to_int function rounds a given
number to the nearest integer multiple of a specified precision.

From the above example, it can be seen that the
query is often more concise and may exist in the
form of questions or phrases, while the summary
includes a description of the overall functionality of
the code. Note that when the function is relatively
simple, the summary and query are often similar.

2065

