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Abstract

Simultaneous Speech Translation (SiST) be-
gins translating before the entire source input
is received, making it crucial to balance qual-
ity and latency. In real interpreting situations,
interpreters manage this simultaneity by break-
ing sentences into smaller segments and trans-
lating them while maintaining the source or-
der as much as possible. SiST could bene-
fit from this approach to balance quality and
latency. However, current corpora used for
simultaneous tasks often involve significant
word reordering in translation, which is not
ideal given that interpreters faithfully follow
source syntax as much as possible. Inspired
by conference interpreting by humans utilizing
the salami technique, we introduce the Simul-
MuST-C1, a dataset created by leveraging the
Large Language Model (LLM), specifically
GPT-4o, which aligns the target text as closely
as possible to the source text by using mini-
mal chunks that contain enough information to
be interpreted. Experiments on three language
pairs show that the effectiveness of segmented-
base monotonicity in training data varies with
the grammatical distance between the source
and the target, with grammatically distant lan-
guage pairs benefiting the most in achieving
quality while minimizing latency.

1 Introduction

Simultaneous speech translation (SiST) begins
translating before the source inputs are fully re-
ceived (Luong and Manning, 2015; Ma et al., 2019;
Arivazhagan et al., 2019; Ren et al., 2020; Zeng
et al., 2021). As waiting time increases, transla-
tion quality improves with more available inputs,

1The code is available at https://github.com/
naist-nlp/SimulST. Please note that we provide dataset
creation prompts and experimental code at this stage, with
concerns regarding license terms as outlined in the License of
Source Dataset under Section 10. Once we receive approval
from the original dataset owner, we will also release the
Simul-MuST-C corpus.

Some individual services even bring it down by 90 percent.

中には 90%も 削減できる サービス もあります。
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Figure 1: An example of an English-Japanese parallel
sentence. In translations from MuST-C, the word order
changes frequently, resulting in a reversed order com-
pared to the source, as indicated by the arrows. On the
other hand, translations from Simul-MuST-C, where the
salami technique is applied to maintain monotonicity,
preserve the source’s word order as much as possible,
as shown by the arrows.

but latency impacts negatively. Starting translation
immediately reduces latency but limits available
inputs and damages quality.

To address this trade-off between quality and
latency, one might consider using a method by si-
multaneous interpreters, as they also process inputs
in real-time. This technique, i.e., “salami technique”
(Camayd-Freixas, 2011; Jones, 2015; Gillies, 2013;
Yagi, 2000), divides a sentence into units that are as
short as possible while ensuring each unit contains
enough information to be interpreted clearly. Inter-
preters translate each segment into the target lan-
guage, keeping that the output mirrors the source
input syntax, which helps to speed up the trans-
lation process. This syntax manipulation on the
target side is effective because the syntax is more
flexible than word order across different languages
(Camayd-Freixas, 2011). SiST could benefit from
this technique by using simultaneous interpretation
corpora made by professional interpreters, allowing
a model to learn the segmented-base monotonic-
ity through training with such real simultaneous
interpretation data (Ko et al., 2023).

Despite the availability of several simultaneous
interpretation corpora (Doi et al., 2021; Zhao et al.,
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2024a; Matsubara et al., 2002), their sizes remain
limited for effective model training. Collecting new
data is challenging and costly because it requires
simultaneous human interpreters. Moreover, inter-
preters employ tactics, e.g., summarization, and
they make mistakes due to the intense time pres-
sure and high cognitive load during interpretation
(Shimizu et al., 2014; Camayd-Freixas, 2011). Re-
lying on real simultaneous interpretation data is
challenging due to frequent summarizations and
omissions, which are unsuitable for model training.
However, the data’s monotonicity is necessary to
balance latency and quality.

Therefore, we introduce a segment-base mono-
tonic dataset of Simul-MuST-C (Simultaneous Mul-
tilingual Speech Translation Corpus) by rewrit-
ing existing multilingual speech translation cor-
pora, MuST-C (Di Gangi et al., 2019) in Figure 1.
Based on Sakai et al. (2024), we utilize the salami
technique, used in conference interpreting, when
prompting Large Language Models (LLMs) with
GPT-4o. This technique involves dividing origi-
nal sentences into shorter segments that contain
enough information to be interpreted, reducing the
word order changes in the target language. We in-
vestigate the effectiveness of salami technique in
a computational approach for simultaneous tasks
for multiple language pairs. Training models with
Simul-MuST-C in speech-to-text settings improves
latency minimization and translation quality for lan-
guage pairs that are grammatically distant, whereas
the improvement is less evident for pairs that are
grammatically similar. Our contributions are as
follows:

• We constructed Simul-MuST-C, a new
large-scale training dataset for SiST, using
the segment-based monotonic method, i.e.,
salami technique, across multiple language
pairs: English-to-Japanese (En-Ja), English-
to-German (En-De), and English-to-Chinese
(En-Zh). Leveraging an LLM facilitated this
process, indicating LLMs’ potential under-
standing of its technique.

• We found that improving monotonicity corre-
lates with improvements in quality and latency
in SiST.

• We show effectiveness of the salami technique
varies based on the grammatical distance be-
tween source and target languages. Grammati-
cally distant language pairs benefit the most in

achieving quality-latency tradeoff, indicating
its potential applicability to other language
pairs.

2 Background and Related Work

2.1 Simultaneous Speech Translation

In a SiST task, the model processes parts of the
source inputs and produces parts of the target out-
puts step-by-step based on its decoding policies
(Ren et al., 2020; Zeng et al., 2021; Agarwal et al.,
2023). The policies are mainly categorized as fixed
and adaptive. In fixed policies, e.g., wait-k policy
(Ma et al., 2019), the model initially reads k tokens,
and then changes reading token and writing token
operation. In adaptive policies (Zheng et al., 2020;
Liu et al., 2021; Zhang and Feng, 2022; Papi et al.,
2023), the model reads and writes tokens according
to its current source and target prefix. Among adap-
tive policies, local agreement (Liu et al., 2020) is
the incremental decoding framework that splits an
utterance into fixed-size chunks. When decoding
each new chunk, it uses outputs from the previous
chunk to guide the process, depending on prior
predictions that align with the current output.

2.2 Handling Word Order Issue for
Simultaneous Task

Unlike speech translation, which waits until all
inputs are received, SiST starts translating with par-
tial inputs. Despite this difference in translation
timing between the two, speech translation cor-
pora (Di Gangi et al., 2019) have been utilized for
simultaneous speech translation shared task (Agar-
wal et al., 2023). Meanwhile, several studies high-
light that translation data often requires significant
word order reordering (Doi et al., 2021; Sakai et al.,
2024; He et al., 2015, 2016).

This reordering is inappropriate for simultane-
ous tasks, as excessive reordering could result in
forced anticipation and other undesirable outcomes.
To deal with such word order issues, some studies
have proposed rearranging sentences to align with
the word order of the source language (He et al.,
2015; Chen et al., 2021; Guo et al., 2023; Sakai
et al., 2024). He et al. (2015) uses a rule-based
method to rewrite sentences, adjusting reference
translations to match the source language’s word
order. Applied to Japanese-to-English translation,
this approach resulted in faster and better transla-
tions with more monotonic reference translations.
Chen et al. (2021) proposes training the Simultane-
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You will be provided with a sentence in English, and your task is to interpret it into Japanese. 
Always answer in the following JSON format:{ʻsegmented_pairsʼ:List[Tuple[English, Language]], 'outputʼ:Language}

System

Instructions: 'Salami technique' in simultaneous interpretation refers to a technique where the interpreter breaks down the source 
language input into smaller, manageable segments that each contain enough information to be accurately interpreted.
1. Break down the following sentence into smaller segments for easier simultaneous interpretation.
2. Translate each segment into Language.
3. Connect the translated segments.
----------------------
Inputs: {text}

User

Output

Example Text
Almost every way we make electricity today 
except for the emerging renewables and nuclear puts out CO2.

Language = Chinese
{ʻsegmented_pairsʼ:[
[“Almost every way” ,
”⼏乎每⼀种⽅式”], 
[“we make electricity today” ,
”我们今天发电的⽅式”],
[“except for the emerging renewables and 
nuclear” , 
“除了新兴的可再⽣能源和核能”],
[“puts out CO2”,
“会排放⼆氧化碳”]],
'outputʼ:”⼏乎每⼀种我们今天发电的⽅式，
除了新兴的可再⽣能源和核能，都会排放⼆氧
化碳。”}

Language = German
{ʻsegmented_pairsʼ:[
[“Almost every way we make electricity 
today” ,
” Fast jede Art, wie wir heute Strom 
erzeugen,”], 
[“except for the emerging renewables and 
nuclear,” ,
” außer den aufkommenden erneuerbaren
Energien und der Kernenergie,”],
[“puts out CO2”,
“stößt CO2 aus.”]],
'outputʼ:” Fast jede Art, wie wir heute
Strom erzeugen, außer den aufkommenden
erneuerbaren Energien und der 
Kernenergie, stößt CO2 aus.”}

Language = Japanese
{ʻsegmented_pairsʼ:[
[“Almost every way” ,
”ほとんどすべての⽅法”], 
[“we make electricity today” ,
”私たちが今⽇電気を作る”],
[“except for the emerging renewables 
and nuclear” , 
“新興の再⽣可能エネルギーと原⼦⼒を除
いて”],
[“puts out CO2”,
“CO2を排出します”]],
'outputʼ:”ほとんどすべての⽅法で、私た
ちが今⽇電気を作るのは、新興の再⽣可能
エネルギーと原⼦⼒を除いて、CO2を排出
します”}

Figure 2: The prompt template and its example for constructing the Simul-MuST-C. The segmentation method is
based on the salami technique used by simultaneous interpreters. Each colored line indicates each language, its
prompt and corresponding outputs.

ous Machine Translation (SiMT) model with appro-
priate reference translations for each latency. This
involves generating references using various wait-k
policies and selecting the best pseudo-references
through beam search, applied to both Chinese-
to-English and Japanese-to-English translations.
Guo et al. (2023) uses reinforcement learning with
two reward functions to generate tailored refer-
ences, managing word reordering and ensuring
high-quality translations. This method, applied
to English-to-Vietnamese, English-to-Romanian,
and German-to-English, proved effective for both
fixed and adaptive policies. Sakai et al. (2024) ad-
dresses the word order problem for En-Ja SiMT and
SiST using LLM to rewrite references into a more
monotonic form, based on Chunk-wise monotonic
translation (CWMT) work (Okamura and Yamada,
2023; Fukuda et al., 2024), which segments sen-
tences according to grammatical characteristics.

2.3 Salami Technique: Segmentation in
Simultaneous Interpretation

The salami technique and its variant segmentation
or chunking method is used by human simultane-
ous interpreters (Jones, 2015; Gillies, 2013; Yagi,
2000). This technique segments a long or compli-
cated sentence into smaller, manageable chunks
during the interpreting process, ensuring that each
segmented unit contains adequate information for

clear understanding. This method follows the orig-
inal sentence structure as closely as possible and
start translating so that it allows interpreters to
avoid the extra time and concentration required
for complex syntactic rearrangements. As a result,
interpreters can translate each segment quickly and
smoothly, making it possible to keep up with the
speaker. Segmentation is crucial in simultaneous
tasks, and several computational approaches in si-
multaneous translation have also addressed the seg-
mentation issue in various ways (Shavarani et al.,
2015; Siahbani et al., 2018; Fujita et al., 2013; Oda
et al., 2014; Yarmohammadi et al., 2013).

A similar method, CWMT (Okamura and Ya-
mada, 2023), is used for the En-Ja. It breaks sen-
tences into manageable chunks based on grammati-
cal features like clauses and conjunctions, translat-
ing them sequentially while preserving their order.
This approach aims to balance translation latency
and quality in simultaneous interpretation. Fukuda
et al. (2024) describes a chunking workflow and
creates a test dataset based on Okamura and Ya-
mada (2023) rules.

3 Simul-MuST-C Construction with LLM

3.1 Prompt by Salami Technique

Inspired by the CWMT technique for dataset con-
struction using an LLM (Sakai et al., 2024), we
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Language Pair Train Dev Test

En-Ja 328,639 1,369 2,841
En-De 250,942 1,415 2,580
En-Zh 358,853 1,349 2,841

Table 1: The overview of MuST-C v2 in En-Ja, En-De,
En-Zh pairs. Each number indicates the number of lines.
MuST-C v2 is used for Simul-MuST-C.

constructed Simul-MuST-C based on the salami
technique used by a real simultaneous interpreter to
handle simultaneous inputs. Our method involves
a task definition and three steps (Figure 2).

Task Definition First, we define the task using
the salami technique (Jones, 2015; Gillies, 2013;
Yagi, 2000) to segment sentences into shorter ones
containing enough information to be interpreted as
in Instructions. We included this task definition
to refine the prompt and make the request more
specific and focused. In our preliminary study,
we asked LLMs about the salami technique in si-
multaneous interpretation. We received detailed
explanations similar to those found in Jones (2015).
The example of its response is in the Appendix A.
Based on this finding, we believe we could gener-
ate suitable monotonic text by utilizing the “salami
technique” keyword and its knowledge.

Detailed Instructions Next, there are three steps
to convert the translation to segmented-base mono-
tonic translation. We specify the target language
by adjusting the prompt in System, highlighted in
green. First, the LLM2 breaks down the segments
into shorter ones to make simultaneous interpre-
tation easier, colored in pink. Second, the LLM
translates each segment, colored in yellow. Third,
the LLM combines the translated segments into
one sentence, colored in blue. We integrated the
task definition and steps into a single prompt. The
output is JSON to obtain results for each input3.

3.2 Dataset Creation

We used MuST-C v2.0 (Di Gangi et al., 2019) for
three language pairs: En-Ja, En-De, and En-Zh.
These language pairs were selected from the eight
available in MuST-C because these pairs represent
varying degrees of word order differences from En-
glish. In addtion to that, they are covered in the
IWSLT 2023 simultaneous speech-to-text transla-

2We used GPT-4o (OpenAI et al., 2024) (2024-05-13 ver.).
3We used batch API (https://platform.openai.com/

docs/guides/batch) for cost-effective creation.

Language Pair Data Train Dev Test

En-Ja MuST-C 0.572 0.552 0.522
Simul-MuST-C 0.815 0.826 0.803

En-Zh MuST-C 0.862 0.842 0.875
Simul-MuST-C 0.945 0.953 0.948

En-De MuST-C 0.923 0.935 0.938
Simul-MuST-C 0.972 0.971 0.970

Table 2: The number shows the extent to which word
order monotonicity has been achieved against the source.
In all language pairs, word order monotonicity improved
with the Simul-MuST-C dataset.

tion task (Agarwal et al., 2023)4. For each target
language, MuST-C consists of audio recordings
from English TED Talks, which are automatically
aligned at the sentence level with their manual tran-
scriptions and translations (Must-C). This allows us
to compare word order reordering between transla-
tions in Must-C and translations in Simul-MuST-C.
Table 1 shows the number of datasets in the Simul-
MuST-C for train, dev, and test for three language
pairs. The total cost of data creation was 1,134
dollars.

4 Word Order Monotonicity Analysis

We compared word alignments between source
and target sentences in both MuST-C and Simul-
MuST-C translations to investigate word order dif-
ferences. We used Awesome-Align (Dou and Neu-
big, 2021) for this comparison and evaluated word
order monotonicity using Spearman’s correlation
coefficient. As shown in Table 2, Simul-MuST-C
has improved monotonicity compared to transla-
tions in MuST-C across all three language pairs.
However, the extent of this improvement varies
among language pairs.

En-Ja Table 2 shows that word order mono-
tonicity in Simul-MuST-C training data is 81.5%,
whereas it is 57.2% in MuST-C training data for
En-Ja, which demonstrates the most improvement
in word order monotonicity. Table 3 in En-Ja pro-
vides an example of word order monotonicity be-
tween MuST-C and Simul-MuST-C, in which the
semantically similar phrase (4) “at the 60 to 80 per-
cent level” appears at the beginning for MuST-C,
indicating excessive reordering, whereas in Simul-
MuST-C, (4) “at the 60 to 80 percent level” appears
later, closer to its position in the source.

4https://iwslt.org/2023/simultaneous
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En-Ja

Source (1) Now, / (2) we have some pilot things / (3) that do this / (4) at the 60 to 80 percent level.

MuST-C (4) 60%から80%のレベルで（at the 60 to 80 percent level） / (3) この処理を行う （do
this） / (2)試験運用を（pilot things） / (3)行っています（do）。

Simul-MuST-C (1)今 (now)、/ (2)いくつかの試験的なものがあり (we have some pilot things)、/ (3)これ
を （this） / (4) 60から80パーセントのレベルで（at the 60 to 80 percent level） / (3) 行
います（do）。

En-Zh

Source (1) I / (2) grew up / (3) on a steady diet of / (4) science fiction.

MuST-C (1) 我是 (I) / (4)在科幻小说 (science fiction) / (3) 的陪伴下 (accompanied by) / (2) 长大
的(grew up)。

Simul-MuST-C (1) 我 (I) / (2) 长 大 在 (grew up) / (3) 稳 定 的 饮 食 (a steady diet) /
(4)科幻小说(science fiction)。

En-De

Source (1) These are / (2) what people / (3) often / (4) refer to as / (5) the renewable sources.

MuST-C (1) Es sind (there are) / (5) die Erneuerbaren Energien (renewable energies), / (3) wie sie oft (as
they often) / (4) genannt warden (be called).

Simul-MuST-C (1) Dies sind (These are), / (2) was die Leute (what people) / (3) oft als die (often) /
(5) erneuerbaren Quellen (renewable energies) / (4) bezeichnen (describe).

Table 3: An example of word order monotonicity between MuST-C and Simul-MuST-C in En-Ja, En-Zh, En-De.

En-Zh Similarly, Table 2 shows that word order
monotonicity in Simul-MuST-C’s training data is
94.5%, while MuST-C’s training data is 86.2%, for
En-Zh. This monotonicity improvement is rela-
tively small when compared to the En-Ja pair. The
En-Zh example in Table 3 shows that the phrase
(4) “science fiction” appears at the front, indicating
word reordering for MuST-C, whereas in Simul-
MuST-C, (4) “science fiction” appears later, match-
ing its position in the source.

En-De The monotonicity for Simul-MuST-C and
MuST-C are 97.2% and 92.3%, respectively, for En-
De. The monotonicity improvement is the smallest
among the three language pairs, but monotonicity
is already high in MuST-C. The En-De example in
Table 3 shows that, in MuST-C, the semantically
similar phrase (5) “the renewable sources” appears
at the beginning, indicating reordering, whereas in
Simul-MuST-C, (5) “the renewable sources” ap-
pears later, closer to its position in the source.
Simul-MuST-C successfully aligns to the source
word order more, even though monotonicity is al-
ready high in MuST-C.

5 Experimental Setup

To evaluate the contribution of Simul-MuST-C to
improving the quality-latency trade-off, we com-
pare two models: one trained with MuST-C and
the other with Simul-MuST-C. For clarity in our
analysis, we present the results of the wait-k (Ma
et al., 2019) policy. We also evaluated based on the

Local Agreement (Liu et al., 2020). We describe its
differences from wait-k and provide corresponding
analyses in Appendix E.

Dataset For the training dataset, we used MuST-
C v2.0 (Di Gangi et al., 2019) for three language
pairs: En-{Ja, Zh,-De} as the baseline, and Simul-
MuST-C, which is built upon on MuST-C v2.0,
applying the salami technique. For evaluation, we
used the tst-COMMON from MuST-C v2.0.

Training and Decoding We implemented an
end-to-end speech-to-text model initialized with
two pre-trained models for its speech encoder and
text decoder using Fairseq (Ott et al., 2019), in-
tegrated into a Transformer architecture (Vaswani
et al., 2017). Following the settings from Fukuda
et al. (2023), we used HuBERT-Large (Hsu et al.,
2021) as speech encoder, and mBART50 (Tang
et al., 2021) as text decoder. We tokenized all text
data in the corpora using a multilingual Senten-
cePiece tokenizer (Kudo and Richardson, 2018)
with a vocabulary of 250,000 subwords, distributed
with the mBART50 pre-trained model. We vali-
date the trained model every 500 steps and set 8
as the early stopping. For the SimulST decoding
policy, we employed wait-k values ranging from
{3, 5, 7, 9, 11, 13, 15, 17}, with one unit set to 160
frames, adjusting the trade-off between quality and
latency. Hypotheses for input chunks were gener-
ated using a beam search with the size of five. We
also included the offline model performance for
each decoding policy for comparison purposes.
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Evaluation For quality, We used four distinct
metrics, which were chosen because each evalu-
ates using different criteria: BLEU (Papineni et al.,
2002), BLEURT (Sellam et al., 2020), COMET
(Rei et al., 2020), and COMET-QE (Rei et al.,
2021). For latency, we evaluated latency using the
SimulEval (Ma et al., 2020) toolkit. We selected
Average Lagging (AL) (Ma et al., 2019), Length
Adaptive Average Lagging (LAAL) (Papi et al.,
2022), and Average Token Delay (ATD), follow-
ing the standard practice in IWSLT 2024 5. Each
metric’s features and criteria on both quality and
latency are described in Appendix B.

6 Experimental Results on Wait-k Policy

En-Ja Figure 3 shows the results for En-Ja. With
a focus on COMET-QE_ATD, the latency gap in
ATD between MuST-C and Simul-MuST-C widens
as k increases, indicating that Simul-MuST-C not
only starts but also finishes translations faster
compared to MuST-C. Despite finishing transla-
tions faster, Simul-MuST-C’s translation quality,
as shown by COMET-QE, is better than MuST-C.
In SiST scenarios, where delays in translation can
negatively impact subsequent inputs, Simul-MuST-
C enables faster completion of translations while
maintaining the quality observed in the results.

When evaluated offline using COMET-QE, both
models achieve similar quality. This suggests
that COMET-QE assesses performance directly
from the source and target without requiring ref-
erences, making it unaffected by offline transla-
tion style in the reference. However, when using
reference-based metrics, a significant quality gap
exists. Specifically, with BLEU, the quality dif-
ference between MuST-C and Simul-MuST-C is
around 5 points, suggesting that BLEU may be
strongly influenced by translation style in refer-
ence. This discrepancy between reference-free and
reference-based metrics highlights the need for ref-
erences better suited to simultaneous translation
settings.

En-Zh Figure 4 shows that Simul-MuST-C out-
performs MuST-C for En-Zh. When focusing on
BLEU and BLEURT, COMET, COMET-QE, the
quality gap in BLEU is larger than in BLEURT,
COMET, COMET-QE. Since both the training and
evaluation data originate from MuST-C, MuST-C
might be expected to align more closely with the

5https://iwslt.org/2024/simultaneous

test, potentially enhancing BLEU. However, the
results show that Simul-MuST-C achieves a closer
surface-level match to the test than MuST-C across
all k. With a focus on BLEU, COMET-QE_ATD,
translation by Simul-MuST-C starts and ends faster
while maintaining quality. This is the same trend
we observed in En-Ja, which is ideal for SiST.

When focusing on offline, the results are rela-
tively similar, except that MuST-C performs bet-
ter in BLEU. However, Simul-MuST-C outper-
forms MuST-C in all wait-k settings, indicating
that Simul-MuST-C is better suited for simultane-
ous translation, while MuST-C is better for offline
translation. Additionally, En-Zh may also be af-
fected by offline translation style in the reference,
similar to the En-Ja. This is because there is almost
no quality gap in reference-free metrics, whereas a
slight gap appears in BLEU. However, compared
to the En-Ja, the quality gap between the two types
of metrics is smaller, probably due to the lesser
difference in word order.

En-De Figure 5 shows the results for En-De. Fo-
cusing on BLEU and COMET-QR, Simul-MuST-C
shows a slight advantage, especially as k increases.
This trend is consistent with our findings in En-
Zh. While surface-based evaluation metrics and
semantic similarity evaluation metrics could show
different tendencies sometimes, they correlates in
this case. These results suggest that Simul-MuST-
C slightly but consistently outperforms MuST-C in
quality. With a focus on ATD, both MuST-C and
Simul-MuST-C achieve nearly the same latency
level, indicating similar handling of the start and
end timing of translation. This suggests that Simul-
MuST-C does not provide an improvement, as its
results are comparable to MuST-C.

In terms of offline quality, performance is rel-
atively comparable, with MuST-C outperforming
Simul-MuST-C in BLEU, while Simul-MuST-C
shows a slight advantage in COMET-QE. How-
ever, in the simultaneous setting, Simul-MuST-C
consistently performs better. This pattern is also
evident in En-Ja and En-Zh, though the quality gap
in En-De is the smallest of the three language pairs,
likely due to differences in word order. The word
order gap is smallest in the en-de pair, which may
explain why Simul-MuST-C is effective, although
its impact is limited, as reflected by the slight word
order improvement shown in Table 2.

Summary In terms of quality, Simul-MuST-C
showed better across all three language pairs in
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Figure 3: The results for En-Ja on the tst-COMMON. Each plot, from left to right, represents wait-k values ranging
from 3, 5, 7, 9, 11, 13, 15, 17.
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Figure 4: The results for the En-Zh the tst-COMMON. Each plot, from left to right, represents wait-k values ranging
from 3, 5, 7, 9, 11, 13, 15, 17.

reference-free metrics. However, in metrics that
require a reference, the results varied depending
on the language pair and the specific metric. Some
results in BLEURT tend to show MuST-C is better,
while others showed that Simul-MuST-C was bet-
ter. Reference-based metrics may favor the offline
translation style because the references used for
evaluation do not need to maintain monotonicity

between the source and target languages. More-
over, tst-COMMON is also from the same source,
MuST-C, suggesting that the provided references
are also from offline translations. Given that the
comparison involves MuST-C, which was trained
on the same source data as the tst-COMMON test
data used in this evaluation, it’s possible that MuST-
C results appear more domain-adapted when using
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Figure 5: The results for the En-De on the tst-COMMON. Each plot, from left to right, represents wait-k values
ranging from 3, 5, 7, 9, 11, 13, 15, 17.

reference-based evaluation. Regarding latency, it
was evident in En-Ja, slightly improved in En-Zh,
and not observed in En-De. The result aligns with
the degree of word order improvement in the train-
ing data, in which the highest improvements were
observed for En-Ja, a little improvement was seen
for En-Zh, and almost no differences were found
for En-De in Table 2. More detailed analyses on
each language pair are in Appendix C.

Comparing offline and simultaneous settings, the
results across all three language pairs indicate that
Simul-MuST-C performs better in simultaneous set-
tings, while MuST-C excels in offline settings, as
evidenced by BLEU scores. These findings suggest
that Simul-MuST-C is more suited for simultane-
ous settings, whereas MuST-C is better for offline
settings. Additionally, the current test data may be
insufficient for evaluating simultaneous translation;
test data should more accurately reflect the con-
ditions of simultaneous translation such as word
order monotonicity.

7 Discussion

7.1 Generated Sentences Analysis

Table 4 shows the difference in word order mono-
tonicity between sentences generated by MuST-C
and Simul-MuST-C, and the corresponding quality
under the wait-k setting on k = 7. Simul-MuST-
C achieved better monotonicity for all language

Language Model Monoto- BLEU BLEURT COMET
Pair nicity -QE

En-Ja Original 0.565 5.72 0.346 0.593
Ours 0.770 7.88 0.386 0.657

En-Zh Original 0.878 10.2 0.427 0.551
Ours 0.912 11.36 0.421 0.558

En-De Original 0.908 13.72 0.513 0.575
Ours 0.928 14.83 0.520 0.650

Table 4: The table shows the word order monotonicity
of generated sentences and their corresponding qual-
ity with a k value of 7 in the wait-k setting on tst-
COMMON. “Original” refers to the model trained with
MuST-C, and “Ours” refers to the model trained with
Simul-MuST-C.

pairs, with varying degrees of improvement across
them. En-Ja demonstrated the most significant
improvement, followed by En-Zh, while En-De
showed the smallest improvement. Table 5 is a
generated sentence example for En-Zh. Focusing
on the word position of (2) "program", the sen-
tence generated using Simul-MuST-C places it in
the same position as in the source, whereas MuST-
C places (2) "program" at the end of the sentence,
indicating word reordering. This example indi-
cates that Simul-MuST-C contributes to aligning
to source word order as much as possible, whereas
reordering is more likely to occur in MuST-C. Ex-
amples of generated sentences in other language
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Source (1) There is / (2) a program / (3) that some of you / (4) might have heard of.

MuST-C (1)有一个 (there is a) / (3)你们 (you) / (4)可能听过的 (might have heard of ) / (2)项目 (program).

Simul-MuST-C (1) 有一个 (there is a) / (2)项目 (program) / (3) 你们中的一些人 (some of you) / (4) 可能听说过
(might have heard of )).

Table 5: An example of generated sentences focusing word order monotonicity between MuST-C and Simul-MuST-
C in En-Zh pair shows that in MuST-C, the semantically similar word (2) “program” appears at the end, indicating
excessive reordering, whereas in Simul-MuST-C, the word (2) “program” maintains the same order as in the source.

pairs are in Appendix D. This example suggests
that Simul-MuST-C contributes to monotonicity,
resulting in latency reduction. However, it’s im-
portant to note that aligning with the word order
of the source language excessively could result in
unnatural translations for the target side. This issue
becomes more critical when the language pair is
grammatically different, although such alignment
with the source language’s word order was found
to be most effective in such grammatically distant
pairs, e.g., En-Ja. To address the trade-off between
minimizing disparities in word or phrase order be-
tween the source and target languages and preserv-
ing the naturalness of the target language, future
research may consider creating test sets using the
salami technique for SiST across multiple language
pairs.

7.2 Is segmentation-base monotonicity
effective in any language pairs?

The effectiveness of segmentation-based mono-
tonicity on the target side varies among En-Ja,
En-Zh, and En-De. The results indicate that this
method is effective to balance quality and latency
for all language pairs considered. However, the
degree of effectiveness depends on the language
pair. Among the three, En-Ja benefits the most
from segmentation monotonicity. This is due to the
significant grammatical differences between En-
glish (SVO) and Japanese (SOV), as highlighted
by our analysis in Table 2. While En-Zh and En-
De pairs also demonstrate effectiveness, the word
order differences are not as evident compared to
En-Ja. Thus, En-Ja benefits this segmentation the
most, whereas, in other language pairs, the effec-
tiveness may vary. Overall, segmentation-based
monotonicity proves effective especially when the
language pair is grammatically distant, and has the
potential to be applied to multiple language pairs
and directions.

8 Conclusion

We proposed Simul-MuST-C, a dataset, and a
method to rearrange sentences into segmentation-
based monotonic data for simultaneous speech
translation using LLMs in En-{Ja, Zh, De}. This
method, based on the salami technique used in con-
ference interpreting, showed that Simul-MuST-C
improves quality and latency, especially in gram-
matically distant language pairs, indicating a cor-
relation between word order monotonicity and
quality-latency improvement. Using LLMs is cost-
effective and helps address the scarcity of such
datasets, which require extensive human labor. Fu-
ture work will expand this dataset to end-to-end
speech-to-speech translation.

9 Limitations

What is the Ideal Degree of Monotonicity?
Simul-MuST-C aims to align closely with the word
or phrase order of the source, but not to achieve
100 percent monotonicity, as perfect monotonic-
ity can result in unnaturalness in the target lan-
guage. To maintain naturalness, some reordering is
allowed. This trade-off balances monotonicity with
the source and naturalness in the target language.
Table 2 shows improvements in monotonicity from
MuST-C to Simul-MuST-C, particularly in En-Ja,
indicating effective management of the trade-off
between monotonicity and naturalness. The opti-
mal level of monotonicity depends on factors like
content and input speed, but this study shows that
improvements in monotonicity correlate with better
latency and quality in SiST.

Scalability of the other language pairs We fo-
cused on En-{Ja, zh, De}, following the simulta-
neous track of IWSLT20236. The proposed corpus
construction method for SiST could be applied to
many other language pairs. However, our experi-
mental results show it improves quality-latency for
grammatically distant pairs (e.g., En-Ja) but have a

6https://iwslt.org/2023/simultaneous
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limited impact on similar pairs (e.g., En-De). The
scarcity of multilingual corpora for SiST remains a
challenge for applying the method broadly. There-
fore, addressing these constraints is necessary for
broader application.

Evaluation Dataset for SiST The evaluation
data for the SiST system commonly uses the tst-
COMMON from the MuST-C corpus for speech
translation. However, such test data is inappropri-
ate for SiST (Sakai et al., 2024; Doi et al., 2024;
Zhao et al., 2021). Simultaneous interpretation data
curated by humans could be an alternative, but it is
also unsuitable for system evaluation (Zhao et al.,
2024b; Doi et al., 2024) because it contains critical
errors such as omissions or summarizations, due to
the high cognitive overload and intense time pres-
sure faced by interpreters. In our research, we used
tst-COMMON from the MuST-C corpus, however,
tst-COMMON may be inappropriate for SiST eval-
uation either since the reference for tst-COMMON
is offline translation, which includes frequent re-
ordering. Using reference-based metrics with such
test data may be biased toward the offline transla-
tion style. Therefore, we believe that evaluation
data specifically designed for SiST is necessary,
and we call for such data to expand this research
area.

Applicability for local LLMs We used GPT-4o
for dataset construction and designed the prompts
specifically for its capabilities. As a result, these
prompts may require some adjustments to work
effectively with other LLMs. Nonetheless, our
study aims to develop methods that could be ap-
plied across various languages. Therefore, despite
being optimized for GPT-4o, our prompts retain
enough flexibility to be useful with other language
models, thereby fulfilling our objective.

10 Ethical Considerations

License of Source Dataset Simul-MuST-C orig-
inates from MuST-C7, which is governed by the
CC BY-NC-ND 4.0 license 8. Under this license,
“NoDerivatives” implies that any modifications,
remixes, or transformations cannot be distributed.
Consequently, we can make internal adjustments
without distributing them and include examples
within the paper. MuST-C itself is from TED Talk

7https://mt.fbk.eu/must-c
8https://creativecommons.org/licenses/

by-nc-nd/4.0

data and inherits the same CC BY-NC-ND 4.0 li-
cense. When we unveil exclusively the disparities
between Simul-MuST-C and MuST-C, we will ex-
plicitly outline the source information along with
the CC BY-NC-ND 4.0 license. Out of ethical
considerations, we intend to release it only after
securing permission or arranging with the MuST-
C administrators. We will refrain from releasing
the Simul-MuST-C corpus until the necessary per-
missions are obtained. Providing the experiment
code poses no issues, enabling the replication of
the corpus. Hence, even if making the data publicly
available is deemed unfeasible, we are confident in
the reproducibility of Simul-MuST-C.

Ownership rights about Simul-MuST-C The
Simul-MuST-C was created GPT-4o and is there-
fore subject to OpenAI’s license terms9. OpenAI
assigns to us all rights, titles, and interests in and
to the output.

Moderations Simul-MuST-C is free of harmful
information, sourced from TED Talks. Moreover,
our check with OpenAI Moderation APIs10found
no harmful content.
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A Does LLM Understand Salami
Technique?

In our preliminary study, we found that LLM has
the potential understanding the salami technique
used by simultaneous interpreters. Table 6 shows
an example of its prompt and the answer.

B Detailed Experimental Settings

Training and Decodings We implemented an
end-to-end speech-to-text model initialized with
two pre-trained models for its speech encoder and
text decoder using Fairseq (Ott et al., 2019), in-
tegrated into a Transformer architecture (Vaswani
et al., 2017), following the settings from Fukuda
et al. (2023)11, the speech encoder was initialized
with HuBERT-Large (Hsu et al., 2021), comprising
a feature extractor trained on 60K hours of unla-
beled speech data from Libri-Light (Kahn et al.,
2020) and Transformer encoder layers. The feature
extractor has seven convolutional layers with ker-
nel sizes of (10, 3, 3, 3, 3, 2, 2), strides of (5, 2, 2,
2, 2, 2, 2), and 512 channels. The text decoder was
initialized with the decoder of mBART50 (Tang
et al., 2021). We tokenized all text data in the cor-
pora using a multilingual SentencePiece tokenizer
(Kudo and Richardson, 2018) with a vocabulary of
250,000 subwords, distributed with the mBART50
pre-trained model. We validate the trained model
every 500 steps and set 8 as the early stopping. The
maximum source length is set to 400,000 frames,
and the target length is set to 1,024 tokens. Gradi-
ent accumulation and data-parallel computations
were employed to achieve a batch size of approxi-
mately 32 million tokens. A single NVIDIA A6000
(48GB) was used for three days. The decoder con-
sists of 12 Transformer layers, with embedding and
linear projection weights shared, totaling a size of
250,000. Each Transformer layer and feed-forward
layer has a size of 1,024 and 4,096, respectively,
with 16 attention heads. The activation function is
ReLU, and layer normalization is applied before
the attention operations. Speech input is provided
as waveforms with a 16 kHz sampling rate, nor-
malized to zero mean and unit variance. During
training, each source audio was augmented before
normalization, with a probability of 0.8. We used
Adam with β1 = 0.99, β2 = 0.98, and the learning
rate is 2.5e-4.

11We used the NAIST-SimulST framework (https://
github.com/ahclab/naist-simulst) and followed the de-
fault parameter settings.
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Query What is salami technique in simultaneous interpretation?

Answer The “salami technique” in simultaneous interpretation refers to a method where the speaker breaks down their
speech into smaller, more manageable segments or “slices,” similar to how a salami might be sliced. This
technique is often employed to facilitate the interpreter’s work, making it easier to keep up with the speaker and
maintain accuracy in real-time translation.

Here’s how it generally works:

1. Shorter Phrases: The speaker consciously uses shorter sentences or phrases, pausing slightly between each
one. This allows the interpreter to process and translate each segment without falling behind.
2. Natural Pauses: By incorporating natural pauses and breaks into their speech, the speaker provides the

interpreter with regular opportunities to catch up and ensure that the audience receives a coherent and accurate
translation.
3. Clarity and Pacing: The speaker pays close attention to clarity and pacing, avoiding overly complex or

lengthy sentences that might overload the interpreter.

The salami technique is particularly useful in high-stakes, fast-paced environments where precision and timeliness
are critical, such as international conferences, diplomatic negotiations, and business meetings. This approach
helps ensure that both the speaker’s message and the interpreter’s translation remain clear and accurate, benefiting
the entire audience.

Table 6: The prompt and its answer for salami technique .

For the SimulST decoding policy, we
employed wait-k values ranging from
{3, 5, 7, 9, 11, 13, 15, 17}, with one unit set
to 160 ms, adjusting the trade-off between quality
and latency. We utilized local agreement with
n = 2 (LA-2). The chunk size is from 400, 600,
800, and 1000 frames to balance quality-latency.
Hypotheses for input chunks were generated using
a beam search with a beam size of five.

Quality Evaluation We evaluate translation qual-
ity using four distinct metrics, which were cho-
sen because each evaluates using different criteria:
surface-level textual similarity, surface-level-free
semantic similarity, and the necessity of a refer-
ence or source. BLEU (Papineni et al., 2002) eval-
uates translations based on surface-level n-gram
matching between the reference sentences and gen-
erated sentences. BLEURT (Sellam et al., 2020)
evaluates the semantic similarity between gener-
ated and reference sentences based on embeddings
from language models. COMET (Rei et al., 2020)
uses sentence-level embeddings of the hypothesis,
reference, and input, leveraging a multilingual pre-
trained model. COMET-QE (Rei et al., 2021), an
extension to reference-free evaluation, uses a multi-
lingual embedding model to eliminate dependence
on the reference and evaluates the similarity be-
tween the source and generated sentences directly.

Latency Evaluation We evaluated latency using
the SimulEval (Ma et al., 2020) toolkit. We se-
lected Average Lagging (AL) (Ma et al., 2019),

Length Adaptive Average Lagging (LAAL) (Papi
et al., 2022), and Average Token Delay (ATD), fol-
lowing the standard practice in IWSLT 2024 12.
AL measures translation start times. LAAL also
evaluates the start timing of its translation but is
more length-adaptive compared to AL, meaning it
evaluates longer outputs more fairly. Meanwhile,
ATD considers both the start and end timings of the
translation.

C Detailed Experimental Results
Analyses in Each Language Pair in
Wait-k.

En-Ja Figure 3 shows the results for the En-Ja.
When focusing on BLEURT, COMET, COMET-
QE, Simul-MuST-C demonstrates superior perfor-
mance over MuST-C, showing significant differ-
ences. However, MuST-C tends to outperform as
k increases in BLEU. This implies that MuST-C
is more likely to align with the test data, poten-
tially achieving better BLEU. In terms of latency
in AL, Simul-MuST-C outperforms MuST-C with
a noticeable difference. However, in LAAL, al-
though Simul-MuST-C still performs better, the
gap is smaller compared to that in AL. This sug-
gests that the difference is influenced by the char-
acteristics of the metrics, as LAAL handles longer
outputs more fairly.

En-Zh Figure 4 shows the results for En-Zh.
When focusing on BLEU and {BLEURT, COMET,

12https://iwslt.org/2024/simultaneous
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COMET-QE}, the quality gap in BLEU is larger
than in {BLEURT, COMET, COMET-QE Simul-
MuST-C outperforms MuST-C. This indicates that
while Simul-MuST-C outperforms in surface-level
textual matching, there is not much difference be-
tween MuST-C and Simul-MuST-C when evalu-
ating semantic similarity, despite Simul-MuST-C
being slightly better. While trends in surface-based
evaluation metrics and semantic similarity evalua-
tion metrics could sometimes differ, however they
correlate in this case. These results suggests that
Simul-MuST-C is slightly, but consistently, better
than MuST-C. For latency, in both AL and LAAL,
Simul-MuST-C is slightly faster than MuST-C,
with the gap remaining constant even as k increases,
suggesting Simul-MuST-C could translate faster.

En-De Figure 5 shows the results for En-De. In
terms of quality, as measured by BLEU, Simul-
MuST-C is slightly better than MuST-C, and the
quality gap increases as wait-k increases. We
found a similar pattern that we observed in En-
Zh: with both the training and evaluation data are
from MuST-C, suggesting that MuST-C is more
likely to align with the test data, possibly improv-
ing the BLEU. Nevertheless, the outcomes show
that Simul-MuST-C achieves a closer surface-level
match to the test data than MuST-C. Meanwhile, in
BLEURT and COMET, MuST-C performs slightly
better when wait-k is small, and the gap narrows
as wait-k increases, with Simul-MuST-C eventu-
ally surpassing it. In AL and LAAL, MuST-C
and Simul-MuST-C are almost the same, indicat-
ing both could start translation at the same latency.
Similarly, in ATD, MuST-C and Simul-MuST-C
achieve nearly the same level of latency. This is dif-
ferent from what we observed in En-Ja and En-Zh,
where Simul-MuST-C showed a distinct advantage.

D Analysis of generated sentences under
the Wait-k setting on k = 7

En-Ja Table 7 shows an example that sentence
generated using Simul-MuST-C aligns with the
source phrase order, while the sentence generated
using MuST-C reverses its monotonicity compared
to the source, shown as (1) to (2). Additionally in
Table 8, when the inputs become longer, MuST-C
fails to translate all the content from the source,
omitting (3), (4), and (5). On the other hand,
Simul-MuST-C translates all the content, maintain-
ing alignment with the source order. This indicates
that Simul-MuST-C could align with the word or-

der in the source language and also translate more
effectively.

En-Zh Similar to the case shown in the En-Ja (Ta-
ble 8), when the sentence becomes relatively longer,
MuST-C cannot translate the entire source content,
omitting the phrase (2) “it’s a very good media op-
portunity”. However, Simul-MuST-C translates all
the content from the source, ensuring word order
monotonicity (Table 8). This indicates that En-Zh
also gains advantages from Simul-MuST-C, main-
taining alignment with the original language’s word
order and maintaining quality.

En-De Table 7 provides an example of generated
output, highlighting the position of the word (2)
"at all". In sentences generated with Simul-MuST-
C, (2) "at all" aligns its original position from the
source, while in those generated with MuST-C, it
is placed in the middle of the sentence, indicating
word reordering. With longer sentences, MuST-C
struggles to fully cover the source inputs in En-Ja
and En-Zh pairs, however, both MuST-C and Simul-
MuST-C generate all source content while retaining
the initial word order in En-De, as illustrated in
Table 8.

E Experimental Results on Local
Agreement

En-Ja Figure 6 shows that when evaluating with
{BLEU, COMET}, MuST-C consistently outper-
forms Simul-MuST-C, demonstrating superiority.
In BLEURT, Simul-MuST-C excels with smaller
chunk sizes, whereas MuST-C surpasses Simul-
MuST-C as the chunk size increases. Conversely,
across all chunk size settings in COMET-QE,
Simul-MuST-C consistently exhibits superior per-
formance. These discoveries indicate that MuST-C
is better aligned with test data, which may be pos-
sible to increase reference-based quality metrics
{BLEU, BLEURT, COMET}. Regarding latency,
Simul-MuST-C outperforms in {AL, LAAL, ATD},
as it starts translations much faster across all chunk
sizes. Additionally, in COMET-QE_ATD, Simul-
MuST-C not only starts translating faster but also
completes translations faster. This feature is par-
ticularly advantageous in SiST scenarios, where
delays in translation could detrimentally impact
subsequent inputs. Simul-MuST-C facilitates faster
completion of translations while maintaining qual-
ity, which is the same tendency we observed in
wait-k setting on En-{Ja, Zh}. In an offline setting,
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En-Ja
Source (1) And you know / (2) what I’ve learned?

MuST-C (2)私が学んだことは (what I’ve learned) / (1)分かりますか (you know)?

Simul-MuST-C (1)あなたは知っていますか (you know)、/ (2)私が学んだことを (what I’ve learned)?

En-De
Source (1) That wouldn’t have been a problem / (2) at all.

MuST-C (1) Das wäre (that would be) / (2) überhaupt (at all) / (1) kein Problem gewesen (no problem).

Simul-MuST-C (1) Das wäre nicht ein Problem gewesen (that would be not a problem) / (2) überhaupt (at all).

Table 7: Examples of generated sentences with an emphasis on word order monotonicity in Wait-k.

En-Ja
Source (1) Now, I don’t know / (2) how you play, / (3) but I want to show you /

(4) a couple of unique clips / (5) fresh from the wild.

MuST-C (2)皆さんがどう遊ぶか (how you play) / (1)分かりません (I don’t know)。

Simul-MuST-C (1) いいえ、私はわかりません (I don’t know)、/ (2) あなたがどのように遊ぶか
(how you play)、/ (3)しかし、私はあなたに見せたいです (but I want to show you)、/
(4)いくつかのユニークなクリップを (a couple of unique clips)、/
(5)フローから新鮮な (fresh from the wild)。

En-Zh
Source (1) But that being said, / (2) it’s a very good media opportunity.

MuST-C (1)但是那不是说 (but that is not to say)。

Simul-MuST-C (1) 但 这 话 是 说 不 出 来 的 (but word are cannot be said) /
(2)这是一种非常好的媒介机会 (this is a very good media opportunity.)。

En-De
Source (1) Today, / (2) more than ever, / (3) a little honesty /(4) is going to / (5) go a long way.

MuST-C (1) Heute (today) / (2) mehr als je zuvor (more than ever before), / (3) ein bisschen Ehrlichkeit
(a bit honesty) / (4) wird (will) / (5) weitergehen (go further).

Simul-MuST-C (1) Heute (today), / (2) mehr denn je (more than ever), / (3) ein wenig Ehrlichkeit (a bit honesty)
/ (4) wird (will) / (5) ankommen (arrive).

Table 8: Examples of generated sentences focusing on omission in Wait-k.
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Figure 6: The results for the En-Ja pair on the tst-COMMON. Each plot, from left to right, represents a chunk size
ranging from 200, 400, 600, 800, 1000.
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Figure 7: The results for the En-Zh pair on the tst-COMMON. Each plot, from left to right, represents a chunk size
ranging from 200, 400, 600, 800, 1000.
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Figure 8: The results for the En-De pair on the tst-COMMON. Each plot, from left to right, represents a chunk size
ranging from 200, 400, 600, 800, 1000.

evaluated with COMET-QE, Simul-MuST-C per-
forms better than MuST-C, with a larger quality
gap between the two compared to that observed
in wait-k under the same conditions. However,
when evaluated with BLEU, MuST-C outperforms
Simul-MuST-C. These quality gaps may be due to
differences in the evaluation metrics, emphasizing
the need for test data that more accurately reflects

the specific demands of simultaneous translation.

En-Zh MuST-C consistently outperforms Simul-
MuST-C across all quality metrics, particularly no-
ticeable with smaller chunk sizes as shown in Fig-
ure 7. However, as the chunk size increases, the
quality gap diminishes until both models achieve
similar levels of quality. When on COMET-QE-
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{AL, LAAL, ATD}, Simul-MuST-C achieves trans-
lations faster and reaches the quality upper bound
sooner than MuST-C, meanwhile MuST-C achieves
better quality when the chunk size is small but
translation speed is slower than Simul-MuST-C.
Regarding latency, Simul-MuST-C excels in AL,
LAAL, and ATD, initiating translations much faster
across all chunk sizes. Moreover, in ATD, Simul-
MuST-C not only starts translating faster but also
completes translations more quickly. This feature is
particularly advantageous in SiST scenarios, where
delays in translation could adversely affect consec-
utive inputs. Simul-MuST-C’s faster completion of
translations is similar to the observed tendency in
the wait-k setting for En-Ja and En-Zh and Local
Agreement on En-Ja. Evaluated with COMET-QE
in offline settings, both MuST-C and Simul-MuST-
C achieve similar quality outputs, while MuST-C
performs better in BLEU. This may indicate a mis-
match in using offline translation-style test data
for simultaneous settings, as observed in previous
analyses. There is little quality gap between the
two models in offline evaluations with COMET-
QE, but in simultaneous settings, Simul-MuST-C
shows better latency, though not necessarily better
quality. In contrast, under the wait-k policy, Simul-
MuST-C outperformed in both latency and quality.
This suggests that, in this decoding policy, there
is room for improvement to enhance quality while
minimizing latency for this language pair.

En-De Figure 8 shows when the chunk size is
small, Simul-MuST-C achieves comparable quality
levels to MuST-C in terms of BLEU. However, as
the chunk size increases, MuST-C demonstrates
better performance. Similar trends are observed
in BLEURT and COMET metrics, with MuST-C
consistently outperforming Simul-MuST-C. This
may be attributed to the fact that translation sim-
ilarity between tst-COMMON and MuST-C, en-
hances reference-based scores. In addition to that,
in COMET-QE, both MuST-C and Simul-MuST-
C achieve similar quality levels across different
chunk sizes, suggesting that Simul-MuST-C might
not be as effective in terms of Local Agreement in
En-De for improving its quality. On the other hand,
Simul-MuST-C contributes to latency improvement
as Simul-MuST-C excels in AL, LAAL, and ATD.
This speed advantage becomes clear as the chunk
size increases. Moreover, in ATD, Simul-MuST-
C not only starts translating faster but also com-
pletes translations more quickly. In SiST scenarios,

Language Data Monoto- BLEU BLEURT COMET
Pair nicity -QE

En-Ja Original 0.633 13.69 0.486 0.765
Ours 0.815 9.74 0.487 0.772

En-Zh Original 0.919 22.55 0.573 0.730
Ours 0.954 22.24 0.563 0.757

En-De Original 0.949 22.84 0.616 0.725
Ours 0.962 22.88 0.610 0.728

Table 9: The table shows the word order monotonicity
of generated sentences and their corresponding quality
with a chunk-size of 600 in the Local Agreement setting
on tst-COMMON. “Original” refers to the model trained
with MuST-C, and “Ours” refers to the model trained
with Simul-MuST-C.

where delays in translation might impede incoming
inputs, these results prove beneficial. Simul-MuST-
C’s quick translation completion corresponds with
the patterns, in the wait-k setting for En-Ja and
En-Zh, as well as Local Agreement in En-Ja and
En-Zh, although this was not observed in wait-k in
En-De. In reference-free metrics like COMET-QE,
Simul-MuST-C performs better, while in reference-
based metrics such as BLEU, MuST-C shows su-
perior results in offline settings. This discrepancy
between different metrics was also observed in pre-
vious analyses. When comparing simultaneous
and offline settings, Simul-MuST-C demonstrates
a significant advantage in terms of latency. How-
ever, regarding quality, Simul-MuST-C performs
slightly better with smaller chunk sizes, but as the
chunk size increases, MuST-C begins to slightly
outperform it. These findings suggest, as seen in
the En-Zh local agreement setting, that this adap-
tive decoding policy may not be fully optimized for
maximizing quality while maintaining low latency.
This trend is evident in language pairs with similar
word orders.

Summary Although Simul-MuST-C is effective
across all three language pairs under the wait-k pol-
icy, its effectiveness in the local agreement setting,
which represents adaptive decoding, depends on
the language pair. In En-Ja, where the word order
gap is significant, the results with COMET-QE sug-
gest that Simul-MuST-C is effective. However, in
language pairs with more similar word orders, such
as en-zh and en-de, Simul-MuST-C effectively min-
imizes latency but falls short in achieving compa-
rable quality. These findings suggest that adaptive
decoding policy could be further refined, particu-
larly for language pairs with similar word orders,
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En-Ja

Source (1) So / (2) we thought / (3) we would start writing / (4) a brand new chapter of mobility.

MuST-C (1)それで (So) / (2)私たちは (we) / (4)「移動性」の新しい章を (a brand new chapter of
mobility) / (3)書き始めることにしました (start writing)。

Simul-MuST-C (1) だ か ら (So)、/ (2) 私 た ち は 考 え ま し た (we
thought)、/ (3)始めるだろうと、書くことを、(would start writing) /
(4)全く新しい章を (a brand new chapter)。

En-Zh

Source (1) He / (2) robbed / (3) every ounce of hope / (4) from my being.

MuST-C (1) 他 (he) / (3) 把一切希望 (puts all hope) / (4) 从我身上 (from my being) /
(2)抹去了 (erase)。

Simul-MuST-C (1)他 (he) / (2)剥夺了 (robbed) / (3)每一盎司的希望 (every ounce hope) / (4)从我的存在
中 (from my being)。

En-De

Source (1) They / (2) need / (3) to tell / (4) me / (5) about my brand.

MuST-C ((1) Sie (you) / (2) müssen (must)/ (4) mir (me) / (5) von meiner Marke (my brand) /
(3) erzählen (tell).

Simul-MuST-C (1) Sie (you) / (2) müssen (must) / (4) mir (me) / (3) erzählen (tell) / (5) von meiner Marke (my
brand).

Table 10: Word order monotonicity focused example of generated sentences when Loal Agreement is decoding
policy.

to better balance quality and latency when using
Simul-MuST-C. Additionally, as observed in the
wait-k analysis, the current test data tends to favor
offline translation-style outputs, as evidenced by
the offline quality gap between BLEU and COMET-
QE. To ensure fair evaluation in simultaneous set-
tings, test data specifically designed for simultane-
ous translation is needed.

F Analysis of generated sentences in
Local Agreement

Table 9 shows the difference in word order mono-
tonicity between sentences generated by MuST-C
and Simul-MuST-C, and the corresponding quality
under the Local Agreement setting with a chunk
size of 600. Simul-MuST-C demonstrates better
monotonicity across all language pairs, display-
ing differing levels of improvement among them.
En-Ja exhibited the most notable enhancement, fol-
lowed by En-Zh, with En-De showing the least
improvement.

En-Ja An example showed in Table 10 demon-
strates how sentences generated using Simul-
MuST-C aligns to the source word order, while re-
orderings, as seen in phrases such as (3) "we would
start writing" and (4) "a brand new chapter of mo-
bility," occur with MuST-C-generated sentences.
On the other hand, in wait-k settings, omission
is observed more frequently in sentences gener-
ated by MuST-C-trained models (Table 8), whereas

this decoding policy decreases the the probability
of omitting words, even in sentences produced by
MuST-C. This implies that adaptive policy may be
more suitable for SiST than fixed policy.

En-Zh An example of a generated sentence is
shown in Table 10, we observe examples of how
sentences generated using Simul-MuST-C and
MuST-C differ. For instance, the word similar to (2)
"robbed" appears at the end in MuST-C-generated
sentences, while its position in Simul-MuST-C mir-
rors that of the source. Additionally, omission is
less likely to occur in models trained with MuST-C,
consistent with observations in the En-Ja pair. Both
MuST-C and Simul-MuST-C-generated sentences
cover all contents present in the source text, shown
in Table 11. This also suggests that an adaptive
policy is better suited for SiST than a fixed policy.

En-De In Table 9, the smallest disparity in mono-
tonicity between MuST-C and Simul-MuST-C
among the three language pairs is observed in the
En-De pair. Table 10 shows the semantically simi-
lar word (3) tell in the source appears at the end in
MuST-C, whereas the position of the (2) “tell” is
relatively close to the order in the source in Simul-
MuST-C. In addition to that, Table 11 shows that
word order reversal occurs from (3) to (6) in the
sentence generated by the MuST-C-trained model,
whereas those generated by the Simul-MuST-C-
trained model align with the source. However, such
word reordering cases are rare occurrences, as indi-
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En-Ja

Source (1) Now, I don’t know / (2) how you play, / (3) but / (4) I want to show you / (5) a couple of
unique clips / (6) fresh from the wild.

MuST-C (2)皆さんがどう遊ぶか (how you play) / (1)分かりません (I don’t know) / (3)が (but) / (5)
いくつかクリップを (a couple of unique clips) / (4)お見せしましょう (to show you) / (6)
野生のクリップです (fresh from the wild)

Simul-MuST-C (1)いいえ、私は知りません (I don’t know)、/ (2)あなたがどのように遊ぶか (how you
play)。/ (3)しかし (but)、/ (4)私はあなたに見せたいです (I want to show you)、/ (5)い
くつかのユニークなクリップを (a couple of unique clips)、/ (6)野生から新鮮な (fresh
from the wild)。

En-Zh

Source ((1) But / (2) that being said, / (3) it’s a very good media opportunity.

MuST-C (1)但 (but) / (2)这只是说而已 (this is just saying)。/ (3)这是个非常好的媒体机会 (this is a
very good media opportunity)。

Simul-MuST-C (1)但是 (but), / (2)话虽如此 (having said that), / (3)这是一个非常好的媒体机会 (this is a
very good media opportunity)。

En-De

Source (1) Because / (2) the lesson / (3) I’m trying / (4) to learn / (5)myself / (6) this week is / (7) that
it’s okay / (8) to let go.

MuST-C (1) Denn (because) / (2) das ist die Lektion (the lesson), / (3) die ich (I) / (6) in dieser Woche
(this week) / (5) selbst (myself ) / (4) zu lernen (to learn) / (3) versuche (try), / (7) weil es okay ist
(because it is okay), / (8) loszulassen (to let go).

Simul-MuST-C (1) Weil (because) / (2) die Lektion (the lesson), / (3) die ich (I) / (4) zu lernen (to learn) / (3)
versuche (try), / (5) selbst (myself ) / (6) diese Woche (this week), / ist , dass es in Ordnung ist , /
(8) loszulassen (to let go).

Table 11: Example of generated sentences from Local Agreement. Apart from Wait-k, where omission happens a
lot, Local Agreement covers source side contents much better.

cated in the Table 9, where the En-De pair already
achieves high word order monotonicity in MuST-C.
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