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Abstract

Vision-language models (VLMs) like CLIP
have demonstrated remarkable applicability
across a variety of downstream tasks, including
zero-shot image classification. Recently, the
use of prompts or adapters for efficient transfer
learning (ETL) has gained significant attention
for effectively adapting to downstream tasks.
However, previous studies have overlooked the
challenge of varying transfer difficulty of down-
stream tasks. In this paper, we empirically an-
alyze how each ETL method behaves with re-
spect to transfer difficulty. Our observations
indicate that utilizing vision prompts and text
adapters is crucial for adaptability and general-
izability in domains with high difficulty. Also,
by applying an adaptive ensemble approach
that integrates task-adapted VLMs with pre-
trained VLMs and strategically leverages more
general knowledge in low-difficulty and less
in high-difficulty domains, we consistently en-
hance performance across both types of do-
mains. Based on these observations, we pro-
pose an adaptive ensemble method that com-
bines visual prompts and text adapters with
pre-trained VLMs, tailored by transfer diffi-
culty, to achieve optimal performance for any
target domain. Upon experimenting with ex-
tensive benchmarks, our method consistently
outperforms all baselines, particularly on un-
seen tasks, demonstrating its effectiveness.

1 Introduction

Vision-language models (VLMs), such as
CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021), have demonstrated remarkable applicability
across various downstream tasks such as image
classification. A distinctive feature of these VLMs
for image classification is their ability to classify
unseen classes that have not been encountered
during pre-training through zero-shot inference,
which is not possible to traditional vision models.

∗equal contribution

The primary challenge of VLMs for downstream
tasks is to excel in classifying both seen and un-
seen class sets. In the context of VLM classifica-
tion tasks, the ability to accurately classify seen
class sets is termed adaptability, while the capa-
bility to extend this proficiency to unseen class
sets is referred to as generalizability. To boost
these abilities, recent research has introduced effi-
cient transfer learning (ETL) methods to fine-tune
VLMs. One strategy involves the use of soft prompt
tuning (Zhou et al., 2022b,a; khattak et al., 2023;
Khattak et al., 2023). Another research direction in-
volves adapter-style tuning (Gao et al., 2023; Zhang
et al., 2022; Zhu et al., 2023b) either by adjust-
ing specific parameters or employing cache-based
techniques. These approaches empower VLMs to
swiftly adapt to new tasks using only a few samples
(i.e. few-shot image classification task).

However, previous approaches do not consider
a significant factor for adapting to downstream
tasks: varying transfer difficulty (Yu et al., 2023).
This refers to the challenge of adapting pre-trained
VLMs according to the target domain. For instance,
transferring pre-trained VLMs to specific fine-
grained domains, such as FGVC Aircraft, is more
challenging than transferring to general coarse-
grained domains. In a real-world scenario, it is hard
to predict the specific target task and domain that
will emerge. Therefore, without investigating how
each type of ETL behaves in response to different
levels of transfer difficulty and applying an adap-
tive method based on this investigation, the result
for each target domain can be suboptimal. Some
works manually train models differently for each
dataset (Gao et al., 2023; Zhang et al., 2022), but
this approach is not feasible in real-world scenarios
as prior knowledge for the target task is not given.

To overcome these limitations and apply an adap-
tive method for tuning adapters and prompts for
downstream tasks, we empirically investigate the
characteristics of applying different tuning methods
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Figure 1: Overview of APEX compared to the conventional ETL methods. APEX exhibits two key differences: (a):
Firstly, APEX integrates prompt tuning for the visual encoder and a linear adapter for the text encoder, each tailored
to the specific properties of their respective modalities, which performs better on high-difficulty domains. (b):
Secondly, APEX integrates an adaptive coefficient within the text encoder to strategically balance pre-adapter and
post-adapter features to properly combine task-specific knowledge and general VLMs knowledge based on transfer
difficulty. A detailed explanation, including notations and the algorithm, can be found in Section 4 and Appendix B.

for each modality on multiple domains with vary-
ing transfer difficulty, revealing four key findings.
Firstly, we find that visual prompt tuning (VPT)
generalizes better to unseen classes compared to
text prompt tuning (TPT) in cases of high-difficulty
domains, as TPT tends to overfit on base classes for
these domains. (▷ Obs. 1). This occurs because, in
high-difficulty domains, the class separability of vi-
sual features from a visual encoder is low, causing
TPT to overly adapt in classifying these challeng-
ing features (▷ Obs. 2). Moreover, text adapter (TA)
can significantly boost the adaptability of VPT, re-
sulting in high adaptability and generalizability,
especially for highly difficult domains (▷ Obs. 3).
However, fine-tuning with adapters could compro-
mise generalizability in easier domains. Our last
observation is that combining pre- and post-adapter
features to leverage pre-trained VLMs knowledge
can address this concern with a proper balance be-
tween them. For instance, using more pre-adapter
features can maintain generalizability in easier do-
mains. The ideal balance depends on the domain’s
difficulty, highlighting the need to adjust the en-
semble coefficient accordingly (▷ Obs. 4).

Based on our observations, we present a
APEX (text Adapter, visual Prompt, and adaptive
Ensemble for cross(X)-modality) that utilizes an
adaptive ensemble with VPT and TA. Specifically,
we use the combination of VPT and TA, which
have shown high generalizability and adaptability
for high-difficulty domains, as shown in Obs. 1-3
(Fig. 1(a)). Also, motivated by Obs. 4, we employ
an adaptive ensemble approach that determines the

optimal ensemble coefficient for each domain by
using the distances to learned classes in pre-trained
VLMs to estimate transfer difficulty (Fig. 1(b)).
This adaptive ensemble controls the level of adapta-
tion, by primarily utilizing task-specific knowledge
with adapted VLMs for high-difficulty domains but
leveraging general knowledge for low-difficulty
domains, as pre-trained VLMs already possess suf-
ficient ability and prevent an overfitting from ex-
cessive adaptation. With this, our method acts as
a difficulty-agnostic solution, enabling the model
to effectively adapt to all target domains regard-
less of transfer difficulty. In summary, our main
contributions are:

• We investigate prompt tuning and adapter tuning
methods to understand their effectiveness across
domains with varying transfer difficulties. Our
findings reveal that the efficacy of each method
with each modality varies across different of
transfer difficulty, with notable performance of
VPT and TA for high-difficulty domains.

• We propose APEX, which utilizes VPT and TA
for tuning and employ an adaptive ensemble ap-
proach to optimally leverage the general knowl-
edge of VLMs for each domain. The ensemble’s
coefficient is adaptively determined by the dis-
tances to learned classes, serving as an estimate
of transfer difficulty.

• We show that APEX achieves state-of-the-art
performance across various downstream tasks,
with particularly notable improvements in unseen
tasks during adaptation.
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2 Backgrounds

Here, we provide a brief overview of the back-
ground related to our method. For a detailed expla-
nation with more related works is in Appendix E.

Zero-shot CLIP. CLIP (Radford et al., 2021) is
designed for creating visual features based on nat-
ural language guidance. The CLIP model can per-
form zero-shot inference, classifying an image into
one of C possible classes without additional train-
ing. This is achieved by calculating the cosine simi-
larity between an visual feature z, derived from the
visual encoder, and the text features of each class
{ti}Ci=1, which are obtained from the text encoder.

For processing the image, let us define the visual
encoder as V , which comprises LV layers, denoted
as {Vi}LV

i=1. The encoder takes patch embeddings
E0 ∈ RM×dv as input, which are obtained by di-
viding the image I into M fixed-size patches. Patch
embeddings Ei is then fed into the (i+ 1)th trans-
former block (Vi+1) along with a learnable class
([CLS]) tokens ci. This process is sequentially car-
ried out through all LV transformer blocks, formu-
lated as follows:

[ci,Ei] = Vi ([ci−1,Ei−1]) i = 1, . . . , LV , (1)

z = ImageProj(cLV ), (2)

Here, [·, ·] denotes the concatenation operation. We
can obtain the text features in a similar way with
word embeddings W0 = [w1

0, . . . ,w
N
0 ] ∈ RN×dl

and text encoder T which is consist of LT layers
{Ti}LT

i=1, as follows:

[Wi] = Ti(Wi−1) i = 1, . . . , LT (3)

ti = TextProj(wN
LT ) (4)

The predicted probability for class i is as:

Pr(y = i|z, t) = exp (sim(z, ti)/τ)∑C
j=1 exp (sim(z, tj)/τ)

, (5)

where sim(·, ·) indicates cosine similarity and τ
is the learned temperature of CLIP. We can also
interpret the text features as a classifier (Gao et al.,
2023; Zhang et al., 2022), where ti is the classifier
weight for class i.
Prompt Tuning for CLIP. To enable prompt
tuning (Zhou et al., 2022a; khattak et al., 2023;
Zhu et al., 2023a; Khattak et al., 2023), we re-
place the Eq. (1) and Eq. (3) by newly introducing
bV and bT learnable tokens {P̂ k

i ∈ Rdv}bVk=1 and

{P k
i ∈ Rdl}bTk=1 for ith layer, and their concatena-

tion P̂i and Pi. We can introduce the visual prompt
for the first JV layers of the visual encoder, then
we can compute as follows:

[ci,Ei, ] = Vi([ci−1,Ei−1, P̂i−1]), (6)

[cj ,Ej , P̂j ] = Vj([cj−1,Ej−1, P̂j−1]),

for i = 1, . . . , JV and j = JV + 1, . . . , LV . Also,
we can replace Eq. (3) to belows by introducing
text prompt for the fisrt JT layers of text encoder:

[ ,Wi]=Ti([Pi−1,Wi−1]) i=1,. . . ,JT , (7)

[Pj ,Wj ]=Tj([Pj−1,Wj−1]) j=JT +1,. . . ,LT .

Here, we train the visual and text prompt for the
first JV and JT layers of corresponding encoders.
Adapter-style Tuning for CLIP. To enable
adapter-style tuning, we replace Eq. (2) and Eq. (4)
by introducing ImgAdapt and TxtAdapt which
are shallow stacking networks upon the frozen
CLIP model (Gao et al., 2023; Zhang et al., 2022;
Zhu et al., 2023b).

z̃ = ImgProj(cLV ), z = ImgAdapt(z̃) (8)

t̃ = TxtProj(wN
LT ), t = TxtAdapt(t̃) (9)

3 Motivating Observations
Here, we analyze the behavior of visual and text
encoders depending on different tuning methods
and transfer difficulty of target domains within the
framework of ETL. To accomplish this, we begin
by categorizing domains based on their relative
transfer difficulty (RTD), which is a metric first
defined by Yu et al. (2023).

Definition 1 (Relative Transfer Difficulty (Yu et al.,
2023)). Let f(·) and g(·) be random classifiers
where the precision of each equals 1/C, and zero-
shot CLIP, respectively. Also, Precf and Precg de-
note the precision of classifiers f and g. Then, RTD
is formulated as follows:

RTD =
Precf
Precg

=
1/C

Precg
=

1

C · Precg

Under this metric, we identify EuroSAT, DTD, and
FGVC Aircraft as the three most challenging do-
mains, while ImageNet, SUN397, and Stanford
Cars are recognized as the three easiest domains.
We will primarily focus on these six domains to
clearly demonstrate the impact of RTD on VLMs’
behavior. To assess adaptability and generalizabil-
ity, we train the CLIP-B/16 utilizing each prompt
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Figure 2: Comparison of accuracy differences (%) be-
tween base and novel categories across three prompt
tuning options (TPT, VPT+TPT, VPT) with varying
numbers of shots.
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Figure 4: t-SNE (Van der Maaten and Hinton, 2008) plots of visual features for novel category with their correspond-
ing labels (left), zero-shot CLIP prediction (middle), and prediction with TPT (right). 50 samples are randomly
selected from each class in EuroSAT and SUN397, using all 5 classes in EuroSAT and 5 randomly chosen classes
from SUN397. Dotted lines within the t-SNE plot represent the decision boundaries corresponding to each class,
indicated by the same color.

tuning approach on tasks requiring generalization
from base to novel categories. Here, “base cate-
gory" refers to a subset of classes within the domain
learned through few-shot methods, and “novel cat-
egory" is those not included in the training. Each
dataset is split into these categories; the model is
trained on base classes with 16 shots and tested
on both. Therefore, performance on the “base cate-
gory" is related to adaptability, and performance in
the “novel category" is related to generalizability.
More detailed values are present in Appendix D.

Observation 1. VPT offers better generalizability
than TPT. While TPT has greater adaptability to
seen classes in low-difficulty domains, it is not ef-
fective for high-difficulty domains and shows over-
fitting to the base classes.

We commence with an analysis of the sepa-
rate behavior of visual and text prompts during
the tuning process. Fig. 2 illustrates the perfor-
mance discrepancy between the two categories
for each method. Across all domains, VPT con-
sistently shows the smallest performance gap for
every shot number, indicating reduced overfitting to
base classes. This observation is especially promi-
nent in domains with high RTD though the trend is
not as pronounced in domains with low RTD. We
also observe that combining VPT and TPT does
not consistently mitigate the overfitting of TPT, as

evidenced by the larger performance gap in FGVC
Aircraft and EuroSAT compared to TPT alone.

Fig. 3 displays the comparative performance of
base and novel categories over different epochs.
While all prompt tuning methods show an im-
provement in base category performance at the ex-
pense of generalization, VPT consistently exhibits
a lesser decline in novel category performance. No-
tably, for challenging domains like FGVC Aircraft
and EuroSAT, VPT exceeds the novel performance
of TPT and their combination regardless of epoch.

Observation 2. Low class separability of visual
features is the primary reason for the overfitting of
TPT on high RTD.

Class separability is a critical factor in deter-
mining the transferability of a source model to a
target domain (Pándy et al., 2022). To determine
the class separability of visual features, we use the
ratio of intra- to inter-class cosine similarities (Oh
et al., 2021; Zhu et al., 2023b). Fig. 5 demonstrates
that the ratio is higher in domains with lower RTD,
which are considered easier, and lower in more
challenging datasets with higher RTD. These find-
ings suggest that the class separability highly cor-
relates with transfer difficulty, strongly influencing
the overfitting risk of TPT on high RTD domains.

To see how class separability affects TPT, we
further explore the visual features and predictions
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of zero-shot CLIP and TPT. As shown in Fig. 4,
EuroSAT, which exhibits a high RTD, shows lower
class separability compared to SUN397 that has a
lower RTD. Furthermore, in EuroSAT, when TPT
attempts to classify visual features with low class
separability, its performance for novel classes is
lower than zero-shot CLIP. This is because TPT
tries to fit the decision boundary, represented as dot-
ted lines, to features that are challenging to classify
by solely adjusting classifier weights with multiple
stacks of learnable prompts. This underscore the
significance of separable visual features, a factor
closely linked to VPT. Consequently, this leads to
significant overfitting, where the decision boundary
of one class overlaps with others. Conversely, with
visual features that exhibit high class separability,
TPT’s predictions are more accurate than those of
zero-shot CLIP as it can easily determine the bet-
ter decision boundary.These results underscore the
significance of separable visual features, a factor
closely linked to VPT.

Observation 3. TA effectively enhances adaptabil-
ity with a low risk of overfitting when employed
with VPT, especially on higher RTD datasets.

Fig. 6 shows that while TA and VPT each ex-
hibit less adaptability than TPT alone, together they
outperform across all categories, signifying both
high adaptability and generalizability. This advan-
tageous combination is particularly significant for
higher RTD, while the performance improvement
in novel categories with lower RTD is marginal.

This synergy occurs because VPT enhances the
class separability in visual features, allowing the
linear transformation of classifier weights to suf-
fice for adaptation, as depicted in Fig. 7. TA simply
modifies the features of the pre-trained text encoder,
preventing overconfidence in the decision bound-
ary, especially for domains with high RTD and low
class separability. In addition, we conduct exper-
iments using a combination of TPT and a visual

EuroSAT SUN397

EuroSAT

63.6

64.05

Figure 7: t-SNE plots of visual features of CLIP with
VPT for a novel category with their corresponding labels
(left) and prediction with TA (right). 50 samples are
randomly selected from each class.

adapter (VA). However, this combination proves
less effective than integrating VPT and TA, fur-
ther emphasizing the importance of visual feature
separability.

Observation 4. By modulating the influence of
TA through an ensemble of pre-adapter and post-
adapter features, each with a domain-specific coef-
ficient, we can significantly improve generalization
in low RTD domains while maintaining high per-
formance in high RTD domains.

While combining VPT and TA has great synergy
in high RTD domains, utilizing TA can result in the
loss of some general knowledge from the original
CLIP, which is crucial for domains with low RTD.
This is evident in Tab. 1, as naïvely using VPT and
TA together may lead to a degradation in perfor-
mance on novel classes in domains with low RTD.
This is because for low RTD, a lot of tasks within
the domain need to lie in the region of general
knowledge, as illustrated in Fig. 1(b). But the train-
ing of a TA creates a task-specific boundary which
may not be optimal for other tasks within the same
domain. In domains with high RTD, task-specific
knowledge gained from adapters can also enhance
performance on unseen tasks, as the general knowl-
edge is often insufficient for these domains.

This degradation in domains with low RTD can
be mitigated by diminishing the influence of TA.
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Table 1: Comparison of accuracy (%) on novel classes
between zero-shot CLIP, without an ensemble, an en-
semble with fixed coefficient, and an ensemble with
optimal coefficient. We determine the fixed coefficient
as 0.4, based on average novel performance.

Dataset SUN397 Stanford Cars DTD EuroSAT

ZS CLIP 75.35 74.89 59.90 64.05

VPT + TA
74.52 68.40 63.05 77.73
(-0.83) (-6.49) (+3.15) (+13.68)

+ Fixed Ens 78.68 74.22 64.16 75.87
(α = 0.4) (+3.33) (-0.67) (+4.26) (+11.82)

+ Opt. Ens
78.90 75.19 64.32 77.73

(+3.55) (+0.30) (+4.42) (+13.68)

Opt. α 0.3 0.0 0.5 1.0

Inspired by the residual connection in adapter-style
tuning methods (Zhang et al., 2022; Gao et al.,
2023), we use an ensemble of pre-adapter and post-
adapter features for the text encoder. This ensemble,
defined with coefficient α, can be expressed as:

t = α · TxtAdapt(t̃) + (1− α) · t̃. (10)

As Tab. 1 illustrates, the ensemble method im-
proves performance in domains with low RTD.
However, using pre-adapter features can yield sub-
optimal outcomes in more challenging domains.
For instance, performance on EuroSAT drops from
77.73% to 75.87% when α is set as a fixed coef-
ficient, as domains with high RTD demand more
from TA. By optimally setting α for each domain,
we consistently outperform zero-shot CLIP across
all domains by effectively combining general and
task-specific knowledge tailored to each domain’s
needs. Observing this optimal coefficient, we note
that that more challenging domains typically re-
quire a higher coefficient. These findings highlight
the necessity of a method to calculate an adaptive
coefficient of ensemble, which would modulate TA
activation according to domain and its RTD.

4 Method
Based on our observations, we propose a new
method, APEX, which is a difficulty-agnostic ap-
proach that utilizes an adaptive ensemble with tun-
ing methods including VPT and TA.

4.1 Configuration Design & Training

Due to the need for a combination of VPT and
TA to achieve adaptability and generalizability in
highly difficult domains, we configure the train-
able parameters to include multiple stacks of vi-
sual prompts, and a linear text adaptation layer

Optimal  α

SUN397

Flowers102

Eurosat

ImageNet

DTD

Food101 UCF101

Aircraft

Stanford Cars

0.0 1.0

Class  
Distance

Figure 8: The relationship between class distance and
optimal α for each domain used in Eq. (10) and Table 1.

following the pre-trained text encoder. While ex-
isting adapter-style methods (Zhang et al., 2022;
Zhu et al., 2023b; Gao et al., 2023) rely on manu-
ally optimized text prompts for different datasets,
we use learnable text prompts just for the input
because manually creating prompt templates for
each domain in the real world is challenging. The
learnable text prompts are unnecessary if manual
prompts are already well-formed, which is further
explained in Section 5.

We extract the visual feature z using Eq. (6)
and Eq. (2) and the text feature t using Eq. (7)
with JT = 1 and Eq. (9). We apply linear
adapter parameterized as matrix A and bias b for
TextAdapter in Eq. (9) rather than using bottle-
neck structure (Zhang et al., 2022; Gao et al., 2023)
based on our results in Fig. 11. Our adapter can be
formulated as follows:

t = TxtAdapt(t̃) := A⊺t̃+ b (11)

During the training procedure, our objective is to
maximize the predicted probability Pr(y = ygt|z, t)
for ground truth label ygt by using cross-entropy
loss ℓCE(z, t, ygt) which is defined as follows:

ℓCE(z, t, ygt) = log Pr(y = ygt|z, t),

where the predicted probability is computed as
Eq. (5).

4.2 Adaptive Ensemble for Evaluation

Due to the various levels of transfer difficulty en-
countered during deployment, an adaptive method
is necessary to avoid suboptimal results for each
target domain. Motivated by our observations, in
the evaluation stage, we use an adaptive ensem-
ble approach that combines pre-adapter (t̃eval) and
post-adapter text features (Eq. (11)), described as
follows:

teval = αeval · (A⊺t̃eval + b) + (1− αeval) · t̃eval,
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Figure 9: A concept figure for calculating the adaptive
coefficient αeval for ensemble upon its class distance.

where αeval is the ensemble coefficient for a target
class at evaluation and teval is the final represen-
tation for that class. With this ensemble approach,
for domains with high RTD, the model relies on the
adaptability and generalizability of VPT and TA.
Conversely, for domains with low RTD, it leverages
general knowledge from the pre-trained model to
avoid excessive adaptation.

To determine the optimal αeval for each class,
which estimates transfer difficulty and acts as a con-
troller for adaptation, we employ a non-parametric
method based on the distance between the text fea-
tures of the evaluation class and the classes learned
during training. This approach is based on the as-
sumption that in domains with high RTD, class
features are typically less separable in the text em-
bedding space, similarly to their separability in the
image embedding space. Hence, domains like Eu-
roSAT exhibit low class distances, while those with
low RTD, such as Stanford Cars, display high class
distances. Fig. 8 shows that the optimal α, used in
Eq. (10) and Tab. 1, is highly correlated with the
distance between class features. This tendency sug-
gests that αeval based on the distance between class
features can effectively represent transfer difficulty.

Moreover, instead of applying a single αeval for
all classes, we adopt a class-wise approach. This
is because, within the same domain, target features
considered as out-of-task should rely more on the
general knowledge of pre-trained VLMs, whereas
features closer to the learned classes should lever-
age more task-specific knowledge. With regard to
this, we adaptively set αeval by comparing the text
feature of the evaluation class with the features of
the learned classes, as illustrated in Fig. 9. Specif-
ically, we calculate both the average and nearest
distances between the evaluation class and the C

Table 2: Accuracy comparison on base-to-novel gener-
alization of APEX with previous methods.

Dataset CLIP CLIP
-Adapter

Co
-CoOp MaPLe Pro

-Grad APEX

Average on 11
datasets

Base 69.34 83.23 81.11 82.52 82.55 83.99
Novel 74.22 70.13 70.55 74.24 72.20 76.76
HM 71.70 75.64 75.03 77.86 76.77 80.04

ImageNet
Base 72.43 76.06 76.47 77.02 76.97 77.12
Novel 68.14 68.40 69.60 70.15 67.20 71.10
HM 70.22 72.03 72.87 73.42 71.75 73.99

Caltech101
Base 96.84 98.00 97.70 97.95 97.88 98.18
Novel 94.00 93.66 93.96 94.60 93.57 95.06
HM 95.40 95.78 95.78 96.25 95.68 96.59

OxfordPets
Base 91.17 94.86 95.66 95.80 95.00 95.11
Novel 97.26 94.49 96.32 97.82 97.46 97.27
HM 94.12 94.67 95.99 96.80 96.21 96.18

Stanford Cars
Base 63.37 77.62 72.92 74.69 78.64 80.53
Novel 74.89 68.53 71.98 73.53 70.23 75.08
HM 68.65 72.79 72.45 74.11 74.20 77.71

Flowers102
Base 72.08 96.88 94.82 95.90 94.83 97.47
Novel 77.80 69.20 70.71 72.96 74.70 77.58
HM 74.83 80.73 81.01 82.87 83.57 86.40

Food101
Base 90.10 90.02 90.63 90.46 90.40 89.60
Novel 91.22 89.76 91.13 91.71 90.43 92.06
HM 74.83 89.89 90.88 91.08 90.41 90.81

FGVC Aircraft
Base 27.19 40.14 36.19 37.76 40.77 42.69
Novel 36.29 31.77 26.82 34.67 30.16 35.21
HM 31.09 35.47 30.81 36.15 34.67 38.59

SUN397
Base 69.36 81.72 80.55 81.33 81.19 81.17
Novel 75.35 73.54 75.48 77.75 73.42 78.98
HM 72.23 77.41 77.93 79.50 77.11 80.06

DTD
Base 53.24 81.77 77.34 79.34 76.64 82.45
Novel 59.90 49.02 48.86 56.64 54.23 63.80
HM 56.37 61.29 59.89 66.10 63.52 71.94

EuroSAT
Base 56.48 91.55 87.05 93.00 91.23 92.83
Novel 64.05 61.10 61.27 69.17 68.58 79.89
HM 60.03 73.29 71.92 79.33 78.30 85.88

UCF101
Base 70.53 86.87 82.86 84.43 84.54 86.74
Novel 77.50 71.94 69.92 77.64 74.24 78.37
HM 73.85 78.70 75.84 80.89 79.06 82.34

learned classes in the following manner:

d
avg
eval = 1.0− 1

C

∑C
j=1 sim(t′eval, t

′
j),

dnn
eval = 1.0− min

∀j∈{1,...,C}
sim(t′eval, t

′
j),

where t′eval and t′j indicate text feature of evalua-
tion class and learned class j ∈ {1, . . . , C} from
pre-trained VLMs and sim denotes cosine similar-
ity. Using these distance metrics, we compute the
coefficient αeval as follows:

αeval = exp
(
−β · (davg

eval) · 1(dnn
eval>ϵ)

)
,

where β is a scaling factor. The equation indi-
cates a preference for pre-adapter features when
the text feature distance from learned classes is
large, and for trained TA when it is small. The
condition of dnn

eval > ϵ, where ϵ is a small value
set at 0.05, serves to treat an evaluation class that
is very similar to the base class as identical. This
adaptive αeval enables flexible use of general and
task-specific knowledge. Moreover, since text em-
beddings are usually pre-calculated (Radford et al.,
2021), this adaptive coefficient incurs only a minor
computational overhead.
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Vision Ensemble. Additionally, to further im-
prove the performance by leveraging more general
knowledge of the pretrained VLMs, we can also
employ an ensemble technique for the visual en-
coder that combines the visual feature of the pre-
trained VLM (z′) with the task-adapted VLMs (z)
as follows:

z = ᾱ · z′ + (1− ᾱ) · z,

ᾱ, the mean value of αeval, is used for image en-
semble since class-specific αeval cannot be applied
at the image level.

5 Experiments

We describe our experimental setup and results
for verifying superiority of our method. Additional
experimental results are described in Appendix C.

5.1 Experimental Setup

Datasets. We evaluate APEX on the three most
commonly used transfer learning tasks: base-to-
novel generalization, cross-dataset evaluation, and
domain generalization. For all the few-shot exper-
iments except domain generalization, we follow
CoCoOp (Zhou et al., 2022a) which uses 11 im-
age recognition datasets. The datasets cover multi-
ple recognition tasks including ImageNet (Deng
et al., 2009) and Caltech101 (Fei-Fei et al.,
2004) which consists of generic objects; Oxford-
Pets (Parkhi et al., 2012), Stanford Cars (Krause
et al., 2013), Flowers102 (Nilsback and Zisserman,
2008), Food101 (Bossard et al., 2014), and FGVC
Aircraft (Maji et al., 2013) for fine-grained classifi-
cation, SUN397 (Xiao et al., 2010) for scene recog-
nition, UCF101 (Soomro et al., 2012) for action
recognition, DTD (Cimpoi et al., 2013) for texture
classification, and EuroSAT (Helber et al., 2017)
which consists of satellite images. For the domain
generalization benchmark, we use ImageNet as a
source dataset and use ImageNet-A (Hendrycks
et al., 2019), ImageNet-R (Hendrycks et al., 2020),
ImageNet-Sketch (Wang et al., 2019), and Ima-
geNetV2 (Recht et al., 2019) as out-of-domain
datasets.

Experimental Details. We use multiple base-
lines for comparison with our methods in ex-
periments. These include the standard zero-shot
CLIP (Radford et al., 2021), CLIP-Adapter (Gao
et al., 2023), CoCoOp (Zhou et al., 2022a) and
MaPLe (khattak et al., 2023). We also consider
ProGrad (Zhu et al., 2023a), which uses gradient

Table 3: Comparison of accuracy on cross-dataset of
APEX with previous methods.

Dataset C-Adapter CoCoOp MaPLe ProGrad APEX

Source ImageNet 70.12 71.46 70.58 71.73 72.00

Target

Caltech101 92.94 93.24 93.46 93.30 94.46
OxfordPets 86.80 90.38 90.28 89.95 90.06
Cars 64.22 64.08 65.22 65.25 65.46
Flower102 69.06 70.50 71.80 69.34 71.58
Food101 85.20 85.64 86.24 86.22 86.44
Aircraft 24.24 21.58 23.62 21.22 24.44
SUN397 64.36 66.30 67.32 65.32 67.20
DTD 43.44 43.68 45.04 42.19 45.70
EuroSAT 47.66 45.48 46.24 45.33 47.58
UCF101 65.52 67.42 68.26 67.62 68.80

Average 64.34 64.83 65.75 64.57 66.16

Table 4: Comparison of accuracy on domain generaliza-
tion of APEX with previous methods.

Source Target

ImageNet -V2 -S -A -R Avg.

C-Adapter 70.12 61.78 46.70 48.56 74.00 57.76
CoCoOp 71.46 64.44 48.58 50.20 75.64 59.72
MaPLe 70.58 63.95 48.78 50.53 76.78 59.90
ProGrad 71.73 64.54 48.59 50.38 75.87 59.85

APEX 72.00 64.70 48.48 50.68 76.76 60.16

alignment for prompt learning. When reporting re-
sults, we have reproduced all the experiments, as
we observe that the values are highly dependent
on the random seed. Instead of taking the average
results from three seeds, as done in previous works
(khattak et al., 2023), we use the average of 20
seeds to determine the final value for base-to-novel
and the average of 5 seeds for cross-evaluation and
domain-generalization. Additionally, we found that
using the Adadelta optimizer (Zeiler, 2012) yields
better results, so we have reproduced the experi-
ments with Adadelta. More experimental details
can be found in the Appendix A.

5.2 Main Results
Base-to-Novel Generalization. In this scenario,
the datasets are evenly divided into base and novel
categories. The model is trained on the base classes
using 16 shots and is subsequently tested on both
the base and novel classes. As indicated in Ta-
ble 2, APEX consistently outperforms the best of
the previous methods in average accuracy across
all datasets, with a margin of 1∼6%. In particular,
our method exhibits superior performance in novel
classes on all datasets, demonstrating APEX’s en-
hanced generalizability. The exceptions are Oxford
Pets and FGVC Aircraft, where the performance
is already exceptionally high and low, respectively.
This improvement is especially notable in domains
with high RTD, such as EuroSAT (+15.84%) and
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Table 5: Comparison of the effect of adaptive ensemble
technique between text and visual encoder by RTD.

Text Visual Easy Challenge All

✗ ✗ 70.67 58.25 74.61
✓ ✗ 74.51 (+3.84) 58.66 (+0.41) 76.19 (+1.58)
✗ ✓ 70.79 (+0.12) 58.65 (+0.40) 74.83 (+0.22)
✓ ✓ 75.05 (+4.38) 59.63 (+1.38) 76.76 (+2.15)

DTD (+3.90%). Additionally, the APEX method
also shows superior performance in base categories,
highlighting the high adaptability of our approach.

Cross-dataset Evaluation. We train the model
to generalize across different domains by using a
cross-dataset evaluation task. Specifically, we first
train the model on the ImageNet dataset and then
transfer it to the 10 other datasets. Table 3 sum-
marizes that APEX shows the best overall perfor-
mance compared to existing baselines. Our pro-
posed method achieves the best performance on
7 out of 11 tasks. This demonstrates APEX’s ef-
fectiveness, especially in difficult situations where
both the task and domain are unseen.

Domain Generalization. We assess the capabil-
ity of APEX to generalize to out-of-distribution data
by training on the source dataset, ImageNet, and
subsequently testing on various modified versions
of ImageNet. Our method does not achieve a large
margin of superiority since our adaptive ensemble
is primarily designed to enhance performance in
novel classes. Nonetheless, our method still sur-
passes all baseline models on average accuracy in
this domain generalization task.

5.3 Ablation Study

In this section, we provide ablation experiments on
APEX. Full results are detailed in Appendix C.

Effect of Ensemble. We have conducted a com-
ponent analysis of two adaptive ensemble tech-
niques of APEX, focusing on (1) the text encoder
and (2) the visual encoder. The results, as shown
in Table 5, reveal that the ensembling of the text
encoder is crucial for enhancing performance. Con-
versely, ensembling the visual encoder results in a
minor yet consistent improvement. The text ensem-
ble notably achieves substantial improvements in
domains with low RTD, implying that task-specific
knowledge is primarily acquired through TA. Over-
all, employing both ensemble techniques leads to
the most improvement regardless of RTD.

Using Low-Rank Linear Adapter. CLIP-
Adapter (Gao et al., 2023) and Tip-Adapter (Zhang
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Figure 10: Comparison of the accuracy of base, novel,
and their harmonic mean using low-rank linear adapter
and bottleneck layer of non-linear adapter (Gao et al.,
2023).

et al., 2022) utilize the bottleneck layer (He et al.,
2016) which shrinks and re-expands the feature
dimensions to improve efficiency. Similarly,
we utilize low-rank matrix factorization that
A = UV⊺ where V,U ∈ Rdl×dr with dr < dl to
improve the parameter efficiency. Fig. 10 shows
that although TA’s performance diminishes with
decreasing dimension dr, average accuracy with
few parameters (dr = 32) still achieves perfor-
mance comparable to ProGrad (Zhu et al. 2023a;
+0.72%). Moreover, the linear adapter consistently
outperforms the non-linear adapter (Gao et al.,
2023) across all values of dr, motivating us to use
a linear adapter in our proposed APEX.

6 Conclusion

We propose APEX to address the challenges of con-
ventional prompt and adapter-style ETL methods
for VLMs. Our approach incorporates two key com-
ponents based on our observations: (1) using VPT
and TA for exploiting the property of each modality
and (2) adaptive ensemble coefficient in the infer-
ence stage. We empirically demonstrate the supe-
rior performance of APEX, consistently achieving
a better performance than the previous methods.
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Limitation

We focus on two types of ETL, prompt tuning and
adapter-style tuning, for VLMs for vision-language
understanding tasks such as CLIP, EVA-CLIP, and
CoCA-CLIP. While our extensive analyses provide
valuable insights, our paper primarily centers on
understanding tasks, with opportunities for further
exploration in vision-language generation tasks
such as BLIP (Li et al., 2022a) and LLaVA (Liu
et al., 2024). Additionally, though we focus on two
main representative ETL methods, further analy-
ses could be conducted on other ETL methods like
LoRA (Hu et al., 2022) and IA3 (Liu et al., 2022).
We leave these aspects for future work but wish
to emphasize the comprehensive exploration pro-
vided by our study on the two representative ETL
methods for VLMs.
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A Implementation Details

As explained in Section 5, we utilize the ViT-B/16
model as the CLIP image encoder and a standard
GPT2-like structure with an End Of Text (EOT) to-
ken as the classification token for the text encoder.
To implement APEX, we use visual prompts for
all layers, setting JV = 12 for base-to-novel gen-
eralization and JV = 3 for cross-evaluation and
domain generalization. The text prompt is applied
only to the shallow prompt, and therefore, JV = 1
for all experiments. The number of prompts for
each layer, bV and bT , is set to 2. The initial text
prompt is fixed as “a photo of a", and the visual
prompts are initialized with a zero-mean Gaussian
distribution with a standard deviation of 0.02. The
matrix term of the text adapter is initialized with
an identity matrix, and the bias vector is initialized
with a zero vector.

For training, we use the Adadelta opti-
mizer (Zeiler, 2012) with a learning rate of 0.15
and a cosine learning rate scheduler. The batch size
is set to 16, and we train for 15 epochs, except for
ImageNet, where we train for 5 epochs. As in pre-
vious works, we apply augmentation techniques of
random cropping and flipping. The scaling factor
β, used for calculating αeval, is set to 4.0. In the
SGD experiments presented in Appendix C, we
adopt a batch size of 16 and epochs of 30 and 5
for ImageNet, along with a learning rate of 0.0015
and a cosine learning rate scheduler. The augmen-
tation and scaling factors are set the same as in the
Adadelta experiments.

For reproducing baselines, we use the Adadelta
optimizer with a learning rate of 0.25, selected after
a grid search with values [0.1, 0.15, 0.2, 0.25, 0.3].
The rest of the settings remain the same as in the
original papers. Results with their original con-
figurations using SGD optimizer are listed in Ap-
pendix C. All our experiments were conducted on
a single NVIDIA RTX 3090.

B Notation and Algorithm

In this section, we present the notation and algo-
rithm of our method, APEX. The notation is de-
tailed in Table 6. The training algorithm for APEX
is outlined in Algorithm 1, and the adaptive infer-
ence algorithm is presented in Algorithm 2.

Table 6: The notation table for Section 3

Notation Description

The notation for VLMs

V The visual encoder of VLMs
T The text encoder of VLMs
LV The number of layers of visual encoder
LT The number of layers of text encoder
Vℓ The ℓth Transformer layer of visual encoder
Tℓ The ℓth Transformer layer of text encoder
Eℓ The patch embeddings of ℓth layer of visual encoder
Wℓ The word embeddings of ℓth layer of text encoder

The inputs for VLMs or prompt tuning

JV The number of layers of VPT
JT The number of layers of TPT
bV The context length of VPT
bT The context length of TPT
P̂ℓ The visual prompt of ℓth layer of visual encoder
Pℓ The text prompt of ℓth layer of text encoder

The outputs for VLMs

cℓ The embedded features of ℓth layer for [CLS] token
ti The text features of ith class
z The visual features from visual encoder

The outputs for VLMs related to APEX

z′ The visual features from visual encoder of
pretrained VLMs for adaptive ensemble

t′ The text features from text encoder of
pretrained VLMs for adaptive ensemble

t̃
The pre-adapter text features of text encoder of
adapted VLMs
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Algorithm 1 Pseudo-Algorithm for Training of
APEX
Require: Pretrained visual encoder V , Pretrained

text encoder T , Learnable vision prompts P̂,
Shallow text prompts P0, Adapter parameter-
ized by matrix A and b

Require: Training Samples S , Initial Text Embed-
dings W0

1: Randomly initialize ϕ = [P̂,A,b]
2: while not done do
3: Sample Batch B = (I, ygt)
4: E0 = PathEmbedding(I)
5: for i = 1, . . . , JV do
6: [ci,Ei, ]← Vi([ci−1,Ei−1, P̂i−1])
7: end for
8: for i = JV + 1, . . . , LV do
9: [ci,Ei, P̂i]← Vi([ci−1,Ei−1, P̂i−1])

10: end for
11: z← ImageProj(cLV )
12: t̃ = T ([W0,P0])
13: t = A⊺t̃+ b
14: /* Calculate the probability for class i */
15: Pr(y = i|z, t) = exp(sim(z,ti)/τ)∑C

j=1 exp(sim(z,tj)/τ)

16: ℓCE(z, t, ygt) = log Pr(y = ygt|z, t)
17: ϕ = ϕ− γ∇ϕℓCE(z, t, ygt;ϕ)
18: end while

C Additional Experiments

C.1 Ablation on Adaptive Ensemble
Table 7 illustrates the complete results of the com-
ponent analysis of the adaptive ensemble. We only
display results for novel classes, as these ensem-
ble components do not affect the results for base
classes, given that αeval is set to 1.0 for seen
classes. AThe ensemble of the text encoder is cru-
cial as its removal leads to a significant perfor-
mance drop in domains with low RTD, such as
Stanford Cars and SUN397. This demonstrates that
moderating TA with an adaptive ensemble helps
to leverage both task-specific knowledge and gen-
eral VLMs knowledge effectively. The ensemble
on the visual encoder offers marginal improvement,
but combining both still yields the most superior
performance on average.

C.2 Results on Low-Rank Experiments

Figure 11 presents detailed results for each dataset
using low-rank methods. The result demonstrates
that our linear adapter provides better overall re-
sults, particularly for novel classes across most

Table 7: Comparison of the effect of adaptive ensemble
technique between text and visual encoder by RTD.

Visual ✗ ✗ ✓ ✓(APEX)
Text ✗ ✓ ✗ ✓(APEX)

ImageNet 69.08 70.09 69.22 71.10
Caltech101 94.91 94.80 95.01 95.06
OxfordPets 97.24 97.39 97.07 97.27
Cars 68.40 74.46 68.32 75.08
Flower102 73.71 76.40 74.43 77.58
Food101 90.70 91.83 90.82 92.06
Aircraft 33.97 33.89 33.87 35.21
SUN397 74.52 78.98 74.82 78.98
DTD 63.05 63.05 63.82 63.80
EuroSAT 77.73 79.04 78.25 79.89
UCF101 77.39 78.17 77.55 78.37

Average 74.61 76.19 74.83 76.76

datasets. This parameter-efficient approach exhibits
relative robustness in performance, even outper-
forming MaPLe (khattak et al., 2023) for rank
64 (+0.32%) on average. These encouraging re-
sults have led us to adopt the linear adapter for the
text encoder. Furthermore, we observe that initial-
izing the adapter with an identity matrix improves
performance, a strategy that can be explored more
thoroughly in future work.

C.3 Full Results on Manual Text Prompts

Table 8 presents the detailed results for each dataset
using manual prompts, which are summarized in
Table 14. The manual prompts, designed for each
dataset as described in (Gao et al., 2023; Zhang
et al., 2022), appear to underperform compared
to other methods. This suggests that they may
not be the optimal choice for every dataset, and
that designing these prompts manually is challeng-
ing. In contrast, just ensembling multiple manual
prompts (Radford et al., 2021) works significantly
better, indicating that optimal prompts may exist
among these manual options. This finding also im-
plies that utilizing improved manual prompts can
substantially enhance performance, potentially re-
placing shallow prompts. Shallow prompt tuning
for the text input yields the best results, demonstrat-
ing its effectiveness and flexibility. Therefore, we
adopt this approach for our main results.

C.4 Baseline Results with SGD

Table 9 displays the reproduced results using the
SGD optimizer, in contrast to the Adadelta opti-
mizer presented in Table 2. As observed, the results
with SGD are slightly lower compared to those
with Adadelta. This difference is likely due to the
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Figure 11: Results for the performance of the low-rank approach with different ranks.

adaptive learning rate of Adadelta, which facili-
tates training in this unstable few-shot scenario.
Nonetheless, even with the SGD optimizer, our
method significantly outperforms all baselines, par-
ticularly in domains with high RTD, maintaining
the same trend observed with the Adadelta opti-
mizer.

C.5 Comparison with More Baselines

Due to the page limit, we present a comparison
with additional baselines for base-to-novel gener-
alization experiments in Table 10, which are not
included in Table 2. These include training with
VPT, TPT, and a combination of VPT and TPT.
We also compare our method with the recently pro-
posed PromptSRC (Khattak et al., 2023), which
employs various regularization techniques such as
self-consistency loss and Gaussian averaging. Our
method outperforms all these baselines in terms
of harmonic mean and demonstrates particularly
high performance for novel classes. Compared to

PromptSRC, our method significantly outperforms
in novel classes of high RTD domains, such as Eu-
roSAT (+8.39%) and DTD (+4.22%), while main-
taining comparable performance in other domains.
Notably, our method achieves these results with
a simpler training approach, without the need for
numerous manual prompts for SRC loss, and with
fewer hyperparameters, unlike the many required
by PromptSRC’s regularization techniques. Addi-
tionally, our method surpasses the simpler base-
lines of naive training using VPT, TPT, and their
combination, highlighting the effectiveness of our
configuration design and adaptive ensemble.

C.6 Ablation on Configuration

To further analyze the optimal configuration in com-
bination with an adaptive ensemble, we conduct
additional ablation studies on configurations. The
results, present in Table 11, show that utilizing VPT
and TA yields the best outcomes, confirming their
effectiveness when paired with the adaptive ensem-

2080



Table 8: Full results on each dataset of Table 14

Average on
11 datasets ImageNet Caltech101 OxfordPets Stanford

Cars Flowers102 Food101 FGVC
Aircraft SUN397 DTD EuroSAT UCF101

Opt. manual prompt (Zhang et al., 2022)
Base 84.15 76.64 98.15 95.05 80.75 97.45 89.35 42.92 81.24 83.02 93.93 87.10
Novel 75.24 69.00 94.33 97.04 75.32 77.66 91.28 36.42 77.60 57.59 71.74 79.70
HM 79.17 72.62 96.20 96.03 77.94 86.44 90.30 39.40 79.38 68.01 81.35 83.24

Ens. (60 manual prompts) (Radford et al., 2021)
Base 84.02 76.48 98.15 95.09 80.70 97.37 89.56 42.56 81.46 82.62 93.01 87.18
Novel 76.17 70.24 93.93 96.44 75.88 77.16 91.20 35.64 78.36 59.45 80.35 79.21
HM 79.70 73.23 95.99 95.76 78.22 86.09 90.37 38.79 79.88 69.15 86.22 83.00

Shallow prompt (APEX)
Base 83.99 77.12 98.18 95.11 80.53 97.47 89.60 42.69 81.17 82.45 92.83 86.74
Novel 76.76 71.10 95.06 97.27 75.08 77.58 92.06 35.21 78.98 63.80 79.89 78.37
HM 80.04 73.99 96.59 96.18 77.71 86.40 90.81 38.59 80.06 71.94 85.88 82.34

ble. However, adding TPT to VPT and TA does not
enhance performance, especially in high RTD sce-
narios, as evidenced by decreased performance in
DTD (-4.98%) and EuroSAT (-6.78%) compared to
configurations without TPT. While combining TPT
with VA demonstrates reasonable performance, it
is not as effective as the combination of VPT and
TA. This highlights the importance of class separa-
bility of visual features achieved through multiple
stacks of prompts. Overall, the configuration of
APEX outperforms the other setups.

C.7 Ablation on β

Table 12 presents the results of an ablation study on
the hyperparameter β, which is used to calculate
αeval. A higher β leads to a lower αeval, indicat-
ing greater reliance on the general knowledge of
VLMs, which is beneficial for domains with low
RTD, and vice versa. As observed, the performance
in domains with low RTD, such as Stanford Cars
and SUN397, tends to improve with a higher β.
However, the optimal performance for difficult do-
mains like Aircraft and DTD is achieved with β
values between 1.0 and 3.0. Not all domains fol-
low this tendency since αeval is calculated on a
class-wise basis, as demonstrated in the case of
EuroSAT. Interestingly, except for the value of 2.0,
our method demonstrates robustness to variations
in β, as it does not significantly affect the aver-
age performance. Overall, setting β to 4.0 yields
the best performance, and therefore, this value has
been selected for the final results.

C.8 Ablation on α

Table 13 presents the comprehensive results of the
ablation study on a fixed α, which is used in Table 1
and Eq. (10). The same α is applied uniformly
across all classes and is set as a fixed value for
both the visual and text encoders. This is done
to determine the correlation between α and the
domain, along with its transfer difficulty. Similar

to Section C.7, domains with high RTD, such as
EuroSAT, require a higher α value to perform well
compared to domains with low RTD, like Stanford
Cars. These findings support the necessity for an
adaptive ensemble that is closely aligned with RTD.

C.9 Shallow Prompt

Although we observe that TPT leads to overfit-
ting, we employ one-layer learnable text prompts
to enhance real-world practicality. Table 14 com-
pares the performance of manually optimized
prompts (Gao et al., 2023; Zhang et al., 2022), the
ensemble of manual prompts (Radford et al., 2021),
and shallow prompts. The shallow prompt method
outperforms manual prompts, proving its effective-
ness. However, manual prompts, particularly when
ensembled, also show comparable performance to
shallow prompts, suggesting that well-designed
manual prompts can be an effective alternative.

C.10 Results on Different VLMs

We validate our approach using different back-
bones: EVA-CLIP (Sun et al., 2023) and CoCa (Yu
et al., 2022). Table 15 displays the results us-
ing these two backbones, where we compare our
method with both zero-shot and naive prompt tun-
ing approaches that combine VPT and TPT. As
observed, APEX consistently outperforms the aver-
age results in terms of harmonic mean, regardless
of the model used. Specifically, with EVA-CLIP,
our method demonstrates superior performance for
both base and novel classes. In the case of the
most challenging domain, EuroSAT, our method
significantly enhances performance compared to
the zero-shot accuracy for novel classes (+18.46%).
A similar improvement of 8.85% on EuroSAT is
observed with CoCa. However, in terms of novel
classes, the average performance of zero-shot tun-
ing is superior for CoCa. This could be attributed
to the larger patch size of this backbone, which
might increase the risk of overfitting on the vision
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Table 9: Comparison of baselines using their own con-
figuration (SGD optimizer) with our method.

Dataset CLIP CLIP
-Adapter

Co
-CoOp MaPLe Pro

-Grad APEX

Average on 11
datasets

Base 69.34 81.81 80.28 81.74 81.78 84.04
Novel 74.22 71.43 72.03 73.89 69.42 75.67
HM 71.70 75.93 75.60 77.30 74.80 79.42

ImageNet
Base 72.43 74.40 75.99 76.81 76.93 76.93
Novel 68.14 68.63 70.39 70.66 69.51 69.61
HM 70.22 71.40 73.08 73.61 73.03 73.09

Caltech101
Base 96.84 97.61 97.64 95.61 95.41 98.18
Novel 94.00 93.72 94.52 94.71 94.05 95.02
HM 95.40 95.63 96.05 96.18 95.90 96.57

OxfordPets
Base 91.17 95.06 95.56 95.61 95.41 95.21
Novel 97.26 95.02 97.52 97.63 90.56 97.74
HM 94.12 95.04 96.53 96.61 92.92 96.46

Stanford Cars
Base 63.37 76.18 70.97 72.49 77.41 80.44
Novel 74.89 69.30 73.44 73.46 70.92 74.76
HM 68.65 72.58 72.18 72.97 74.02 77.50

Flowers102
Base 72.08 96.27 93.88 95.49 95.34 97.73
Novel 77.80 69.92 72.56 72.55 76.84 76.67
HM 74.83 81.01 81.85 82.45 85.10 85.93

Food101
Base 90.10 90.32 90.54 90.50 90.17 89.46
Novel 91.22 90.10 91.15 91.71 85.53 91.94
HM 74.83 90.21 90.84 91.10 87.79 90.68

FGVC Aircraft
Base 27.19 38.87 33.64 36.33 39.01 42.96
Novel 36.29 31.95 26.49 32.64 27.77 34.72
HM 31.09 35.07 29.64 34.39 32.44 38.40

SUN397
Base 69.36 76.50 79.86 80.65 81.35 81.18
Novel 75.35 74.60 76.51 78.33 69.06 77.08
HM 72.23 75.54 78.15 79.47 74.70 79.08

DTD
Base 53.24 80.46 76.58 79.20 77.45 82.19
Novel 59.90 52.79 53.47 55.01 51.63 61.21
HM 56.37 63.75 62.97 64.92 61.96 70.17

EuroSAT
Base 56.48 88.48 86.18 90.38 84.88 93.48
Novel 64.05 67.12 63.04 68.43 56.66 75.88
HM 60.03 76.33 72.82 77.89 67.96 83.77

UCF101
Base 70.53 85.81 82.22 84.02 83.82 86.71
Novel 77.50 72.55 73.22 77.62 71.13 77.77
HM 73.85 78.62 77.46 80.69 76.96 82.00

side when setting two learnable prompts. Nonethe-
less, our method shows comparable performance
on novel classes to zero-shot CoCa, with a signif-
icant improvement in base classes. This results in
superior performance in harmonic mean, demon-
strating our method’s effectiveness across various
VLMs.

D Details about Observation

D.1 Relative Transfer Difficulty
Here, we report the value of RTD which is defined
in Sectionn 3 for 11 transfer datasets. We compute
the RTD based on the CLIP-B/16 model.

D.2 Inter- and Intra-class Cosine Similarity
In addition to presenting relative values in Figure 5,
we also report the absolute values for both inter-
and intra-class similarities. We observe a signifi-
cant correlation between the RTD and the ratio of
intra- to inter-class similarity.

Table 10: Extended baselines not presented in Table 2
for comparison between base-to-novel experiments with
our method.

Dataset CLIP VPT TPT VPT
+ TPT

Prompt
-SRC APEX

Average on 11
datasets

Base 69.34 81.01 82.07 82.93 84.36 83.99
Novel 74.22 73.11 73.90 74.15 75.37 76.76
HM 71.70 76.55 77.51 78.00 79.39 80.04

ImageNet
Base 72.43 75.94 76.81 77.18 77.90 77.12
Novel 68.14 68.74 69.45 69.86 70.26 71.10
HM 70.22 72.16 72.94 73.34 73.88 73.99

Caltech101
Base 96.84 97.79 97.84 97.98 97.81 98.18
Novel 94.00 93.65 94.29 94.38 93.88 95.06
HM 95.40 95.68 96.03 96.15 95.80 96.59

OxfordPets
Base 91.17 95.11 95.48 95.78 95.69 95.11
Novel 97.26 96.57 97.52 97.65 97.42 97.27
HM 94.12 95.83 96.49 96.71 96.55 96.18

Stanford Cars
Base 63.37 70.72 75.18 75.75 80.16 80.53
Novel 74.89 72.78 72.73 73.02 74.52 75.08
HM 68.65 71.74 73.93 74.36 77.24 77.71

Flowers102
Base 72.08 91.60 96.45 96.26 96.96 97.47
Novel 77.80 69.62 74.69 72.62 76.73 77.58
HM 74.83 79.11 84.19 82.79 85.67 86.40

Food101
Base 90.10 90.17 90.30 90.36 90.60 89.60
Novel 91.22 90.94 91.42 91.58 91.38 92.06
HM 90.66 90.55 90.86 90.97 90.99 90.81

FGVC Aircraft
Base 27.19 34.70 37.86 38.76 43.67 42.69
Novel 36.29 33.53 34.17 35.08 36.42 35.21
HM 31.09 34.10 35.92 36.83 39.72 38.59

SUN397
Base 69.36 79.09 81.70 81.57 82.94 81.17
Novel 75.35 76.85 77.62 77.92 78.37 78.98
HM 72.23 77.95 79.61 79.70 80.59 80.06

DTD
Base 53.24 78.67 79.81 80.81 82.21 82.45
Novel 59.90 53.78 55.32 55.64 59.58 63.80
HM 56.37 63.89 65.35 65.90 69.09 71.94

EuroSAT
Base 56.48 94.17 86.98 92.91 93.06 92.83
Novel 64.05 73.26 69.16 71.19 71.60 79.89
HM 60.03 82.41 77.05 80.61 80.93 85.88

UCF101
Base 70.53 83.10 84.38 84.92 87.05 86.74
Novel 77.50 74.52 76.54 76.75 78.96 78.37
HM 73.85 78.58 80.27 80.63 82.81 82.34

D.3 Results on 6 datasets

We also present extended results in Figure 12,
which include data from three additional datasets:
ImageNet, SUN397, and DTD. For ImageNet and
SUN397, which already exhibit high class separa-
bility, we note that all methods—TPT, VPT, and
their combination—yield similar performance dif-
ferences. However, the results for DTD indicate
a tendency for TPT to overfit to the base classes.
This observation is consistent with the findings pre-
sented in Figure 2.

E More Related Work

Vision-Language Models VLMs overcome the
limitations of vision-only supervised learning with
their robustness and flexibility in zero-shot infer-
ence through natural language supervision. CLIP
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Table 11: Results for additional ablation study on configurations when combined with adaptive ensemble.

Average on
11 datasets ImageNet Caltech101 OxfordPets Stanford

Cars Flowers102 Food101 FGVC
Aircraft SUN397 DTD EuroSAT UCF101

TPT + VA
Base 83.51 76.43 98.00 94.76 79.68 97.28 89.24 42.27 80.96 81.49 92.27 86.24
Novel 75.88 69.43 94.49 97.21 75.77 77.50 91.50 34.85 78.20 62.05 76.77 76.90
HM 79.32 72.76 96.21 95.97 77.68 86.27 90.36 38.20 79.56 70.45 83.81 81.30

VPT + TA + TPT
Base 83.56 76.93 98.03 94.77 79.45 97.51 89.26 42.14 81.02 81.72 92.11 86.21
Novel 75.09 71.30 94.72 97.76 72.98 76.70 91.94 33.80 78.08 58.82 73.11 76.80
HM 78.85 74.01 96.35 96.24 76.08 85.86 90.58 37.51 79.52 68.40 81.52 81.23

VPT + TA (APEX)
Base 83.99 77.12 98.18 95.11 80.53 97.47 89.60 42.69 81.17 82.45 92.83 86.74
Novel 76.76 71.10 95.06 97.27 75.08 77.58 92.06 35.21 78.98 63.80 79.89 78.37
HM 80.04 73.99 96.59 96.18 77.71 86.40 90.81 38.59 80.06 71.94 85.88 82.34

Table 12: Results for additional ablation study on scaling factor β. Our proposed methods shows robust performance
on the selection of β.

β
Average on
11 datasets ImageNet Caltech101 OxfordPets Stanford

Cars Flowers102 Food101 FGVC
Aircraft SUN397 DTD EuroSAT UCF101

1.0 75.97 70.62 95.15 97.43 72.15 75.95 91.38 35.07 77.02 63.90 78.36 78.66
2.0 76.51 71.06 95.14 97.44 73.95 77.06 91.70 35.35 78.12 63.99 78.89 78.92
3.0 76.75 71.18 95.15 97.37 74.69 77.61 91.92 35.46 78.66 64.17 79.35 78.64
4.0 (APEX) 76.76 71.10 95.06 97.27 75.08 77.58 92.06 35.21 78.98 63.80 79.89 78.37
5.0 76.72 71.00 95.16 97.18 75.10 77.79 91.96 35.05 78.96 63.77 79.88 78.07
6.0 76.66 70.96 95.16 97.15 75.17 77.80 91.98 34.84 78.92 63.54 80.01 77.75
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Figure 12: Extended results for Figure 2. All results in
different datasets show similar trends that indicate VPT
yields a smaller discrepancy in performance between
base and novel categories, suggesting a reduced risk of
overfitting compared to TPT.

(Radford et al., 2021) facilitates this by adopting
contrastive learning with a large-scale dataset of
400 million images. ALIGN(Jia et al., 2021) fur-
ther improves upon this by scaling up the dataset
with more noisy image-text pairs. FILIP (Yao et al.,
2022) enables finer-grained alignment between two
modalities and GLIP (Li et al., 2022b) improves
visual grounding and object detection using VLMs.
CoCa (Yu et al., 2022) employs both captioning and
contrastive losses, thereby integrating the model
capabilities of contrastive approaches like CLIP
with those of generative methods. CyCLIP (Goel

et al., 2022) employs cyclic loss to ensure geo-
metric consistency, while FLIP (Li et al., 2023)
enhances VLMs through masking techniques. EVA-
CLIP (Sun et al., 2023) implements various training
techniques, such as different attention mechanisms
and optimizers, to further improve CLIP’s perfor-
mance. Additionally, SigLIP (Zhai et al., 2023) re-
places the softmax loss with sigmoid loss, enabling
more efficient pretraining with smaller batch sizes.

There is also a line of research focused on
encoder-decoder or decoder-only architectures.
BLIP (Li et al., 2022a) facilitates both encoding
and decoding by training with three objective func-
tions, utilizing synthetic data and data filtering.
ALBEF (Li et al., 2021) employs a strategy of
alignment before applying cross-attention, com-
bined with a momentum update. Flamingo (Alayrac
et al., 2022) enables few-shot inference in vision-
language tasks through architectural innovations,
using vision-language prompts.

Prompt Tuning Efficient tuning using soft
prompts, originating in the domain of natural
language processing, has gained a lot of atten-
tion (Lester et al., 2021). This approach has also
been applied in the vision-language domain to
adapt to downstream tasks. CoOp (Zhou et al.,
2022b) was the first to apply learnable prompts
for CLIP model, replacing manual prompts for
each domain. ProDA (Lu et al., 2022) observes
that these text prompts can be viewed as a distri-
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Table 13: Extended results for ablation study on hyperparamter α related to Table 1.

α
Average on
11 datasets ImageNet Caltech101 OxfordPets Stanford

Cars Flowers102 Food101 FGVC
Aircraft SUN397 DTD EuroSAT UCF101

0.0 75.38 70.80 95.13 97.03 75.19 77.87 91.94 33.57 78.32 61.68 70.90 76.80
0.1 75.86 71.06 95.19 97.19 75.17 77.67 92.10 34.34 78.82 62.68 72.74 77.52
0.2 76.10 71.20 95.14 97.29 75.04 77.52 91.96 34.75 78.80 63.18 74.10 78.08
0.3 76.27 71.20 95.09 97.39 74.67 77.33 91.92 35.16 78.90 63.74 75.08 78.54
0.4 76.34 71.18 95.14 97.47 74.22 76.96 91.88 35.34 78.68 64.16 75.87 78.84
0.5 76.29 71.04 95.15 97.50 73.59 76.56 91.78 35.45 78.40 64.32 76.41 79.01
0.6 76.13 70.82 95.14 97.47 72.74 76.13 91.64 35.33 78.00 64.30 76.95 78.96
0.7 75.88 70.46 95.17 97.39 71.82 75.66 91.44 35.25 77.38 64.23 77.10 78.79
0.8 75.54 70.06 95.07 97.36 70.85 75.09 91.22 34.93 76.56 64.04 77.33 78.39
0.9 75.10 69.62 95.01 97.31 69.63 74.49 90.98 34.53 75.68 63.53 77.44 77.92
1.0 74.61 69.08 94.91 97.24 68.40 73.71 90.70 33.97 74.52 63.05 77.73 77.39

Table 14: Comparison of the accuracy of the base, novel,
and their harmonic means among the various prompt
types on text encoder.

Prompt Base Acc. Novel Acc. HM

Opt. manual prompt (Zhang et al., 2022) 84.15 75.24 79.17
Ens. (60 manual prompts (Radford et al., 2021)) 84.02 76.17 79.70
Shallow prompt 83.99 76.76 80.04

bution and proposes prompt distributional learning
for higher quality results. CoCoOp (Zhou et al.,
2022a) conditions text prompts on images to pre-
vent overfitting to base classes. KgCoOp (Yao et al.,
2023) regularizes by minimizing the discrepancy
between learned and manual prompts. UPT (Zang
et al., 2022) examines both VPT (Jia et al., 2022)
and text prompts, proposing a unified approach to
generate visual and textual prompts from the same
architecture. MaPLe (khattak et al., 2023) employs
the alignment of visual and text prompts for im-
provement with deep prompts, while DCP (Liu
et al., 2023) uses an attention mechanism for this
alignment. There is also a line of research aimed
at preventing the forgetting of general knowledge.
ProGrad (Zhu et al., 2023a) aligns gradient direc-
tions to preserve general knowledge, and Prompt-
SRC (Khattak et al., 2023) utilizes multiple regular-
ization losses with Gaussian aggregation of model
weights to prevent forgetting.

Adapter-style Tuning Adapter-style tuning has
been extensively explored as an alternative to
prompt tuning. CLIP-Adapter (Gao et al., 2023)
was the first proposed method in this area, utilizing
a two-layer MLP structure with ReLU nonlinearity
in between. Additionally, it incorporates a residual
connection to preserve general knowledge. For im-
proved efficiency, Tip-Adapter (Zhang et al., 2022)
employs a cache-based model to save the features
and labels of few-shot samples, using them to pre-

dict test outcomes without further training. This
approach also facilitates better fine-tuning by us-
ing the cache as initial training points for further
refinement. Differently, Task Residual (Yu et al.,
2023) adopts a unique strategy by simply adding a
residual or bias term vector for each class, reducing
reliance on pre-trained features. Zhu et al. (2023b)
enhances cache-based models through prior refine-
ment, which involves selecting important features
for the cache-based model.
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Table 15: Accuracy on base-to-novel generalization of
APEX on EVA-CLIP (Sun et al., 2023) and CoCa (Yu
et al., 2022).

Model EVA-CLIP-B/16 CoCa-B/32

Dataset ZS TPT
+VPT APEX ZS TPT

+VPT APEX

Average on 11
datasets

Base 75.28 85.91 85.93 70.85 82.39 82.09
Novel 77.68 75.24 79.34 74.29 71.05 73.98
HM 76.46 80.22 82.50 72.53 76.30 77.87

ImageNet
Base 79.20 81.78 81.26 67.10 69.50 69.46
Novel 75.60 72.28 75.83 66.60 62.33 66.46
HM 77.36 76.74 78.45 66.85 65.72 67.90

Caltech101
Base 98.60 98.87 98.82 96.70 97.86 98.04
Novel 97.30 95.05 97.22 96.30 94.12 95.98
HM 97.95 96.92 98.01 96.50 95.95 97.00

OxfordPets
Base 94.90 95.52 95.27 92.30 91.83 92.44
Novel 98.10 98.34 97.97 96.20 95.07 93.54
HM 96.47 96.91 96.60 94.21 93.42 92.99

Stanford Cars
Base 76.90 85.76 86.16 84.00 88.94 88.87
Novel 87.10 82.49 86.75 93.00 90.73 92.57
HM 81.68 84.09 86.45 88.27 89.83 90.68

Flowers102
Base 74.20 99.41 99.50 69.10 96.33 96.83
Novel 81.10 77.32 79.94 74.70 65.61 70.09
HM 77.50 86.98 88.65 71.79 78.06 81.32

Food101
Base 90.30 90.34 90.24 81.20 79.87 80.80
Novel 91.90 90.11 91.76 82.90 79.30 82.66
HM 91.09 90.22 90.99 82.04 79.58 81.72

FGVC Aircraft
Base 28.70 45.52 46.01 21.40 40.71 39.81
Novel 32.50 26.75 32.12 25.50 22.04 25.22
HM 30.48 33.70 37.83 23.27 28.60 30.88

SUN397
Base 76.70 83.10 82.44 73.70 78.68 77.68
Novel 80.80 76.76 80.54 77.40 73.50 77.12
HM 78.70 79.80 81.48 75.50 76.00 77.40

DTD
Base 62.80 83.78 84.15 62.60 83.04 83.25
Novel 63.90 61.32 64.39 61.10 58.46 61.14
HM 63.35 70.81 72.96 61.84 68.62 70.50

EuroSAT
Base 72.30 95.32 94.81 62.80 96.42 93.87
Novel 68.30 73.74 86.76 71.50 73.90 80.35
HM 70.24 83.15 90.61 66.87 83.67 86.59

UCF101
Base 73.50 85.58 86.58 68.50 83.13 82.01
Novel 77.90 73.43 79.49 72.00 66.54 69.69
HM 75.64 79.04 82.88 70.21 73.92 74.76

Table 16: The relative transfer difficulty values for all
datasets by using Definition 1.

Dataset ImageNet Caltech Pets Cars

RTD 1.4× 10−3 1.08× 10−2 3.01× 10−2 7.7× 10−3

Dataset Flowers Food Aircraft SUN

RTD 1.52× 10−2 1.15× 10−2 4.07× 10−2 3.8× 10−3

Dataset DTD EuroSAT UCF

RTD 4.95× 10−3 1.84× 10−1 1.42× 10−2

Algorithm 2 Pseudo-Algorithm for Adaptive Infer-
ence of APEX
Require: Pretrained visual encoder V , Pretrained

text encoder T , Learned vision prompts P̂,
Learned shallow text prompts P0,Learned
adapter parameterized by matrix A and b, The
C classes for base category {1, . . . , C}, The
Ceval candidate classes for evaluation {C +
1, . . . , C + Ceval},

Require: Initial Trained Text Embeddings
{W0,j}Cj=1, Initial Evaluation Text Embed-
ding {W0,eval}C+Ceval

eval=C+1, Evaluation Image
I

1: {t′j}Cj=1 = {T (W0,j)}Cj=1

2: for eval = C + 1, . . . , C + Ceval do
3: t′eval = T (W0,eval)
4: t̃eval = T ([W0,eval,P0])

5: d
avg
eval = 1.0− 1

C

∑C
j=1 sim(t′eval, t

′
j)

6: dnn
eval = 1.0−min∀j∈{1,...,C} sim(t′eval, t

′
j)

7: αeval = exp
(
−β · (davg

eval) · 1(dnn
eval>ϵ)

)

8: teval = αeval·(A⊺t̃eval+b)+(1−αeval)·t̃eval
9: end for

10: E0 = PathEmbedding(I)
11: c′LV = V([c0,E0])
12: z′ ← ImageProj(c′LV )
13: for i = 1, . . . , JV do
14: [ci,Ei, ]← Vi([ci−1,Ei−1, P̂i−1])
15: end for
16: for i = JV + 1, . . . , LV do
17: [ci,Ei, P̂i]← Vi([ci−1,Ei−1, P̂i−1])
18: end for
19: z← ImageProj(cLV )

20: ᾱ = 1
Ceval

∑C+Ceval
eval=C+1 αeval

21: z = ᾱ · z′ + (1− ᾱ) · z
22: /* Calculate the probability for class i */
23: Calculate Pr(y = i|z, t) =

exp(sim(z,ti)/τ)∑C+Ceval
j=C+1 exp(sim(z,tj)/τ)

24: Predict as argmaxi∈{C+1,...,C+Ceval} Pr(y =
i|z, t)

Table 17: The averaged cosine similarity value for inter-
and intra-class and their relative ratio.

Dataset ImageNet Caltech Pets Cars Flowers Food

Inter 0.551 0.672 0.844 0.564 0.749 0.754
Intra 0.925 0.898 0.910 0.829 0.924 0.853

Ratio 1.680 1.336 1.078 1.470 1.234 1.131

Dataset Aircraft SUN DTD EuroSAT UCF

Inter 0.746 0.487 0.803 0.896 0.673
Intra 0.858 0.780 0.823 0.934 0.866

Ratio 1.150 1.602 1.025 1.042 1.287
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