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Abstract
Active learning (AL) techniques optimally uti-
lize a labeling budget by iteratively selecting
instances that are most valuable for learning.
However, they lack “prerequisite checks”, i.e.,
there are no prescribed criteria to pick an AL
algorithm best suited for a dataset. A practi-
tioner must pick a technique they trust would
beat random sampling, based on prior reported
results, and hope that it is resilient to the many
variables in their environment: dataset, labeling
budget and prediction pipelines. The important
questions then are: how often on average, do
we expect any AL technique to reliably beat the
computationally cheap and easy-to-implement
strategy of random sampling? Does it at least
make sense to use AL in an “Always ON” mode
in a prediction pipeline, so that while it might
not always help, it never under-performs ran-
dom sampling? How much of a role does the
prediction pipeline play in AL’s success?

We examine these questions in detail for the
task of text classification using pre-trained rep-
resentations, which are ubiquitous today.

Our primary contribution here is a rigorous
evaluation of AL techniques, old and new,
across setups that vary wrt datasets, text repre-
sentations and classifiers. This unlocks multi-
ple insights around warm-up times, i.e., num-
ber of labels before gains from AL are seen,
viability of an “Always ON” mode and the rel-
ative significance of different factors. Addi-
tionally, we release a framework for rigorous
benchmarking of AL techniques for text classi-
fication.

1 Introduction

Within a supervised learning setup, Active Learn-
ing (AL) techniques (Settles, 2009) use a Query
Strategy (QS) to identify an unlabeled set of in-
stances which is optimal in the following sense: if
labelled and added to the training data, they lead
to the greatest improvement in model accuracy, rel-
ative to any other same-sized set. In cases where

labelling is expensive, the value proposition of AL
is that it is cost-efficient compared to random sam-
pling, and a model reaches greater accuracy with a
smaller number of labelled instances.

In practice, an AL technique is selected based
on the strength of prior reported results, i.e., there
are no “prerequisite checks”: tests that one might
perform on an unlabeled dataset, that help to se-
lect a technique suited to a problem1. This trust
extends to related decisions such as batch and seed
sizes, as well as the hyperparameters (if any) of the
AL technique since there is no way to empirically
pick them: to compare with random sampling, or
among techniques, labels are required. But if one
had labels, they wouldn’t need AL (Attenberg and
Provost, 2011)! In this sense, the AL setup is un-
forgiving as one needs to make the optimal choice
in one shot (Margatina and Aletras, 2023).

This leads us to ask multiple questions about the
broader area. How valid is the implicit but conse-
quential assumption of transferability? A related
question is whether the focus on QSes alone is war-
ranted - how much do the other components of a
prediction pipeline affect outcomes? And finally,
does it make sense to use AL at least in an “Always
ON” mode in a data labeling workflow; this is akin
to asking if AL might perform worse than random
sampling. We need to quantify both the frequency
and magnitude of gains from AL, to be able to eval-
uate the cost of such pipelines. This is because
even simple AL techniques require a model to be
evaluated over the unlabeled data pool, which can
be expensive depending on the model complexity,
size of the data pool and the latency allowed per
AL iteration.

To be clear, we don’t question if AL results are
reproducible within the original setups they were
reported in2; but whether any of those gains carry

1We refer to this as the practitioner’s decision model and
formalize it in §4.4.

2In the interest of fairness, we conducted limited repro-
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forward to new setups, which is how AL is used in
practice.

We pick the area of text classification to inves-
tigate these concerns. The larger area of NLP has
seen a rapid infusion of novel ideas of late. Today,
a practitioner has easy access to a variety of pow-
erful classifiers via packages such as scikit-learn
(Pedregosa et al., 2011), spaCy (Honnibal et al.,
2020) and Hugging Face (Wolf et al., 2020), and
text representations, such as Universal Sentence
Encoding (USE) (Cer et al., 2018), MiniLM (Wang
et al., 2021) and MPNet (Song et al., 2020). This
makes it a fertile ground for testing AL’s utility.

In all this, our motivation is not to disapprove
of AL as an area for research, but to motivate the
inclusion of multiple practical challenges in future
studies.

Contributions: Our primary contribution is a
rigorous empirical analysis of the learning behav-
ior of AL techniques over multiple text classifica-
tion pipelines, that is targeted towards answering
the questions asked above. Additionally, we open
source an AL evaluation framework3, to enable re-
searchers to not only reproduce our analysis, but
also to rigorously evaluate their own contributions.

2 Previous Work

Critique of AL is not new. Attenberg and Provost
(2011) criticize AL for its unpredictable (for a task)
warm-up times, i.e., a minimum number of labeled
instances before which gains over random sam-
pling are evident. Margatina and Aletras (2023)
point out problems with AL simulations. Lüth et al.
(2023) identify key issues leading to a lack of real-
istic AL evaluations and propose solutions that they
apply to image classification. Lowell et al. (2019)
study AL empirically but focus on the interesting
notion of successor models, i.e., future models that
would use the labeled data collected via AL using
a specific model. Zhan et al. (2021) examine the
empirical effectiveness of AL, but they don’t eval-
uate on NLP tasks. Siddhant and Lipton (2018)
is an empirical study of AL effectiveness similar
in spirit to ours, but they focus on deep Bayesian
methods. Prabhu et al. (2019) study sampling bi-
ases in deep AL, but their study is limited to one
prediction model - FastText.zip (Joulin et al., 2016)

duciblity tests for the AL techniques we benchmark here, and
were able to replicate reported results - see §D.

3Our framework, ALchemist, is available here: https:
//github.com/ThuongTNguyen/ALchemist.

- and considers only QSes based on uncertainty
sampling.

This work differs from from existing literature
wrt being a combination of: focusing on text classi-
fication, being empirical, employing a breadth of
models (traditional and deep learning based) and
employing recent techniques, e.g., MPNet (Song
et al., 2020), REAL (Chen et al., 2023). While some
conclusions we draw here might be similar to those
reported earlier, we note that it is important to re-
vise our collective mental models in a fast evolving
area such as NLP, and in enabling that, even such
conclusions are valuable.

3 Batch Active Learning - Overview

In this work, we specifically study the batch AL
setting for text classification. Here, a QS identifies
a batch of b unlabeled points, at each iteration t,
for T iterations. A model Mt, that is trained on
the accumulated labeled pool, is produced at the
end of each iteration. The first iteration uses a seed
set of s randomly sampled points (although other
strategies may be used).

We note that that Mt should be produced using
a model selection strategy (we use a hold-out set
here), and must also be calibrated (we use Platt
scaling (Platt, 2000; Niculescu-Mizil and Caruana,
2005)). The former ensures that Mt doesn’t overfit
to the labeled data, which is likely in the initial
iterations due to small quantities. The latter is
required since many query strategies rely on uncer-
tainty/confidence scores produced by Mt. Unfor-
tunately, in our experience, multiple implementa-
tions/studies miss one or both of these steps.

To avoid any ambiguity, we provide pseudo-code
for this AL setting in Algorithm 1 in §A.

4 Experiment Setup

In this section, we describe our experiment setup
in detail.

4.1 Configuration Space of Experiments

Our experiment configurations vary wrt datasets,
text representations, classifiers, the batch and seed
sizes, and of course, the QS. We study the follow-
ing QS here: (1) Random as baseline, (2) Mar-
gin4 (Scheffer et al., 2001; Schröder et al., 2022),
(3) Contrastive Active Learning (CAL) (Margatina
et al., 2021), (4) Discriminative Active Learning

4Also referred to as Smallest Margin or Breaking Ties, it is
still considered to be competitive (Schröder et al., 2022).
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Datasets

# Prediction Pipelines = 7

# Datasets = 5

# Query Strategies = 5

Representation

1. spaCy word vectors, 
averaged (WV)
(Honnibal et al., 2020)

1. sst-2
(Socher et al., 2013)

2. Margin
(Scheffer et al., 2001)

3. Contrastive Active 
Learning (CAL)
(Margatina et al., 2021)

4. Discriminatve Active 
Learning (DAL)
(Gissin and 
Shalev-Shwartz, 2019;
Ein-Dor et al., 2020)

5. Representative 
Errors for Active 
Learning (REAL)
(Chen et al., 2023)

1. Linear: Support 
Vector Machines with 
linear kernel (LinSVC)
(Cortes and Vapnik, 
1995)

3. MPNet (MP)
(Song et al., 2020)

4. RoBERTa
(Liu et al., 2019)

3. End-to-end: 
RoBERTa
(Liu et al., 2019)

2. Non-linear: Random 
Forest (RF) 
(Breiman, 2001)

2. Universal Sentence 
Encoding (USE)
(Cer et al., 2018)

Classifier Query Strategy

1. Random Sampling

2. imdb
(Maas et al., 2011)

3. agnews
(Zhang et al., 2015)

4. pubmed
(Dernoncourt and 
Lee, 2017)

5. dbpedia-5
(Zhang et al., 2015)

(batch_size, seed_size) 
Total configurations = 5 (datasets) x 7 (prediction pipelines) x 5 (query strategies) x 2 (batch/seed sizes) = 350

2

3

4

1

5

7

6

Figure 1: The space of experiments is shown. See §4.1 for description. All representations are produced by
pre-trained models, which are ubiquitous in practice today. The lines between the boxes “Representation” and
“Classifier” denote combinations that constitute our prediction pipelines. Note that RoBERTa is an end-to-end
predictor, where there are no separate representation and classification steps. Also note that the popular Transformer
architecture (Vaswani et al., 2017) is represented by RoBERTa and MPNet here.

(DAL) (Gissin and Shalev-Shwartz, 2019; Ein-Dor
et al., 2020), and (5) Representative Errors for
Active Learning (REAL) (Chen et al., 2023). We
picked these either because they are contemporary,
e.g., REAL, DAL, CAL, or have produced strong
contemporary results, e.g., Margin.

Figure 1 enumerates the configuration space. For
further details (including hyperparameters) see §B
and §E. Note that all representations used are based
on pre-trained models which have grown quite pop-
ular in the past few years. For classification, we
picked one each of a linear, non-linear and Deep
Learning based classifier5. Since batch or seed
sizes are inconsistent in AL literature, e.g., DAL,
REAL and CAL respectively use batch sizes of 50,
150, 2280 - we vary these settings as well.

For an idea of the breadth of this search space,

5Although end-to-end classifiers, e.g., RoBERTa, Distil-
BERT (Sanh et al., 2020), are popular today, we include
pipelines with separate representation and classification com-
ponents since they are still used where: (a) a good latency-
accuracy trade-off is needed, and (b) there are multiple down-
stream tasks that might leverage the representation, e.g., clas-
sification, similarity-based retrieval, sentiment analysis. On a
different note, the growing popularity of Retrieval Augmented
Generation (RAG) (Lewis et al., 2020) has re-shifted focus to
the area of learning good embeddings.

see Figure 2 which shows results for the dataset
agnews and batch/seed size of (200, 200).

4.2 Metrics and Other Settings

The classifier accuracy metric we use is the F1
(macro) score, since it prevents performance wrt
dominant classes from overwhelming results. For
measuring the effectiveness of a QS,we use the
relative improvement wrt the random QS of the
classifier score (see Equation 1). The size of the
unlabeled pool is 20000 at the start of each exper-
iment. If the original dataset has more than than
20000 instances, we extract a label-stratified sam-
ple, to retain the original class distribution. The
size of the test set is 5000 - also a label-stratified
sample from the corresponding test set of the origi-
nal dataset.

We run an experiment till the size of the labeled
set has grown to 5000 instances6. This implies
T = (5000 − 200)/200 = 24 iterations for the
batch/seed size setting of (200, 200), and similarly
T = 9 iterations for the (500, 500) setting.

As shown in Figure 1 we have 350 unique

6Beyond this labeled set size (unrelated to the test set size)
different QSes produce similar gains - see §C.

22219



configurations. We also execute each configura-
tion three times in the interest of robust reporting.
This gives us a a total of 350 × 3 = 1050 tri-
als. For each AL iteration of each of these trials,
we follow the due process of model selection7 and
calibration8.

4.3 Notation and Terminology
We introduce some notation here that will help us
precisely describe our analysis in later sections.

Let f be a function that computes the model
metric of interest, e.g., F1-macro. This accepts, as
parameters, the random variables9 h, q, d, b, s, n,
which are defined as follows:

• h ∈ H , the set of prediction pipelines.

• q ∈ Q, the set of query strategies. For con-
venience, we also define qR to be the random
QS, and QNR = {cal, dal, real,margin},
i.e., the subset of non-random QS.

• d ∈ D, the set of datasets.

• (b, s) ∈ V , the set of batch and seed size com-
binations, i.e., V = {(200, 200), (500, 500)}

• n is the size of the labeled data. In our experi-
ments, s ≤ n ≤ 5000.

A specific value is indicated with a prime symbol
on the corresponding variable, e.g., h′ is a specific
prediction pipeline.

QS Effectiveness: We evaluate a non-random
QS by measuring the relative improvement wrt the
random QS, at a given number of labeled instances
n′. We use the shorthand δ:

δ(f(h, q, d, b, s, n′)) = 100×
f(h, q, d, b, s, n′)− f(h, qR, d, b, s, n′)

f(h, qR, d, b, s, n′)
(1)

4.4 Decision Model
Before looking at the results, we formalize the de-
cision model of a practitioner using our notation.
This helps us justify the aggregations we perform
over results of individual experiments.

7Margatina and Aletras (2023) point out that this is lacking
in most AL studies. This is another way the current work
differentiates itself.

8RoBERTa is the only exception since it is naturally well-
calibrated (Desai and Durrett, 2020).

9Of course, in this work we consider them to only assume
specifically chosen values, e.g., RF, LinSVC and RoBERTa as
predictors.

Because of lacking prerequisite checks, there
is no preference for picking a factor in combina-
tion with others. We model them as independent
variables, i.e., the probability of a configuration is
p(h)p(q)p(d)p(b, s). Since each of these probabil-
ities is also uniform, e.g., the general practitioner
is equally likely to encounter any dataset d ∈ D,
each configuration has an identical probability of
occurrence10: 1/(|H| × |Q| × |D| × |V |). In other
words, any expectation we wish to compute over
these settings under this decision model is a simple
average.

5 Results

We are now ready to look at the results of our ex-
periments.

5.1 Expected Gains from AL

Figure 3 shows the expected relative improvement,
grouped in the following ways:

1. Figure 3(a)-(e): These heatmaps show the
expected δ at a given number of instances
n′ ∈ {1000, 2000, 3000, 4000, 5000}. A cell
for predictor h′ and a QS q′ ∈ QNR in the
heatmap for n′ training instances shows11:

Ed,b,s[δ(f(h
′, q′, d, b, s, n′))] (2)

The rows are arranged roughly in increasing
order of classifier capacity, i.e., LinSVC, RF,
RoBERTa, and within a group, in increasing
order of approximate representation quality:
word vectors (WV), USE, MPNet12.

2. Figure 3(f): This shows δ only for prediction
pipelines, marginalizing over QSes. This is
easy to show in a standard line-plot. The y-
value for x = n′ for predictor h′ denotes:

Ed,b,s,q∈QNR
[δ(f(h′, q, d, b, s, n′))] (3)

3. Figure 3(g): This is analogous to (f) and
shows δ for QSes while marginalizing over

10They may inherit an environment with a specific predic-
tion pipeline or a query strategy - we also present these condi-
tional results. But within these conditions, the other factors
are assumed to be independent and individually uniform.

11This expectation is over batch and seed sizes at given
values of n′; but note, different batch sizes don’t produce
same values for n′. This is explicitly reconciled - see §F.

12The relative ordering of USE vs MPNet was obtained
from the Massive Text Embedding Benchmark (MTEB) rank-
ings, where MPNET leads USE by ∼ 100 positions today.
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Figure 2: F1 macro scores on the test set at each iteration, for the dataset agnews and batch size of 200. The x-axes
show size of the labeled data, the y-axes show the F1-macro scores on the test data.

predictors. The y-value for a specific x = n′

for QS q′ ∈ QNR denotes:

Ed,b,s,h[δ(f(h, q
′, d, b, s, n′))] (4)

Observations: In Figure 3(a)-(e), we see that as
we move towards the right, the number of cells with
δ ⪆ 0 increases. This suggests that, in general, as
the pool of labeled instances grows, AL becomes
more effective. This might seem promising at first,
but note that (a) we cannot predict when this hap-
pens in practice: we lack the theoretical tools, and
it varies wrt both the predictor and the QS, and (b)
if you look closely, its not that AL is becoming
more effective but, rather, all configurations are
converging towards13 δ = 0. In other words, in
low label regimes, where we expect AL to benefit
us, there can be a lot of variance - it might even
under-perform random sampling - and at high la-
bel regimes, their performance, even if positive, is
not very different from random sampling.

13This is something we observe in a separate analysis as
well - see §C. In fact, this is the reason why we grow the
labeled set to only 5000 instances in our experiments - men-
tioned in §C.

Among predictors (Figure 3(f), but this is also
apparent in (a)-(e)), for RoBERTa we consistently
observe δ > 0. But we note that this value isn’t
high, i.e., δ ≈ 1. Among QSes, REAL and Margin,
seem to do well at larger data regimes - as visible
in Figure 3(g), but also in (d) and (e). The perfor-
mance of Margin might seem somewhat surprising,
since this is an old technique (proposed in Scheffer
et al. (2001)), but similar observations have been
reported elsewhere (Schröder et al., 2022).

5.2 Always ON Mode

Another question we might ask is that even if AL
doesn’t always surpass random, is there a down-
side to making it a permanent part of a labeling
workflow - multiple tools allow this today14, e.g.,
Montani and Honnibal; Tkachenko et al. (2020-
2022)?

Table 1 shows some relevant numbers.
Observations: In general, (first row, “Overall”),

the number of incidents where the relative im-

14Important: We have not evaluated these tools. They
are cited as examples of common tools used in data labeling
workflows in the industry.
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Figure 3: Expected relative improvement in F1-macro score over random. (a)-(e) show this for different predictors
and QS, at different training sizes (see titles). These correspond to Equation 2. (f) and (g) show marginalized
improvements for different predictors and QSes respectively; see equations 3 and 4.

Avg. for % times δ < 0 δ≥0 δ

Overall 51.82 0.89 -0.74

LinSVC-WV 61.71 0.70 -1.90
LinSVC-USE 61.57 0.46 -0.64
LinSVC-MP 63.71 0.40 -1.48
RF-WV 47.29 1.31 -0.30
RF-USE 60.57 0.71 -0.63
RF-MP 60.14 0.60 -1.24
RoBERTa 7.71 1.29 1.01

CAL 55.60 0.81 -1.07
DAL 70.12 0.82 -1.29
Margin 38.45 0.97 -0.25
REAL 43.10 0.89 -0.34

Table 1: The %-age of times model F1-macro scores
are worse than random are shown. Also shown are the
average δs when scores are at least as good as random,
and average δs in general. These are relevant to the
“Always ON” mode, discussed in §5.2. See Table 6 in
§G for standard deviations.

provement was strictly negative (counted at var-
ious labeled data sizes across configurations) is

51.82%. This might be suggested by the heatmaps
in Figure 3(a)-(e) as well, where approximately the
left upper triangle of the plots combined indicates
δ < 0. The average improvement when AL is as
good as random is low, i.e., δ≥0 = 0.89, and on
the whole this quantity is actually negative, i.e.,
δ = −0.74. Again, the use of RoBERTa leads to
favorable scores. Among QSes, Margin and REAL
perform relatively well.

Under our decision model - §4.4 - the practical
implication is bleak: in the “Always ON” mode,
stopping labeling early risks negative improvement.
The only way to ensure δ ≥ 0 is to accumulate
quite a few labels, i.e., move out of the left upper
triangular region in Figure 3(a)-(e), but then the av-
erage improvement is low. Essentially, the “Always
ON” mode is viable if the small relative gains from
labeling 4000−5000 instances are useful.

5.3 Effect of Prediction Pipeline vs QS

Papers on AL typically contribute QSes. Here
we ask if that focus is warranted, i.e., what has a
greater impact? - the QS or the prediction pipeline?

We might suspect that it is the pipeline, given
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the performance of RoBERTa in both Figure 3 and
Table 1. To precisely assess their relative effect, we
calculate the difference in outcomes produced by
changing the QS vs the pipeline. Here’s how we
obtain such outcome data:

1. Take the example of QSes. For each
non-random QS q′, we list the scores
δ(f(h, q′, d, b, s, n)) for different values of
h, d, b, s, n. Since there are four non-random
QSes, this gives us four sets of matched obser-
vations.

2. We follow an analogous procedure for predic-
tion pipelines, where we obtain seven matched
observation sets.

A standard method for such analysis is the Fried-
man test (Friedman, 1937), but note here that the
number of matched observations for the two cases
might be different, which implies different statisti-
cal power. Also we might not directly compare the
p-values since they are a measure of significance.

Instead we use Kendal’s W to directly mea-
sure the effect size (Tomczak and Tomczak, 2014).
These effect sizes for the QS and pipeline parame-
ters respectively are 0.34 and 0.25; the effect size
here measures agreement, i.e., using different QSes
produce similar results (higher agreement), rela-
tive to using different pipelines. We also built an
Explainable Boosting Machine (EBM) (Lou et al.,
2013, 2012) on our observations, which is a form
of Generalized Additive Model that takes into ac-
count pairwise interactions. The global feature
importance15 for QS+pipeline, QS and pipeline re-
spectively are 0.41±0.01, 0.42±0.02, 0.63±0.01
- which (a) justifies looking at the marginal effects
since the importance score for QS and pipeline in-
dependently are at least as large as QS+pipeline,
and (b) corroborates that changing pipelines has a
greater impact.

5.4 Effect of Batch/Seed Size

We perform a Wilcoxon signed-rank test (Wilcoxon,
1945) to assess the effect of batch/seed sizes on
δ. This is a paired test and ideally we should
match observations δ(f(h, q, d, 200, 200, n)) and
δ(f(h, q, d, 500, 500, n)). However, recall that
since different batch/seed sizes don’t lead to the

15The EBM was constructed using different train-test splits,
hence both mean and standard deviations across these splits
are reported.

Predictor p-value QS p-value
LinSVC-WV 0.18 CAL 0.77
LinSVC-USE 0.41 DAL 0.02
LinSVC-MP 0.60 Margin 0.32
RF-WV 0.13 REAL 0.07
RF-USE 0.03
RF-MP 0.03
RoBERTa 1.32e−10

Overall: 0.90

Table 2: The p-values for a two-sided Wilcoxon signed-
rank test over δ values, from using batch/seed size
(200, 200) vs (500, 500). See §5.4 for details.

same values of n - we explicitly align the sizes for
such comparison (detailed in §F).

The overall p-value of 0.90 indicates that
our batch/seed settings don’t influence δ in gen-
eral. The exception is RoBERTa, with p-value=
1.32e−10. A further one-sided test tells us that
the batch/seed size setting of (200, 200) leads to
greater δ values (p-value= 6.57e−11).

5.5 Effect of Representation

Finally, we assess the effect of text representation
on relative improvements. Since we want to evalu-
ate representations alone (the prediction pipeline as
a whole was already evaluated in §5.1), we ignore
RoBERTa for this exercise, since its an end-to-end
classifier.

Figure 4 shows how the relative improvement δ
varies with the embedding used, marginalized over
other configuration variables.
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Figure 4: Effect of text representations on the relative
improvement.

We note that USE outperforms MPNet. This
is surprising to us because on the MTEB (Muen-
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nighoff et al., 2022) benchmarks MPNet scores
much higher. A hypothesis that might explain both
results is that USE doesn’t capture fine-grained con-
texts as much as MPNet does; while this might be
problematic for MTEB (esp. tasks that rely on pre-
cise similarity measurement, such as retrieval), the
fuzzier embedding space of USE is better in terms
of covering the concept space in the dataset earlier
in the AL process. This enables better assessment
of informativeness, and therefore, sampling, by a
non-random QS.

6 Summary and Conclusion

After extensive evaluation of different AL algo-
rithms, we are forced to conclude that it is difficult
to practically benefit from AL. Gains from QSes are
inconsistent across datasets, prediction pipelines
and text representations. In fact, between QSes
and prediction pipelines, the latter seems to have
a greater influence on the relative improvement
over random (§5.3). The only general pattern we
see is that positive relative improvements become
likely as labeled instances accumulate; but these
improvements are too small to be broadly useful
(§5.1). Another reason as to why it is hard to derive
any practical advice is that we lack the tools, theo-
retical or empirical, to identify a settings-specific
warm-start size; when do we stop labeling to re-
alize gains, however small? Further, we noted in
§5.2 that using AL in an “Always ON” mode can
actually perform worse than random sampling.

The use of RoBERTa as the prediction pipeline
is the only (isolated) case where we see consistent
positive relative improvements. Our hypothesis as
to why is that an end-to-end classifier has a more
coherent view of the overall distribution, and there-
fore informativeness of a sample. But, obviously,
we can’t discount the role that RoBERTa’s specific
pre-training might play here, and further experi-
mentation is required to disentangle their respec-
tive influences. Even in this case, we point out that
(1) it provides further evidence for the argument
that the QS alone does not decide outcomes, and
(2) while positive, the gains aren’t considerable,
with δ ≈ 1% (see Figure 3 (a)-(f)).

Although extensive, this study may be consid-
ered “limited” relative to real-world variances, e.g.,
many more choices of classifiers, datasets, which
leads us to suspect that the true picture is probably
more dismal.

What might we do to make the field of AL more

useful? We feel the biggest problem in AL use is
that practitioners have to blindly guess what spe-
cific AL technique will work best for their problem.
As a field we need to embrace a broader discourse
where the success of a technique needs to be tied
to fundamental properties of datasets, e.g., topo-
logical features (Chazal and Michel, 2021), and
predictors, e.g., VC dimension (Vapnik, 1995), that
are identifiable in an unsupervised manner in novel
settings.

7 Limitations

Being an empirical work, our conclusions are tied
to the algorithms and settings analyzed. In par-
ticular, the experiments (a) don’t include Large
Language Models, or (b) is not exhaustive wrt hy-
perparameters such as batch and seed set sizes;
we use two settings, but please note that there is
no standard way to select values for these a priori.
Another aspect that is not considered here is the dif-
ference between academic vs real-world datasets,
which might lead to different behaviors for a QS
(Margatina and Aletras, 2023)

We also point out that the shortcomings of in-
dividual QSes themselves are not a limitation of
this study, which maybe seen as an empirical sur-
vey with the goal of thoroughly evaluating existing
QSes as-is.
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A Pseudo-code for Batch Active Learning

Algorithm 1: Batch Active Learning.
Input: Unlabeled data XU , test data

(Xtest, Ytest), query strategy Q,
seed set selection strategy A, search
space Θ for modelM, seed size s,
batch size b, number of iterations T ,
metric V

Result: Scores on test set at various
iterations
{(V0, 0), (V1, 1), ..., (VT , T )}

1 result← {} // to be returned
2 XL,0, XU,0 ← A(XU , s)
3 (XL,0, YL,0)← obtain labels for XL,0

4 M0 ← argmaxθ∈ΘMθ((XL,0, YL,0))
// both model selection and
calibration are performed

5 V0 ← V(M0(Xtest), Ytest)
6 result← result ∪ {(V0, 0)}
7 for t← 1 to T do
8 Xnew

L,t , XU,t ←
Q(Mt−1, XU,t−1, (XL,t−1, YL,t−1), b)

9 (Xnew
L,t , Y new

L,t )←
obtain labels for Xnew

L,t

10 (XL,t, YL,t)←
add (Xnew

L,t , Y new
L,t ) to (XL,t−1, yL,t−1)

11 Mt ← argmaxθ∈ΘMθ((XL,t, YL,t))
Vt ← V(Mt(Xtest), Ytest)

12 result← result ∪ {(Vt, t)}
13 end
14 return result

At a high-level, at every AL iteration 1 ≤ t ≤ T ,
we use a query strategy Q to select a b-sized batch
of instances from the unlabeled pool of data (line
8). We obtain labels for this set (line 9) and add it
to the existing pool of labeled data (line 10). We
then train a model Mt over this data (line 11). We
emphasize that:

1. The model Mt is obtained after performing
model selection over its hyperparameter space
Θ, using grid-search against a validation set.
The validation set is a label-stratified subset (a
20% split) of the current labeled set; the rest
is used for training.

2. The model is also calibrated16. This is crit-
ical since query strategies Q often use the

16A notable exception is in our use of the RoBERTa model,
which already is well calibrated (Desai and Durrett, 2020).

predicted class probabilities from Mt. We
use Platt scaling (Platt, 2000; Niculescu-Mizil
and Caruana, 2005).

The process is initialized by selecting a seed set
of size s from the unlabeled data pool, using a
strategy A (line 2). We use random selection for
this step.

We also note that a “model” here might mean a
combination of a text representation, e.g., word vec-
tors, and a classifier, e.g., Random Forest; further
detailed in Section 4.1.

B Experiment Configurations

In our experiments, we vary classifiers, text rep-
resentations (we often jointly refer to them as a
prediction pipeline), batch size, seed size and, of
course, query strategies. These combinations are
visualized in Figure 1, and are detailed in Section.

These combinations are listed below:

1. Prediction pipeline: There are two categories
of pipelines we use:

(a) Separate representation and classifier:
The representations used are USE (Cer
et al., 2018), MPNet (Song et al., 2020)
and word vectors17 (we use the models
provided by the spaCy library (Honnibal
et al., 2020)). For classification, we use
Random Forests (RF) (Breiman, 2001)
and Support Vector Machines (Cortes
and Vapnik, 1995) with a linear kernel -
we’ll term the latter as “LinearSVC”.
We use off-the-shelf representations and
they are not fine-tuned on our data. Only
the classifiers are trained on our data.

(b) End-to-end classifier: This does not re-
quire a separate representation model.
We use RoBERTa (Liu et al., 2019) (a
variant of BERT). This is fine-tuned on
the labeled data at each AL iteration.

Hyperparameter search spaces are detailed
in Section E.2 of the Appendix. As noted
in Section 3, model selection and calibration
are performed during training of a prediction
pipeline. The only exception is RoBERTa,
which has been shown to be well-calibrated
out of the box (Desai and Durrett, 2020).

17The vectors of all words in a sentence are averaged to
obtain its representation.
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The first category gives us 2 × 3 = 6 com-
binations. Counting RoBERTa, we have 7
prediction pipelines in our study.

2. Query Strategy: we list these below, with the
year of publication mentioned, to show our
focus on contemporary techniques:

(a) Random: the batch is selected uniformly
at random. This forms our baseline.

(b) Margin18 (Scheffer et al., 2001) (2001):
this selects instances with the smallest
differences between the confidence of the
most likely and the second-most likely
predicted (by the current classifier19)
classes. Despite being a relatively old
technique, it continues to be competitive
(Schröder et al., 2022).

(c) Contrastive Active Learning (CAL)
(Margatina et al., 2021) (2021):
chooses instances whose predicted
class-probability distribution is the most
different (based on KL divergence) from
those of their k-nearest neighbors. This
is similar to another work (Nguyen and
Ghose, 2023), where such conflicts are
detected using the explanation space
produced by XAI techniques.

(d) Discriminative Active Learning (DAL)
(Gissin and Shalev-Shwartz, 2019; Ein-
Dor et al., 2020) (2019): a binary clas-
sifier (a feedforward neural network) is
constructed to discriminate between la-
beled and unlabeled data, and then se-
lects unlabeled instances with the great-
est predicted probability of being un-
labeled. This picks examples that are
most different from the labeled instances
in this classifier’s representation space.
While the original work (Gissin and
Shalev-Shwartz, 2019) only considers
image datasets, a separate study shows
its efficacy on text (Ein-Dor et al., 2020).

(e) Representative Errors for Active Learn-
ing (REAL) (Chen et al., 2023) (2023):
identifies clusters in the unlabeled pool
and assigns the majority predicted label
as a “pseudo-label” to all points in it. In-
stances are then sampled whose predic-

18Also referred to as Smallest Margin or Breaking Ties.
19Note that in reference to Algorithm 1, at iteration t, the

query strategy Q uses model Mt−1.

tions differ from the pseudo-label. The
extent of disagreement and cluster size
are factored into the sampling step

We use a total of 5 query strategies.

3. Datasets: we use 5 standard datasets: ag-
news, sst-2, imdb, pubmed and dbpedia-5 (a
5-label version of the standard dbpedia dataset
that we created). These are detailed in Table 3.
The extent of class imbalance is represented
by the label entropy column, which is calcu-
lated as

∑
i∈C −pi log|C| pi, with C being the

set of classes.

4. Batch and Seed sizes: We use batch and
seed size combinations of (200, 200) and
(500, 500). This is a total of 2 combinations.

5. Trials: For statistical significance, we run 3
trials for each combination of the above set-
tings.

C In what data regimes do query
strategies most differ?

We would intuitively expect that F1-macro scores
from different QSes (for a given pipeline and
dataset) should converge as we see more data due
to at least two reasons:

• The concept space in the data would be even-
tually covered after a certain number of in-
stances. Adding more data isn’t likely to add
more information, i.e., there are diminishing
returns from adding more data.

• At later iterations, there is less of the unla-
beled pool to choose from.

Indeed, Figure 5 confirms this. We first compute
variances in F1-macro scores for each different
pipeline/dataset combination20 across QSes at a
given labeled set size. And then we average these
variances across datasets and pipelines - this is the
y-axis. We see that the expected variance shrinks
after a while, and at 5000 labeled points it is close
to zero, i.e., the differences from using different
QSes, pipelines etc isn’t much. This is why we
restrict the labeled set size to 5000 instances in our
experiments (as mentioned in §4.2).

20This step comes first since the accuracies obtained by a
LinearSVC would be very different from those by RoBERTa,
and we don’t want to mix them.
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Dataset # classes Label en-
tropy

Description

sst-2 2 1.0 Single sentences extracted from movie reviews with their sentiment
label (Socher et al., 2013).

imdb 2 1.0 Movie reviews with corresponding sentiment label (Maas et al.,
2011).

agnews 4 1.0 News articles with their topic category (Zhang et al., 2015).
pubmed 4 0.9 Sentences in medical articles’ abstracts which are labeled with their

role on the abstract (Dernoncourt and Lee, 2017).
dbpedia-5 5 1.0 A subset of dbpedia (Zhang et al., 2015) which contains Wikipedia

articles accompanied by a topic label. The original dataset’s instances
are evenly distributed across 14 classes. To form dbpedia-5, we use
only the first 5 classes: Company, EducationalInstitution, Artist,
Athlete, OfficeHolder. This was done to reduce the training time of
one-vs-all classifiers, e.g., LinearSVC.

Table 3: Datasets used. Label entropy represents class imbalance - see §B for description.
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Figure 5: Expectation over variance of F1-macro given a
pipeline and dataset, plotted against size of labeled data.
Note that the batch/side sizes don’t strongly influence
trends.

D Reproducibility Experiments

As mentioned earlier, our intention is not to suggest
that the techniques we evaluate, e.g., REAL, CAL,
DAL, don’t work. In the specific settings discussed
in their respective papers, they most likely perform
as reported. In the interest of fairness, we have
conducted limited independent tests that confirm
this.

In all cases, we have attempted to replicate the
original settings, e.g. same train/development/test
data split, model type, seed/batch sizes, number of
AL iterations as shown in Table 4. For CAL, REAL,
we report the F1-macro scores on agnews, in which
classes are evenly distributed, instead of the ac-
curacy provided in the original papers. For DAL,

we use the dataset cola21 and utilise the Hugging
Face library to finetune BERT (while the original
work employs TensorFlow22, but we use equivalent
settings). Figure 6 shows a comparison between
our results and the reported ones in these papers
(Margatina et al., 2021; Chen et al., 2023; Ein-Dor
et al., 2020) for CAL, REAL, DAL, respectively.
Despite some minor differences in the setups, we
observe that these AL methods work as described
in their respective papers in these settings.

One significant difference between these set-
tings compared to our methodology is the use of
a predetermined labeled development set for all
BERT/RoBERTa model finetuning. This set is rela-
tively larger than the AL batch or seed size and is
not part the labeled data available at each AL itera-
tion. This is impractical in scenarios where AL is
typically used: labeling is expensive. Moreover, in
some cases, there is no model selection performed,
which we remedy in our experiments (Section 3).

E Hyperparameters

E.1 Query Strategy (QS) hyperparameters

For each QS’s hypeparameters, we use the values
recommended by the authors in corresponding pa-
pers. This means setting number of nearest neigh-
bors in CAL to 10, number of clusters in DAL to
25, and keeping the same discriminative model in
REAL.

21https://nyu-mll.github.io/CoLA/
22https://www.tensorflow.org/
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AL Dataset AL loop Classifier & text representation QS parameters Metric

CAL agnews b=2280
s=1140
T = 7

BERT (bert-base-cased)
[CLS] at the last hidden layer
learning rate = 2e-5
train batch size = 16
# epochs = 3
sequence length = 128
warmup ratio = 0.1
# evaluations per epoch = 5

# neighbors=10 F1-macro

DAL cola b=50
s=100
T = 5

BERT (bert-base-uncased)
[CLS] at the pooled layer
learning rate = 5e-5
train batch size = 50
# epochs = 5
sequence length = 50
warmup ratio = 0
# evaluations per epoch = 1

- Accuracy

REAL agnews b=150
s=100
T = 8

RoBERTa (roberta-base)
[CLS] at the last hidden layer
learning rate = 2e-5
train batch size = 8
# epochs = 4
sequence length = 96
warmup ratio = 0.1
# evaluations per epoch = 4

# clusters=25 F1-macro

Table 4: Settings for reproducibility experiments.

E.2 Hyperparameters search for prediction
pipelines

Table 5 shows the search space for hyperparameters
we use for each classifier.

F Averaging over Different Batch-Sizes

When computing expectations over different
batch/seed sizes (like in Equation 2) a challenge
is that different settings don’t lead to same num-
ber of instances. For ex., for b = 200, s = 200,
the size of the trained pool assumes the values
200, 400, .., 5000, and for b = 500, s = 500, the
sizes are 500, 1000, .., 5000. To compute an expec-
tation of the form Eb,s[., n

′], we use the sizes from
the larger batch, i.e., n′ ∈ {500, 1000, .., 5000},
and map the closest sizes from the smaller batch to
them. For ex., here are some size mappings from
the small batch case to the larger one: 800 →
1000, 1000 → 1000, 1200 → 1000, 1400 →
1500, 1600→ 1500.

G Always ON Mode

Table 6 presents standard deviations for the “Al-
ways ON” case, and is a companion to Table 1 in
§5.2. Note the extremely high variances in moving
across combinations of the configurations and size
of the labeled set.
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Classifier Hyperparameters

RoBERTa roberta-base
[CLS] at the last hidden layer
learning rate = {3e-5, 5e-5}
train batch size = 16
# epochs = {5, 10}
sequence length = 128
warmup ratio = 0.1
# evaluations per epoch = 5

LinearSVC C = {0.001, 0.01, 0.1, 1, 10, 100, 1000}
class weight = balanced

RF min samples leaf = {1, 5, 9}
# estimators = {5, 10, 20, 30, 40, 50}
max depth = {5, 10, 15, 20, 25, 30}
class weight = balanced
max features = sqrt

Table 5: Hyperparameters for each classifier in the prediction pipelines.

Avg. for % times δ < 0 δ≥0 δ

Overall 51.82 0.89 ± 0.92 -0.74 ± 3.02

LinSVC-WV 61.71 0.70 ± 0.60 -1.90 ± 3.94
LinSVC-USE 61.57 0.46 ± 0.49 -0.64 ± 1.85
LinSVC-MP 63.71 0.40 ± 0.44 -1.48 ± 3.53
RF-WV 47.29 1.31 ± 1.01 -0.30 ± 2.63
RF-USE 60.57 0.71 ± 0.69 -0.63 ± 1.85
RF-MP 60.14 0.60 ± 0.55 -1.24 ± 3.59
RoBERTa 7.71 1.29 ± 1.17 1.01 ± 1.94

cal 55.60 0.81 ± 0.86 -1.07 ± 3.23
dal 70.12 0.82 ± 0.94 -1.29 ± 3.22
margin 38.45 0.97 ± 0.88 -0.25 ± 2.78
real 43.10 0.89 ± 0.99 -0.34 ± 2.67

Table 6: The %-age of times model F1-macro scores are worse than random, the average δs when scores are at least
as good as random and average δs in general. These are identical to the values in Table 1 in §5.2, but the standard
deviations are additionally shown here.
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Figure 6: Comparison between published results in (Margatina et al., 2021; Chen et al., 2023; Ein-Dor et al., 2020)
and ours with the same settings for CAL, REAL, DAL.
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