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Abstract

Fact-checking claims is a highly laborious task
that involves understanding how each factual
assertion within the claim relates to a set of
trusted source materials. Existing approaches
make sample-level predictions but fail to iden-
tify the specific aspects of the claim that are
troublesome and the specific evidence relied
upon. In this paper, we introduce a method and
new benchmark for this challenging task. Our
method predicts the fine-grained logical rela-
tionship of each aspect of the claim from a set
of multimodal documents, which include text,
image(s), video(s), and audio(s). We also in-
troduce a new benchmark (M3DC) of claims
requiring multimodal multidocument reason-
ing, which we construct using a novel claim
synthesis technique. Experiments show that
our approach outperforms other models on this
challenging task on two benchmarks while pro-
viding finer-grained predictions, explanations,
and evidence.

1 Introduction

Misinformation poses serious societal risks by per-
petuating narratives that incite fear, sow discord,
and affect public health and safety (Geoghegan
et al., 2020; Treen et al., 2020). Despite signif-
icant efforts towards developing automated fact-
checking techniques (Yao et al., 2023a; Nasir et al.,
2021; Karimi and Tang, 2019), existing methods
face several limitations. First, real-world claims
may include assertions that require consulting mul-
tiple documents and modalities to verify or refute
the claim. Existing approaches either assume a sin-
gle document setting (Fung et al., 2021; Thomas
et al., 2022) or perform retrieval across documents
to obtain relevant evidence, which is then treated
as a single document (Yao et al., 2023a), poten-
tially losing important surrounding context. Sec-
ondly, some methods only predict when claims con-
flict with relevant knowledge but ignore ambiguous
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Figure 1: We predict the logical relationship of each
piece of a claim (e.g. nodes=objects, tuples=relations)
with a set of multimedia evidence. We also contribute a
new benchmark and baseline model for this challenging
task requiring cross-document, cross-modal reasoning.

cases where no supporting or refuting information
is available (Wu et al., 2022; Xuan et al., 2024).
Lastly, most of the existing methods fail to provide
the fine-grained analysis needed for users to under-
stand what is inconsistent in a claim or to make
revisions to be more factual (Wu et al., 2022; Yao
et al., 2023a; Xuan et al., 2024). Simply flagging
an entire claim as false without pinpointing the spe-
cific inaccurate parts provides limited utility. In
contrast, we propose an approach for predicting
the logical relationship of each piece of a claim
with respect to a set of multimodal sources. We
perform a semantic dissection of claims into seman-
tic pieces and leverage a hierarchical transformer
that operates across multimedia documents to make
fine-grained predictions. As illustrated in Figure 1

Our model ingests the claim along with as-
sociated multimedia, preserving the context. It
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then fuses the cross-document representations
into a graph initialized with the claim’s Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013). Entailment relations are then predicted
for each node (e.g., entities, actions) and tuple
(e.g., relations) within the graph. Because no
prior work has explored making fine-grained claim
predictions from a set of multimodal documents,
we also introduce a new dataset of claims that
contains fine-grained labels for this task called
M3DC (MultiModal Multi-Document Claims).
We build our dataset on top of the NewsStories(Tan
et al., 2022) dataset, which includes sets of news
articles, images, and videos across multiple top-
ics. We retrieve textual, visual, and audio data
from each set to build a robust multimodal mul-
tidocument knowledge graph for each set of re-
lated documents. Next, we develop a claim syn-
thesis method in order to generate claims that re-
quire multisource knowledge to verify, which uses
a fine-grained claim manipulator model to generate
claims manipulated at the sub-claim level.

Our major contributions are as follows:
• We introduce the novel task of performing

fine-grained entailment of a textual claim with
a set of multimodal documents.

• We propose a novel data synthesis technique
for generating fine-grained labeled claims re-
quiring multimodal multisource knowledge to
verify using a graph traversal and fine-grained
claim manipulator model.

• We contribute a large benchmark of fine-
grained labeled claims created using our tech-
nique. We also contribute a small number of
claims densely annotated by experts.

• We introduce a new hierarchical transformer
model baseline designed for the task of fine-
grained claim analysis over multiple sources.

• We conduct qualitative and quantitative exper-
iments to evaluate the performance of our pro-
posed method on our new benchmark dataset,
as well as an existing benchmark dataset.

2 Related Works

Multimodal Misinformation Datasets. Previous
works have studied misinformation using a vari-
ety of multimodal datasets (Cheema et al., 2022a;
Nakamura et al., 2020; Abdelnabi et al., 2022;
Gupta et al., 2022; Hu et al., 2023; Fung et al.,
2021; Thomas et al., 2022; Yao et al., 2023b). How-
ever, most predict claims as either true or false,

focusing on whether the entire claim is entailed
or contradicted by the premise (Cheema et al.,
2022a; Nakamura et al., 2020; Abdelnabi et al.,
2022; Gupta et al., 2022; Hu et al., 2023; Fung
et al., 2021). This binary approach fails to account
for cases where the truthfulness of a claim cannot
be determined. In such instances, many previous
works treat these claims as contradicted, which
is not accurate, as the veracity of the claim can-
not be verified (Thomas et al., 2022; Yao et al.,
2023b). Furthermore, most of the datasets used in
these studies only provide evidence from a single
source (e.g., a single news article) (Cheema et al.,
2022a; Nakamura et al., 2020; Abdelnabi et al.,
2022; Gupta et al., 2022; Hu et al., 2023; Fung
et al., 2021; Thomas et al., 2022; Yao et al., 2023b),
which can bias the judgment or limit the assess-
ment. Relying on a single source of evidence may
not capture potential inconsistencies or conflict-
ing information that could arise when considering
multiple sources (Wu et al., 2022).

Multimodal Misinformation Detection. Re-
cent multimodal misinformation detection ap-
proaches (Yao et al., 2023a; Tan et al., 2020; Singh
et al., 2021; Fung et al., 2021; Abdelnabi et al.,
2022) are capable of relying on multimodal evi-
dence for claim verification. However, most of
these works still focus on claim-level binary pre-
dictions, i.e., whether the claim is entailed or con-
tradicted (Tan et al., 2020; Singh et al., 2021; Fung
et al., 2021; Abdelnabi et al., 2022), and the pro-
posed models can only focus on a single source
of evidence (Yao et al., 2023a; Tan et al., 2020;
Singh et al., 2021; Fung et al., 2021; Abdelnabi
et al., 2022). To address this limitation, some prior
work attempts to not only predict the claim’s label,
but also provide explanations (Thomas et al., 2022;
Yao et al., 2023b). MOCHEG (Yao et al., 2023a)
leverages a text generator to generate explanations
explaining a classifier’s entailed, neutral, or contra-
dicted prediction results, but there is no guarantee
the produced explanations are what the classifier
relied on. InfoSurgeon (Fung et al., 2021) extracts
a multimodal knowledge graph (KG) for generated
text detection and identifies specific internal incon-
sistencies within it. Similarly, Wu et al. (2022) pro-
pose a GNN-based model for detecting fine-grained
inconsistencies in text-only documents using infor-
mation extraction (IE) (Lin et al., 2020). Unlike
these approaches, we perform full fine-grained en-
tailment across a collection of open world multime-
dia documents (e.g. video, audio, text, and images)
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and are not limited to a specific IE ontology as is
(Wu et al., 2022; Fung et al., 2021) or simple purely
visual claims as is (Thomas et al., 2022).

3 Approach

We develop a model to predict sample-level and
fine-grained entailment labels for a claim and its
multimedia evidence (premise). The sample-level
label (entailment, neutral, or contradiction) in-
dicates the overall claim’s relationship with the
premise. Fine-grained labels detail entailment re-
lationships for specific claim parts, such as enti-
ties and events, based on the claim’s AMR tree.
We first describe our methodology for constructing
M3DC. We then detail our model architecture,
which makes fine-grained claim predictions using
multimodal multidocument sets of evidence.

3.1 M3DC Dataset
We first introduce our data synthesis approach for
constructing a dataset with claims containing fine-
grained labels that require multimodal and multi-
source knowledge to verify. Our dataset builds
upon NewsStories (Tan et al., 2022), a collection
of news clusters with articles and videos. We begin
by crawling the data and removing news that is no
longer publicly accessible or has been taken down.
For each news cluster, we construct a knowledge
graph (KG) combining textual and non-textual data
based on AMR trees (Banarescu et al., 2013) gener-
ated from news documents. This cross-document,
cross-media representation allows us to synthesize
claims by linking information from the graph. We
then introduce a claim manipulator model that gen-
erates claims with varying degrees of truthfulness
by traversing the AMR-based KG and introducing
controlled perturbations. To obtain fine-grained
labels, we employ a text-only model that assigns
entailment labels (e.g., entailment, contradiction,
neutral) to individual AMR nodes and tuples with
the ground truth associated knowledge from the
KG. Using this approach, we synthesize a dataset
of about 400K claims across over 10,000 topics,
requiring multimodal and multi-document knowl-
edge for verification. The overall process is shown
in Figure 3.

3.1.1 Knowledge Graph Construction
For each news cluster, we extract knowledge into
a set of AMR trees using Structured-BART (Zhou
et al., 2021) with sentences coming from the
news document, visual captions generated from

LLaVA-1.5 (Liu et al., 2023) and Video-LLaVA
(Lin et al., 2023) and audio summaries from Qwen-
Audio(Chu et al., 2023). Then, we connect nodes
from AMR trees using co-reference resolution from
CDLM (Caciularu et al., 2021) and F-coref (Otmaz-
gin et al., 2022) in order to link within-document
and cross-document entities or events. The overall
process is illustrated in Figure 2.

3.1.2 Claim Generation
To generate claims that require multimodal, multi-
document evidence from the constructed KGs, we
developed a Depth-First Search (DFS) based graph
traversal method that selects Knowledge Elements
(KEs) from multiple sources from the constructed
KG. For a given KG and starting node (i.e. an AMR
predicate node), the traversal algorithm traverses
surrounding nodes until another predicate node is
reached. We encourage the algorithm to follow co-
reference edges to incorporate knowledge across
documents and modalities. The traversal algorithm
outputs KEs (AMR triples) rooted at a predicate,
which is then used to generate a complete claim
sentence containing the information from the tra-
versed nodes and edges through AMRBART (Bai
et al., 2022). Given that these generated claims are
directly generated from the KG, all resulting claims
are inherently entailed by this approach. This ap-
proach ensures that the resulting claims rephrase
evidence from different articles and modalities, re-
quiring the model to reason across sources to per-
form fine-grained verification.

3.1.3 Claim Manipulation
Since the claims generated directly from the KGs
are inherently entailed, we introduce a claim ma-
nipulator model to generate diverse claims with
varying logical relationships to the evidence in the
KG. The claim manipulator takes as input the claim,
relevant evidence from the KG (which may be mul-
timodal), and a desired logical label (entailed, neu-
tral, or contradicted). The goal is to manipulate an
entailed claim so that the claim’s logical relation
matches the input. To train the manipulator, we
employ reinforcement learning, where a model is
optimized to maximize the scores provided by a
reward model that offers evaluative feedback.

Denoting the original claim as c, de-
rived from the KG, and the modified claim
as ĉ produced by the manipulator M ,
with y representing the logical label from
Y = {”entailed”, ”neutral”, ”contradicted”},
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Figure 2: Constructing a KG from a multimedia news cluster. AMR trees from different documents and modalities
are linked to form a cross-document, cross-media KG. Co-reference links are shown in red.

the goal of the claim manipulator is to generate a
claim similar to the original claim c with the target
logical label ŷ given premise (evidence) p. We
leverage Llama-2-13B (Touvron et al., 2023) to
manipulate claims to correspond with the desig-
nated logical label ŷ based on the given premise p.
The premise consists of the top 10 most relevant
evidence (expressed in text, i.e., using sentences
from news articles and captions for image and
video) related to c from Sentence-BERT(Reimers
and Gurevych, 2019), the manipulator is fine-tuned
using reinforcement learning to produce a claim ĉ
based on c. In this process, c and ĉ are intended to
be syntactically similar to each other. The claim
manipulator can be formulated as ĉ = Mθ(p, c, ŷ)

To steer the manipulator towards generating
claims that align with the target logical label ŷ
and similar to the original claim c syntactically,
a reward model based on DeBERTAv3 (He et al.,
2023) is trained to function as a critic using MNLI
(Williams et al., 2018), Fever-NLI (Thorne et al.,
2018), and ANLI (Nie et al., 2020). The reward
model is trained for fine-grained entailment clas-
sification using the multi-instance and structural
constraints from FGVE (Thomas et al., 2022). Crit-
ically, we enforce our target label constraint at
both the fine-grained and sample levels within the
graph. This approach ensures that the claim ma-
nipulator not only focuses on producing claims in

a coarse-grained manner but also pays attention
to fine-grained details. Specifically, the reward
model’s score is defined as the likelihood of the
target label considering both the manipulated claim
and the top 10 sentences most relevant to the origi-
nal claim from the KG (serving as evidence):

r(c, ĉ, ŷ) = P (ŷ | p, ĉ)−
(∑|Y|

yi ̸=ŷ P (yi | p, ĉ) + ROUGE(c, ĉ)
) (1)

where c, ĉ, ŷ, and p represent the original claim,
the modified claim, the desired logical label for
the claim, and the premise, respectively. The
term P (ŷ | p, ĉ) is obtained from the trained fine-
grained entailment classifier. The goal of this re-
ward function is to ensure that the modified claim
ĉ not only matches the intended truthfulness label
ŷ but also remains similar to the original claim c as
quantified by the ROUGE score.

We fine-tuned the claim manipulator with Prox-
imal Policy Optimization (PPO) (Schulman et al.,
2017) as our policy gradient method for reinforce-
ment learning. PPO adds an additional term to the
reward function, which imposes a penalty deter-
mined by the Kullback-Leibler (KL) divergence
between the trained RL policy manipulator, πPPO

ϕ ,
and the initial supervised manipulator πSFT :
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Figure 3: Claim generation pipeline. We create a knowledge graph from a set of media about an event. Our
traversal algorithm selects the part of the KG highlighted in yellow to generate a (true) claim. To do so, we use
the selected elements to translate the selected knowledge into a sentence. We then feed relevant evidence and the
generated claim into our claim manipulator model. In this example, we ask our claim manipulator to generate a
contradicted claim. The claim manipulator performs fine-grained manipulations, inserting both unverified (i.e. 74
individuals) and contradictory (i.e. 5 people injured) assertions. Because we know how the claim was manipulated
at the knowledge-element level, we can use this as supervision to train our verification model.

rtotal = r(ĉ, c, ŷ)−

ηKL(πPPO
ϕ (ŷt | p, ĉ), πSFT (ŷt | p, ĉ))

(2)

where η represents the KL reward coefficient,
which determines the magnitude of the KL penalty;
we set it to 0.2 for our model. This coefficient func-
tions as an entropy boost, enhancing exploration
throughout the policy domain and urging the model
to engage in a diverse set of actions rather than the
one currently considered the best. In addition, it
inhibits the policy from rapidly committing to a
singular strategy, and this encourages outputs from
the RL fine-tuned model to not deviate too far from
the original model. After constructing the dataset
with the claim manipulator, we employ Mixtral-
8x7B (Jiang et al., 2024) using in-context learning
to predict the logical label of the claims generated
by the claim manipulator as a quality check; we
discard those that do not align with the target labels.
Finally, as a final quality check on our generated
dataset, we assess the checkworthiness of claims
using ClaimBuster (Arslan et al., 2020) to filter
opinions or unimportant claims from our dataset.
More details are covered in Appendix A.1.

3.2 Model Architecture
In this section, we present our model for predicting
fine-grained entailment relations for claims given a

set of trusted multimodal source materials. Figure 4
shows our model’s architecture.

3.2.1 Multimodal Encoder

By design, our claims require reasoning across
modalities and documents. We thus integrate all
modalities into our model, preserving the original
context in which the claim appeared. For textual
content, we employ LongT5 (Guo et al., 2022) to
encode the claims and sentences from documents
and captions. For handling non-textual context
(i.e. images, video, and audio), we use ImageBind
(Girdhar et al., 2023). In addition to explicitly
capturing how the information relates across doc-
uments and modalities, our model also ingests an
embedding of the KG corresponding to each cluster.
To learn our KG embedding, we instantiate our KG
using a Graph Convolutional Network (GCN) and
train it via a masked sequence prediction task. We
randomly obscure nodes and edges within the KG
and train a classifier to predict the masked pieces.
After training, we extract KG embeddings for each
cluster and feed them to our model. To bridge the
various representation spaces, we add an additional
linear layer for each modality’s encoder.

The embeddings from different modalities, in-
cluding textual content, non-textual context, and
the knowledge graph (encoded by the GNN), are
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Figure 4: The model architecture. Each cluster, potentially containing multiple news articles, will have its content
from various multimedia sources independently encoded and then merged to form a unified representation. This
joint representation will serve as the initial state for every node within the GNN. Subsequently, labels at both the
sample level and the fine-grained level can be derived by aggregating features from the nodes and edges of the GNN.

concatenated to form a comprehensive multimodal
representation of the claim and its associated evi-
dence. This concatenated embedding is then fed
into LongT5 (Guo et al., 2022) for pretraining us-
ing the objective from Pegasus (Zhang et al., 2020).
We identify the top 3 sentences inside the news
documents that are most relevant to the claim c
using ROUGE-F1, randomly choose one sentence
and its adjacent sentence, and then mask them both.
LongT5 is trained to generate the masked sentences
based on the surrounding context and the multi-
modal embeddings.

3.2.2 Graph Convolutional Network

Our task requires predicting fine-grained entail-
ment relationships between a claim and a set of
multimedia source materials. To ensure each fine-
grained element within the claim’s AMR captures
the context of the AMR structure in which it ap-
pears, we employ a two-layer GCN (Kipf and
Welling, 2016) to learn contextual features of each
node and tuple within the claim’s AMR graph.
Our GCN model is initialized with features aggre-
gated from multiple single-document multimodal
encoders and text embeddings from the claims’s
AMR. These features are contacted and represented
as a joint representation. Specifically, we encode
the AMR representation of claims and embeddings
from multimedia news content via the GCN as fol-

lows: for each node i within the graph initialized
from the joint representations, we define the feature
aggregation mechanism by the equation:

h
(l+1)
i =

∑
j∈N (i)∪{i}

1
cij

h
(l)
j (3)

where h
(l+1)
i is the feature vector of node i at

the subsequent layer l + 1. The set N (i) includes
the neighbors of node i, and cij is a normalization
factor for the edge that connects nodes i and j.

For edge features, we extend our model to incor-
porate edge features alongside node features. This
is achieved by incorporating edge attributes into the
aggregation function, allowing the model to con-
sider the characteristics of the connections between
nodes. For an edge eij connecting nodes i and j,
the edge features can be integrated as follows:

e
(l+1)
ij =

[
W

(l)
e h

(l)
i ||W (l)

e h
(l)
j

]
(4)

where e
(l+1)
ij represents the feature vector of edge

eij at layer l+1, with W
(l)
e being the weight matrix

specific to edge features at layer l. This approach
ensures that the model captures not only the node-
level but also the edge-level semantic and structural
information inherent in AMR graphs.

For graph-level (sample-level) classification, we
aggregate the features of the entire graph with aver-
age pooling. Multiple MLP classifiers are then ap-
plied to make predictions for nodes, edges, and the
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Datasets #Samples Source #Topics MultiModal MultiDoc Claim Verifications Fine-grained Labels
Zlatkova et al. (2019) 1,233 Snopes, Reuters <1500 ✔ ✗ ✔ ✗

Cheema et al. (2022b) 3,400 Twitter <3,400 ✔ ✔ ✔ ✗

Nielsen and McConville (2022) 12,914 Twitter 26,048 ✔ ✔ ✔ ✗

Yao et al. (2023b) 15,601 Politifact, Snopes <15,631 ✔ ✗ ✔ ✗

Nakov et al. (2021) 18,014 Twitter <1,312 ✗ ✔ ✗ ✗

Ours 414,405 Multi-Source 15,000 ✔ ✔ ✔ ✔

Table 1: Comparison between different datasets in terms of multi-modality, multi documents, claim verification,
and fine-grained labels. Ours is the largest one that supports fine-grained labels with multimodal document claim
verification. No dataset provides fine-grained labels. †: Note that for datasets where the number of topics is not
explicitly stated, we have estimated this based on the number of documents they contain.

Data Train Dev Test

# Claims 372,935 41,440 30

Ave. # Tokens in Claim 162 178 158

# Documents 301,960 25,891 125

# Images 301,960 25,891 125

# Videos & Audios 70,042 4673 62

# ENT Labels 161,990 18,000 10

# NEU Labels 109,092 12,122 10

# CON Labels 101,853 11,318 10

# Documents / Images / Videos in Collection 327,976 / 327,976 / 74,777

Table 2: Dataset statistics of M3D.

graph on the sample-level and fine-grained tasks.
We train our model using cross-entropy loss with
labels from the trained fine-grained entailment clas-
sifier in section 3.1.3.

4 Experiments

4.1 Multimodal MultiDocument Dataset

We compare our new dataset with others in Table
1. Our dataset contains fine-grained labels across
180,000 entailed claims, 121,224 neutral claims,
and 113,181 contradicted claims. While existing
datasets are topic-specific, our claims are highly
detailed and topically diverse. We include more ex-
amples of the generated claims from our dataset in
the appendix. Table 2 shows the detailed statistics
for each split.

4.2 Testing Datasets and Baselines

We evaluate our model’s entailment performance
on two benchmarks: M3DC and MOCHEG (Yao
et al., 2023a). For both, we report F1 scores for en-
tailment, neutral, and contradiction categories, as
well as a macro-averaged F1 score at both the sam-
ple and fine-grained levels. For M3DC, we com-
pare model predictions with both human-annotated
and synthetic labels. Our test set comprises 30 doc-
ument sets, each annotated by six experts. The test
set is balanced across 30 claims, with 10 each of

entailment (E), neutral (N), and contradiction (C).
These 30 claims were randomly selected from a
pool of 15,000 news clusters in our dataset. The
fine-grained data from these 30 claims includes
an average of 54 nodes and 58 edges per claim,
amounting to 3,360 annotated pieces in total. The
distribution of human fine-grained labels is 52%
E, 23% N, and 25% C, while our automated la-
bels resulted in 43% E, 28% N, and 29% C. For
MOCHEG, we follow the evaluation protocol spec-
ified in Yao et al. (2023a).

4.3 Quantitative Evaluation

Table 3 shows our model outperforming baselines
on the M3DC dataset, with similar results on syn-
thetic and human-labeled data. This is critical, as it
shows that the performance of our models on our
human-annotated data tracks closely with the per-
formance obtained on our large synthetic dataset,
suggesting our synthetic dataset is a good evalua-
tion benchmark for this task.

On the MOCHEG dataset (Table 4), our model
outperforms other approaches in fine-grained pre-
dictions, despite being trained on a diverse news
dataset, M3DC, rather than MOCHEG. While
LLaVA and MiniGPT-v2 achieve higher overall
F1 scores for sample-level predictions, they strug-
gle to identify neutral claims, which our model
handles more effectively. The lower performance
of our model at the sample level can be attributed
to the MOCHEG dataset’s lack of video and audio
modalities and the different styles of text (Snopes
vs News articles) compared to M3DC. It is im-
portant to note that all the data from MOCHEG
are based on articles from Politifact and Snopes.
The content of these articles essentially consists
of explanations about why the claim is considered
entailed, neutral, or contradicted. We argue that
this characteristic of the MOCHEG dataset may
be the reason why LLaVA-1.5 and MiniGPT-v2
outperform our model at the sample level. These
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Model Synthetic Labels Human Labels

Sample-level Fine-grained Sample-level Fine-grained

E N C All E N C All E N C All E N C All

FGVE (Thomas et al., 2022) 0.27 0.2 0.28 0.25 0.23 0.1 0.09 0.14 0.32 0.14 0.36 0.27 0.30 0.05 0.04 0.13

MOCHEG (Yao et al., 2023a) 0.32 0.14 0.36 0.27 0.28 0.13 0.32 0.24 0.37 0.18 0.41 0.32 0.35 0.14 0.39 0.29

LLaVA-1.5 (Liu et al., 2023) 0.57 0.0 0.33 0.30 0.73 0.0 0.14 0.29 0.67 0.0 0.43 0.37 0.88 0.0 0.13 0.33

MiniGPT-v2 (Chen et al., 2023) 0.50 0.0 0.43 0.31 0.56 0.0 0.24 0.27 0.62 0.0 0.62 0.41 0.54 0.0 0.09 0.21

Ours 0.72 0.26 0.48 0.49 0.65 0.23 0.41 0.43 0.72 0.21 0.59 0.51 0.68 0.1 0.39 0.39

Table 3: Results on our M3DC benchmark. We report class-wise F1 scores (E: entailed, N: neutral, C: contradicted)
and the overall F1 score (All).

Model Sample-level Fine-grained

E N C All E N C All

FGVE (Thomas et al., 2022) 0.37 0.16 0.37 0.3 0.31 0.1 0.2 0.20

MOCHEG† (Yao et al., 2023a) 0.57 0.23 0.40 0.39 0.52 0.21 0.36 0.37

LLaVA-1.5 (Liu et al., 2023) 0.67 0.0 0.93 0.53 0.44 0.0 0.25 0.23

MiniGPT-v2 (Chen et al., 2023) 0.67 0.0 0.93 0.53 0.71 0.0 0.25 0.32

Ours 0.69 0.25 0.48 0.47 0.63 0.18 0.36 0.39

Table 4: Results on MOCHEG dataset (Yao et al.,
2023a). All labels are human labels in this benchmark.
We report class-wise F1 scores (E: entailed, N: neutral,
C: contradicted) and the overall F1 score (All). †: Note
that MOCHEG (Yao et al., 2023a) is also trained on this
dataset, while our method is applied zero-shot.

language models are trained on large corpora, and
when provided with Politifact and Snopes articles
from MOCHEG, it becomes easier for them to de-
termine the truthfulness of a claim by simply an-
alyzing the text. In contrast, our model’s strength
lies in its ability to handle diverse modalities and
make fine-grained predictions, making it more suit-
able for real-world scenarios where evidence may
come indirectly from various sources and formats.

It is worth noting that both LLaVA-1.5 (Liu et al.,
2023) and MiniGPT-v2 (Zhu et al., 2023) achieve
0% F1-scores on neutral cases. We found that
even though both these models did predict neutral
cases, for example, as the result from MiniGPT-
v2 shown in Fig 5 they got them all wrong. This
highlights the difficulty of accurately identifying
neutral claims and the importance of developing
models that can effectively handle such cases in
real-world misinformation detection tasks.

4.4 Ablations

To demonstrate our model’s capability in handling
multimodal inputs, we conducted ablation studies
with varying combinations of modalities, as out-

Model Sample-level Fine-grained
E N C All E N C All

Ours w/ Text 0.69 0.25 0.43 0.46 0.61 0.15 0.34 0.37
Ours w/ Text + Image 0.71 0.26 0.42 0.46 0.63 0.18 0.36 0.39
Ours w/ Text + Image + Video 0.72 0.26 0.48 0.49 0.65 0.23 0.41 0.43
Ours w/ Text + Image + Video + Audio 0.70 0.24 0.47 0.47 0.63 0.21 0.41 0.42
Ours All w/o Text 0.42 0.02 0.29 0.24 0.37 0.01 0.23 0.20

Table 5: Ablation on M3DC showing the impact of
removing different modalities on our method.

lined in Table 5. Considering that a substantial por-
tion of the information in KGs is derived from the
textual content of news articles, it was anticipated
that the text modality would play a pivotal role in
the model’s inference process. Our results, how-
ever, indicate that including additional modalities,
such as visual and audio, did not significantly en-
hance the model’s performance. This observation
suggests that the dominance of text-based claims in
our dataset may lead the model to prioritize textual
features, which are typically sufficient for classify-
ing claims derived from textual information.

4.5 Qualitative Results

We show qualitative results comparing our method
with competitive baselines in Figure 5. We il-
lustrate predictions on nodes and tuples by the
color of the edges (green=entailed, yellow=neutral,
red=contradiction). Node colors indicate node pre-
dictions, while edge colors represent tuple predic-
tions. We perform fine-grained claim verification
for the claim "Despite the Nashville mayor suggest-
ing the Christmas blast was an infrastructure attack
on the government building, it was later confirmed
to be an accident caused by a malfunctioning RV,
as video evidence shows a peaceful scene." In ac-
tuality, the blast happened on an AT&T building
instead of a government building, so this portion
of the claim is shown in red (as being contradicted
by certain media sources). Moreover, the audio
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…in the video, a group of police officers are 
standing on a street corner, with some of 
them wearing face masks……the background 
noise of the video is a siren of a police car, 
people screaming, and an explosion…

Despite the Nashville mayor suggesting the Christmas blast was an infrastructure 
attack on the government building, it was later confirmed to be an accident caused 

by a malfunctioning RV, as video evidence shows a peaceful scene.

Ours

MOCHEG

…the FBI asked him whether Warner was 
paranoid about 5G, a technology that has 
become a focus of conspiracy theories, 
such as the QAnon mass delusion…

…Nashville’s mayor said Sunday that the 
city’s Christmas blast appeared to be an 
“infrastructure attack” on the AT&T 
building there — amid reports the suspect 
was paranoid about 5G networks spying 
on Americans…

Authorities are calling the bombing "an 
intentional act" and have found possible 
human remains in the area. The RV, parked on 
historic Second Avenue near Lower 
Broadway, exploded injuring three people 
including a police officer and causing 
destruction across several blocks

.

.

Generated Claim

… a police officer standing in the middle of 
a busy street, surrounded by cars and 
trucks. The officer is talking to a man who 
is kneeling down in front of him……a man 
speaking in a serious tone. He is saying 
that a possible bomb situation…

Evidence w/ 
Text, Image, Video & Audio 

Across Documents

.

.

MiniGPT-V2

Figure 5: Qualitative results comparing our method’s fine-grained predictions with those obtained from other
baselines. We include additional results in our supplementary materials.

evidence suggests that the video contains back-
ground noise with police sirens and people scream-
ing, which contradicts the claim and is pointed
out in the prediction results. We observe that our
method identifies the correct portion of the claim as
being contradicted by the evidence, while baselines
tend to make more random predictions throughout
the graph. Our model is able to produce correct re-
sults, compared to the results from MOCHEG (Yao
et al., 2023b) and MiniGPT-V2 (Zhu et al., 2023),
the models not only provide incorrect results but
also fail to maintain the necessary structural con-
straints (Thomas et al., 2022) needed for explaining
the truthfulness of the claim in fine-grained detail.

5 Conclusion

We address the challenge of predicting the logi-
cal consistency of claims with multimodal sources.
Our method analyzes claims within a multimodal
multidocument context, including text, visual con-
tent, and audio. Our method is able to reason in
a fine-grained manner over complex information
across media and modalities. We further introduce
a dataset, M3DC, created through a unique synthe-
sis technique that produces claims requiring cross-
document, cross-media reasoning for verification.
Our contributions aim to mitigate the impact of

misinformation and enhance the reliability of au-
tomated fact-checking systems, thus supporting
informed decision-making and fostering a factually
accurate public dialogue.
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7 Limitations

While our proposed approach for constructing a
fact-checking dataset with fine-grained labels inte-
grates multimodal and multi-document data, there
are still several limitations that need to be addressed
in future research. One of the main limitations
is that the visual evidence in our dataset consists
of grounding captions generated from images and
video frames, resulting in a heavy reliance on tex-
tual data rather than other modalities. Given the
nature of our dataset, which primarily consists of
news documents where textual evidence dominates
over other modalities, it’s expected that the con-
structed dataset and the resulting model focus more
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on textual input, including the generated claims
and information needed for reasoning.

Another limitation is that our model relies on
the underlying assumption that genuine news arti-
cles are consistent, trustworthy, and complemen-
tary. However, there is a possibility that articles
from the same news cluster can contain inconsis-
tent information. For example, one article could
report that there were nine people at the scene,
while an image in another article only shows seven
people. Moreover, certain types of human-written
fake news documents, such as conspiracy theories,
tend to be closely related and convey highly similar
information due to shared biases or the intent to
manipulate readers in a specific way. These issues
of inconsistent information and similarity among
fake news articles may limit the performance of our
proposed system when applied to real-world data.

To address these limitations, future work could
focus on the following areas: (1) incorporating
more diverse modalities, such as raw visual and
audio data, into the KG and the resulting dataset to
reduce the reliance on textual data; (2) integrating
commonsense reasoning techniques into the model
to better capture complex contradictions and im-
prove the system’s ability to identify inconsistency
and misinformation; (3) exploring alternative ap-
proaches that do not rely solely on the assumption
of consistency among genuine news articles, thus
improving the system’s robustness when dealing
with real-world fake news.

By addressing these limitations and exploring
new research directions, we aim to enhance the per-
formance and applicability of our proposed model
in real-world scenarios, ultimately contributing to
the fight against the spread of misinformation. We
publicly release our multimodal, multi-document
dataset and the proposed model implementation to
foster further research in this area.

8 Ethical Considerations

In this work, our primary objective is to advance
the state-of-the-art in fact-checking by analyzing
multiple multimedia documents on the same topic.
To achieve this goal, we have constructed a new
benchmark dataset using the proposed methodol-
ogy and developed a detector capable of determin-
ing the truthfulness of a given claim. To facilitate
future research and benefit the community, we the
constructed dataset and detector codes available,
serving as a valuable reference for researchers and

practitioners in the field.
However, we acknowledge that our work, like

any research involving text generation, carries the
risk of being misused to produce false information
with the intent to mislead or manipulate readers.
We want to clarify that the dataset and model we
constructed do not contain true claims but rather
claims generated from models. The dataset and
model are intended solely for research purposes
and should not be used to suppress opinions or
make misjudgments. We strongly emphasize the
importance of responsible and ethical use of these
resources in the pursuit of advancing fact-checking
techniques.
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A Appendix

A.1 Dataset Analysis

In this section, we present additional details about
our dataset, M3DC. To demonstrate that the
claims in our dataset do not rely solely on textual
data, we provide examples in Figures 6 and 7 that
incorporate information from images and videos.
Figure 6 showcases claims generated from image
evidence selected from the KG and claims derived
from knowledge elements that co-reference the vi-
sual content. This approach ensures that the gen-
erated claims contain a degree of visual informa-
tion. These claims are then modified by the claim
manipulator to integrate data from different modal-
ities and documents. As a result, the final claims
not only reflect the representative visual content
but also potentially include the underlying context
behind the image or related information from the
news articles. By incorporating visual evidence
and manipulating claims to integrate multi-modal
data, our dataset presents a diverse set of claims
that require both textual and visual understanding
for verification. This highlights the importance of
considering information from various modalities
when assessing the veracity of claims in real-world
scenarios.

A.2 Qualitative Results

To provide insight into the dataset and the results
from our model, we provide additional examples.
From Figure 8, 9 and 10, we show a random se-
lection of the M3DC dataset and the results from
our model, respectively. According to the results
shown in the figures, it is evident that the majority
of the generated claims require detailed evidence
to be properly reasoned about. Furthermore, the
results demonstrate that our model is able to ac-
curately reason about these claims, as most of the
model’s outputs are correct when compared to the
evidence provided by the documents. This suggests
that our model is capable of effectively utilizing
the available evidence to make accurate predictions,
even when the claims are complex and require care-
ful consideration of multiple pieces of information.

The results presented in Table 3 indicate that our
model performs similarly when evaluated using
synthetic labels and human labels. To quantify this
alignment, we calculated the R-score between the
synthetic labels and human labels. This analysis
provides insight into how closely our model’s judg-
ments match those of human evaluators. We con-

ducted the R-score evaluation at both the sample-
level and fine-grained level. The evaluation in-
cluded the F1-scores derived from the entailment,
neutral, and contradiction categories. The R-scores
obtained were 0.95 at the sample-level and 0.99 at
the fine-grained level. These high R-scores demon-
strate that our model’s performance is highly con-
sistent with human performance. Consequently,
these findings suggest that our model can reliably
assist or potentially replace human evaluators in
this context.

Despite the promising results, it is important to
note that the majority of the generated claims do
not rely heavily on visual data. This can be at-
tributed to the nature of news articles, where most
of the information is conveyed through textual con-
tent, and visual data may not provide a significant
amount of additional evidence, as shown in the pro-
vided examples. Consequently, the performance
of our model on this dataset may not fully show-
case its ability to reason about claims that are more
visually-centric. To address this limitation and fur-
ther evaluate the capabilities of our model, future
studies could explore its performance on datasets
that place a greater emphasis on visual information,
such as the Flicker dataset. By testing our model
on a more visually centric dataset.

A.3 Human Annotations and Statistics
A.3.1 Annotation Details
In Table 3, we investigate the results of our model
on human-labeled data to evaluate the perfor-
mance of human annotators. To measure the inter-
annotator agreement (IAA), we employ two annota-
tors for each news cluster, with thirty different news
clusters in total, who are responsible for labeling
both the sample-level and fine-grained labels.

The inter-annotator agreement can be defined
using the following formula:

IAA = Number of samples with matching labels
number of samples (5)

Although our human-labeled dataset contains
only 30 samples, annotating each claim derived
from a news cluster can be a time-consuming pro-
cess, taking anywhere from 30 to 60 minutes, de-
pending on the number of news documents in each
cluster. This is because many of the claims in our
dataset rely on small details scattered across multi-
ple news documents to determine the logical label
at the sample level, which can be challenging even
at the fine-grained level.
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Figure 6: Claims generated by our pipeline, with entailed, neutral, and contradicted claims denoted by green, orange,
and red dashed lines, respectively. Claims based on image content are generated by selecting knowledge elements
rooted in the image nodes of the KG. Then, the claim manipulator adjusts the claim based on the premise, allowing
control over the degree of evidence provided by each modality. This enables the generation of claims that are highly
related to the visual content or that require consideration of cross-modal evidence.22284



Figure 7: In this figure, we present additional claim examples from our dataset. While not all claims are entirely
generated from the visual data, many can be verified by examining the visual content within the corresponding news
cluster. This demonstrates that our dataset implicitly and explicitly contains multimodal claims, highlighting the
importance of considering both textual and visual information for claim verification.

Our annotation interface powered by Label Stu-
dio is shown in Figures 11, 12, and 13. For each
news cluster, the annotators are required to go
through a series of documents with multiple im-
ages and videos to determine the logical label of
the claim. As shown in Figure 11, our interface
displays the textual and image content of the news
cluster, where each cluster could contain up to five
different news documents. In addition to the tex-
tual and image content, each news document could
be linked to one or more corresponding videos, as
shown in Figure 12. The annotators are required
to review every video as well, and the number of
videos could sometimes be up to a dozen. After
reviewing all the available information, the annota-
tors need to label the sample-level label first accord-
ing to the given claim. For each AMR tuple, the
annotators are required to annotate them separately,
as shown in Figure 13, ensuring that all AMR tu-
ples coming from the AMR tree are labeled. For
example, in Figure 13, the annotators need to go
through a series of different AMR tuples for just
one claim and label all elements inside the AMR
image.

To ensure the quality and consistency of the
human-labeled dataset, we provide the annotators

with guidelines and examples for each label cate-
gory. The annotators are also given the opportunity
to discuss and resolve any disagreements or ambi-
guities in the labeling process. This collaborative
approach helps to maintain a high level of inter-
annotator agreement and reduces the potential for
individual biases or errors. Our annotators consist
of all the authors of this paper, each of whom is an
expert in AMR and familiar with its properties and
constraints. During the labeling process, the anno-
tators are required to perform fine-grained labeling
while adhering to AMR properties and constraints.

To ensure the quality and consistency of the fine-
grained labels, we have established a set of guide-
lines that the annotators must follow:

• Adherence to AMR properties: The annota-
tors must have a deep understanding of the
properties and constraints of AMR, such as
the semantic roles of nodes and the relation-
ships between them. This knowledge is cru-
cial for accurate, fine-grained labeling.

• Consistency with sample-level labels: The
fine-grained labels should be consistent with
the sample-level labels. For example, if the
sample-level label is neutral, at least one AMR
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Figure 8: Results of the generated claims and the corresponding fine-grained level predictions. For instance, consider
the generated claim in the top left corner. The ground truth label for this claim is "contradicted," as the flight
cancellation was not caused by the normal transport of animals. Our model successfully detects this fact and assigns
the correct fine-grained labels to the relevant parts of the claim.
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Figure 9: We show a cluster of news documents containing multiple videos, images, and news articles. The cluster
contains media about police officers pulling a man from a burning truck, along with cell phone video, body cam
footage, and a press conference about the incident.
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Figure 10: We show predictions of our model for a set of claims generated for the previous cluster.
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Figure 11: This figure illustrates the labeling interface in LabelStudio, where annotators are required to review
multiple news articles and their accompanying images before assigning labels to claims. This process can be
time-consuming and challenging, as some claims rely on evidence scattered across small pieces of text or other
modalities within the articles, demanding careful examination and synthesis of information from various sources to
make accurate labeling decisions.

Figure 12: This figure shows the video examination process in the labeling interface, where annotators are tasked
with reviewing videos associated with each news cluster, in addition to the news articles and corresponding images.
The number of videos to be examined can range from none to a dozen per cluster with variable length. After
thoroughly examining the evidence from news documents, images, and videos, the annotators are required to assign
a logical label to the given claim, indicating its truthfulness based on the available multimodal information.
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Figure 13: This figure depicts the fine-grained labeling process for AMR tuples in our dataset. Annotators are
required to iterate through each AMR node and edge from the AMR tree, assigning fine-grained labels to evaluate
the truthfulness of the claim at a more granular level. This process involves examining each tuple individually and
making labeling decisions based on the available evidence from the news articles, images, and videos associated
with the corresponding news cluster.
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node must be labeled as neutral to maintain
consistency.

• Maintenance of structural constraints: The
annotators must ensure that the structural con-
straints within the AMR tree are preserved.
This means that the labels of nodes and edges
should be semantically consistent with each
other. For instance, if a node is labeled as con-
tradicted, the corresponding edge must also be
labeled as contradicted to maintain the logical
structure of the AMR.

• Collaboration and discussion: The annotators
are encouraged to collaborate and discuss any
ambiguities or disagreements in the labeling
process. This collaborative approach helps to
resolve any inconsistencies and ensures that
the resulting labels are accurate and semanti-
cally consistent.

Adhering to these guidelines ensures that the
fine-grained labels assigned by the annotators are
semantically consistent within the AMR tree and
accurately represent the information conveyed in
the news clusters. However, when examining the
IAA (IAA) scores for the human-labeled dataset,
we observe a discrepancy between the sample-level
and fine-grained level labels. The IAA for the
sample-level labels is a high 93%, indicating strong
agreement among the annotators when it comes
to the overall veracity of the claims, suggesting
that the annotators have a clear understanding of
the broader context and are generally able to de-
termine whether a claim is true, false, or neutral
based on the available evidence. In contrast, the
IAA for the fine-grained level labels is lower, at
68%, revealing that even when the annotators agree
on the overall truthfulness of a claim, there can
be disagreements when it comes to assigning la-
bels to specific elements within the claim. This
discrepancy highlights the complexity and nuance
involved in fine-grained fact-checking, as different
annotators may interpret the evidence differently
or focus on different aspects of the claim when
making their labeling decisions.

Table 3 presents the results of our model com-
pared to the ground truth human labels, which are
determined by the most voted label among the an-
notators. The results show that the entailment label
accuracy of our model is close to human perfor-
mance, indicating that the model can effectively
identify claims that are supported by the available

evidence. However, the model’s performance on
neutral and contradicted labels is not as high as its
entailment accuracy, suggesting room for improve-
ment in these areas. Despite this, the overall results
demonstrate that our model can successfully assess
the truthfulness of claims in this task, even though
it may not yet match human performance across
all label categories. The IAA scores further high-
light the challenges associated with fine-grained
fact-checking, even when all the experts involved
in labeling the data do so with the utmost care and
attention to detail.

A.4 LVLM Baselines
To evaluate the performance of LVLMs on fine-
grained AMR prediction, we had to employ a
workaround since these models do not natively
support this task. Our approach involved using
in-context learning to enable the LVLM models to
perform fine-grained prediction at the word token
level first. Once the models generated their pre-
dictions for the individual word tokens, we then
mapped these results back to the corresponding
nodes and edges in the AMR tree. This process
allowed us to evaluate our dataset with LVLM mod-
els, even though they were not explicitly designed
for this purpose.

We compare our model’s performance with two
state-of-the-art LVLMs trained on instructional
data, which have demonstrated strong performance
in tasks such as visual question answering and im-
age captioning.

Our LVLM baselines include:

• LLaVA (Liu et al., 2023) is an instruction-
tuned multimodal LVLM with strong image-
text understanding capabilities. The model
encodes image data using a pre-trained CLIP
ViT-L/14 (Radford et al., 2021) and projects it
into the Vicuna LLM’s text embedding space
(Chiang et al., 2023). It is tuned using large
multimodal instructions curated via querying
GPT-4 (Achiam et al., 2023).

• MiniGPT-v2 (Chen et al., 2023) is an im-
proved version of MiniGPT-4 (Zhu et al.,
2023) and has a simpler architecture. It uses
EVA (Fang et al., 2023) as the pretrained CLIP
image encoder and LLaMA-2-Chat (Touvron
et al., 2023) as the LLM backbone. The model
demonstrates strong performance in multi-
modal understanding on numerous image-text
tasks.
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Prompts We obtain both sample-level and fine-
grained predictions from the LVLM baselines by
prompting them in a zero-shot manner. In the
single-document setting (i.e., MOCHEG), we pro-
vide the LVLM with multimodal evidence – includ-
ing a text document and its corresponding image
– alongside a claim and an instructional question.
Given the evidence, the prompt instructs the model
to verify either the entire claim or words within the
claim, corresponding with the sample-level task or
the fine-grained task, respectively. Figure 14 shows
an example of a text prompt constructed from an
example in the MOCHEG dataset, and Figure 15
includes all the different questions to be prompted
for that example. In the multi-document setting
(i.e., M3DC), we carry out the same steps for each
document in a document group. We then perform
majority voting among the group’s predictions to
compute the final prediction.
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Given the evidence (including the image and a text article) and a text claim, please indicate
whether a word in the claim is supported or refuted by the evidence.

Article: A photograph purportedly showing a moose and two
calves enjoying a kiddie pool as they watched a car burn across
the street has been circulating online for several years. While
it is frequently shared as a genuine (albeit bizarre) item, this
image is a composite of at least two separate photographs. The
photograph of the car on fire first appeared online when it was
published on Reddit in May 2013. It seems as if they were
trying to jump-start it. Obviously, they don’t know their cars too
well. The whole neighborhood has gathered for the impromptu
neighborhood bonfire. While we haven’t been able to locate the
specific origin of the moose image, we know that the photograph was also posted separately to
Reddit in May 2013: Unsurprisingly, the first version of the image featuring moose in a kiddie
pool watching a car fire appeared on (of course) Reddit, shortly after the two source images were
posted.

Claim: A photograph shows a moose enjoying a wading pool while watching a car burn.
Question: Is the word “moose” in the claim true, false, or neutral with regard to the evidence?
Output “True” if the evidence supports the word, “False” if the evidence contradicts the word, or
“Neutral” if it is neither supported nor refuted.
Answer:

Figure 14: An example of a zero-shot prompt to be fed into LVLMs for sample-level and fine-grained predictions,
constructed from a data example in the MOCHEG dataset.

Sample-level question: Is the claim true, false, or neutral with regard to the evidence? Answer the
question using a single word or phrase
Fine-grained questions:

• Is the word “photograph” in the claim true, false, or neutral with regards to the evidence?
Answer the question using a single word or phrase

• Is the word “shows” in the claim true, false, or neutral with regards to the evidence? Answer
the question using a single word or phrase

• Is the word “moose” in the claim true, false, or neutral with regards to the evidence? Answer
the question using a single word or phrase

• Is the word “enjoying” in the claim true, false, or neutral with regards to the evidence? Answer
the question using a single word or phrase

• Is the word “wading” in the claim true, false, or neutral with regards to the evidence? Answer
the question using a single word or phrase

• Is the word “pool” in the claim true, false, or neutral with regards to the evidence? Answer
the question using a single word or phrase

• Is the word “watching” in the claim true, false, or neutral with regards to the evidence?
Answer the question using a single word or phrase

Figure 15: Example questions to prompt sample-level and fine-grained zero-shot predictions. We only construct
fine-grained questions on words that can be mapped to AMR triple annotations to ensure ground truths for evaluation.
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