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Abstract

Large language models have emerged as a
significant phenomenon due to their ability
to produce natural text across various appli-
cations. However, the proliferation of gen-
erated text raises concerns regarding its po-
tential misuse in fraudulent activities such
as academic dishonesty, spam dissemination,
and misinformation propagation. Prior studies
have detected the generation of non-analogous
text, which manifests numerous differences
between original and generated text. We have
observed that the similarity between the orig-
inal text and its generation is notably higher
than that between the generated text and its
subsequent regeneration. To address this, we
propose a novel approach named SimLLM,
aimed at estimating the similarity between
an input sentence and its generated counter-
part to detect analogous machine-generated
sentences that closely mimic human-written
ones. Our empirical analysis demonstrates
SimLLM’s superior performance compared to
existing methods.

1 Introduction

The rise of generative AI, especially large lan-
guage models, has had a substantial impact across
various applications. However, it also presents
challenges, such as academic dishonesty and the
spread of disinformation, stemming from the mis-
use of generated text. Therefore, our goal is to
create a strategy to detect and mitigate the neg-
ative effects associated with the improper use of
generated text.

Detection of text generated by large language
models uses three main techniques. Firstly, su-
pervised learning methods (Solaiman et al., 2019;
Wang et al., 2023; Hu et al., 2023; Wu et al.,
2023) train classifiers on datasets of original and
generated text, though this requires large volumes
of training data. The zero-shot approach (Bhat-
tacharjee and Liu, 2023; Mitchell et al., 2023)

eliminates the need for training but is sensi-
tive to out-of-distribution text. Recent research
explores watermarking methodologies (Kirchen-
bauer et al., 2023) to force models to produce pre-
defined words, aiding detection, but this requires
modifying the models, which is impractical for
proprietary models like ChatGPT. Previous stud-
ies mainly address non-analogous text with sub-
stantial differences between original and gener-
ated content. In contrast, we focus on analogous
generated text, where changes to the original text
are minimal.

Motivation An AI model aims to extensively
optimize original data to generate new data. This
process often results in a significant disparity be-
tween the original and the generated data. When
the model optimizes the generated data to cre-
ate re-generated data, the already optimized na-
ture of the generated data limits further optimiza-
tion. As a result, the gap between the gener-
ated and re-generated data diminishes. To illus-
trate, we randomly selected a human sentence
(h) from the Extreme Summarization (XSum)
dataset (Narayan et al., 2018) (Figure 1). Then,
a large language model, specifically ChatGPT
(GPT 3.5-turbo), was tasked with generating a ma-
chine sentence (mChatGPT ) conveying an oppo-
site meaning to the original text. ChatGPT and
LLaMa 2 70B were utilized to proofread both the
human-written text (hChatGPT and hLLaMa) and
the machine-generated text (mChatGPT−ChatGPT

and mChatGPT−LLaMa), with the respective sub-
scripts indicating the sequence of using the large
language models. Analysis showed that proof-
reading of the human text by ChatGPT introduced
numerous disparities between h and hChatGPT ,
whereas fewer differences were observed between
mChatGPT and mChatGPT−ChatGPT . In this ex-
ample, while there were ten word differences be-
tween h and hChatGPT highlighted in underline,
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Generated 

by ChatGPT 

in opposite meaning

Proofread 

by ChatGPT

Proofread 

by ChatGPT
Proofread 

by LLaMa

Proofread 

by LLaMa

h (human text):                                  

“Forensic scientists were 

unable to say why she died.”

mChatGPT (generated text):

“Forensic scientists were able to 

determine the cause of her death.”

hChatGPT:            

“Forensic scientists 

were unable to 

determine the cause 

of her death.”

hLLaMa:                    

“Forensic scientists were 

unable to determine the 

specific factors that 

contributed to her passing.”

mChatGPT_ChatGPT: 

“Forensic scientists 

were able to 

determine the cause 

of her death.”

mChatGPT_LLaMa:  

“Forensic scientists 

were able to determine 

the underlying cause 

of her passing. ”

Figure 1: The degree of similarity observed between the original text and its proofread version is significantly
reduced compared to that between the generated text and the re-generated text. Differences between the original
and generated text are visually highlighted using distinct colors. Variances attributed to ChatGPT and LLaMa by
proofreading are emphasized in underlined and bold formatting, respectively.

mChatGPT was identical to mChatGPT−ChatGPT .
These differences aid in distinguishing between
human and machine-generated text. Further-
more, comparing ChatGPT and LLaMa demon-
strated that the gap in the pair mChatGPT

and mChatGPT−ChatGPT (word difference equals
zero) tends to be smaller than that in the pair
mChatGPT and mChatGPT−LLaMa (word differ-
ence equals three highlighted in bold). Hence, the
choice of a large language model significantly in-
fluences the identification of generated text.

Contribution This paper introduces a method
called SimLLM, designed to identify sentences
generated by large language models. Initially,
candidate large language models are employed to
generate proofread versions of an input sentence.
Subsequently, each proofread version is compared
with the input, and their similarities are evalu-
ated. Next, the input sentence is concatenated
with its proofread versions and organized based on
their similarity scores. Finally, a RoBERTa model
undergoes fine-tuning to ascertain the source of
the concatenated sequence, discerning between
human-written content and content generated by
a large language model. We summarize our con-
tributions as follows:

• We have developed a strategy for construct-
ing a dataset consisting of coherent sentences
generated by large language models1. To the
best of our knowledge, this is the first dataset
presenting analogous pairs of original text

1Source code and dataset are available at https://
github.com/quocnsh/SimLLM

and generated text on a sentence-by-sentence
level2.

• We noticed that optimizing the original text
is relatively less challenging compared to op-
timizing the generated text. Therefore, we
developed SimLLM to distinguish generated
sentences by assessing the similarity between
the input sentence and its proofread versions.

• We conducted experiments on detecting sen-
tences generated by twelve prominent large
language models. These experiments indi-
cate that SimLLM exhibits superior perfor-
mance compared to existing approaches.

2 Related Work

The methods previously used to detect text gen-
erated by large language models can be classified
into three approaches.

The first strategy involves training models on
large datasets to identify generated text charac-
teristics, such as OpenAI’s fine-tuning of the
RoBERTa model (Solaiman et al., 2019). Some re-
searchers have analyzed probability distributions
in large language models’ hidden layers (Wang
et al., 2023), while others have used a paraphraser
in a GAN to train the detector component (Hu
et al., 2023). The intrinsic dimension of the em-
bedding space from long texts has been estimated
to understand the workings of these models bet-
ter (Tulchinskii et al., 2023). Other approaches

2The comparison between our dataset and existing
datasets is provided in Appendix A
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include building a proxy model to estimate gen-
erated text’s perplexity (Wu et al., 2023), us-
ing positive-unlabeled learning (Tian et al., 2024)
to improve performance on short text, and high-
lighting human text’s coherence to spot machine-
generated text discrepancies (Liu et al., 2023).
Some researchers have also incorporated top sim-
ilarity texts from the training set into prompts and
used in-context learning to boost detector and at-
tacker capabilities (Koike et al., 2024). However,
this approach is sensitive to out-of-distribution
texts.

Watermarking is another method where a lan-
guage model is guided to generate text that meets
specific criteria, acting as a watermark to iden-
tify generated content. For example, Kirchenbauer
et al. (2023) instructed the model to use only a
certain set of “green” words, avoiding the “red”
ones. However, this method’s downside is that
it requires modifying the original models, which
is impractical for real-world use, especially con-
sidering the proprietary nature of many large lan-
guage models.

The third strategy involves zero-shot detection,
where research identifies generated text without
training. Bhattacharjee and Liu (2023) employed
this method by prompting ChatGPT to detect gen-
erated texts from various large language mod-
els. Gehrmann et al. (2019) noted that large lan-
guage models often predict the next word in a
text sequence with high probability, which can
be assessed through ranking, logarithms, and en-
tropy. Other researchers have improved perfor-
mance by combining ranking and logarithms (Su
et al., 2023), or by introducing a method where
original words are randomly perturbed and the
change in log probability is analyzed (Mitchell
et al., 2023; Bao et al., 2024). Close to our work,
Zhu et al. (2023) and Mao et al. (2024) evalu-
ated the similarity between input text and revised
text. However, these approaches face challenges
in identifying out-of-distribution text.

3 SimLLM

Figure 2 illustrates our goal, which is to distin-
guish whether a given input sentence, denoted as
s, is generated by a large language model or au-
thored by a human. Initially, we use various large
language models to proofread s. This generates
a set S′ = {s′1, s′2, . . .}. At this phase, a heuris-
tic algorithm is employed to produce consistent

Input sentence 𝑠

proofread

proofread 𝑠1
′

model 𝑚1

Classify the concatenation

Human-written Generated

proofread

proofread 𝑠𝑛
′

model 𝑚𝑛

Estimate similarity

similarity 𝑑1
′ similarity 𝑑𝑛

′

Sort similarities

similarity 𝑑𝑖
′ similarity 𝑑𝑗

′

Concatenate sentences

𝑠  𝑠𝑑𝑖
′𝑠𝑑𝑗

′ … 

Figure 2: The proposed method (SimLLM) aims to de-
termine whether a given sentence s is generated by a
large language model or is written by a human.

and insightful proofread sentences. The details
of this step are shown in Figure 3 and explained
further in Section 3.1 and Section 3.2. Subse-
quently, we evaluate the similarity between s and
each proofread sentence in S′. These sentences
are then arranged in descending order of similar-
ity. Following this, we combine s with each text
in S′ and input them into a classifier. The classi-
fier’s role is to determine whether s is a machine-
generated or human-written sentence. The algo-
rithm of SimLLM is outlined in Algorithm 1, with
the main steps detailed as follows:

3.1 Proofreading the Input Sentence

We utilize a straightforward prompt to generate
the proofread sentence s′ from the input sentence
s. The prompt is structured as a direct request
to the large language model: “Proofreading for
the text: <sentence>”, where <sentence> is
replaced with s. It is important to note that the
use of complex prompts often results in unstable
or uninformative outcomes, as shown in Figure 4.
This observation is consistent with the results of
a recent research study (Salinas and Morstatter,
2024), which demonstrates that complicating the
prompt tends to reduce large language model per-
formance. Therefore, we opt for a simple prompt
and propose a heuristic algorithm for extracting
the proofread sentence. The comparison between
our proposed prompt and that of Zhu et al. (2023)
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Algorithm 1: SimLLM.
Input : Input sentence s; Candidate model M = {m1,m2, ...}
Output: Original/Generated

1 prompt← “Proofreading for the text: ” + s
2 S′ ← {} ▷ Proofread sentences
3 D′ ← {} ▷ Similarity distances
4 for each mi in M do
5 best similarity ← −∞
6 raw completion← LLM INVOKE(mi, prompt)
7 candidates← SPLIT SENTENCE(raw completion)
8 for each si in candidates do
9 di ← SIMILARITY(s, si)

10 if di > best similarity then
11 best candidate← si
12 best similarity ← di
13 end if
14 end for
15 if best similarity > α then
16 Add best candidate into S′

17 Add best similarity into D′

18 else
19 Add s into S′

20 Add +∞ into D′

21 end if
22 end for
23 S′

sorted ← Sort S′ by D′ in descending order
24 concatenation← s
25 for each s′i in S′

sorted do
26 concatenation← concatenation⊕ s′i
27 end for
28 result← CLASSIFY(concatenation) ▷ Original/Generated
29 return result

is discussed in Appendix B.

3.2 Extracting a Proofread Sentence Using
Heuristics

First, we employ a large language model with a
simple prompt to generate a raw completion. Next,
we break down this raw completion into individ-
ual candidate sentences. We then assess each can-
didate sentence against the input sentence s and
choose the one that demonstrates the highest sim-
ilarity. We utilize the BART score (Yuan et al.,
2021) as our similarity metric, which is favored
for its comprehensive contextual coverage com-
pared to other metrics such as BLEU, ROUGE,
and BERT, as highlighted by Zhu et al. (2023).
However, if the original sentence is already per-
fect, the raw completion may not represent the

proofread version. To address this, we propose the
use of a minimum threshold, α. Based on empir-
ical observations, we determine α to be −2.459
across all large language models. If the highest
similarity score among the candidates is still lower
than α, we retain the original sentence s as the
proofread version.

3.3 Classifying the Input Sentence

After generating proofread sentences S′ =
{s′1, s′2, ...} from the input sentence s, we evaluate
the similarity between s and each s′i, sorting them
in descending order. Subsequently, we concate-
nate the original sentence s with each proofread
sentence s′, arranging them in the sorted order. A
classifier is then used to determine whether s is
an original sentence or a generated one. Specif-
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Input sentence 𝑠

Proofread by LLM

raw completion

candidate 𝑠1 candidate 𝑠𝑖

Split into sentences

candidate 𝑠2

Estimate similarity

similarity 𝑑1 similarity 𝑑2 similarity 𝑑𝑖

Get the best similarity

similarity 𝑑𝑖

𝑑𝑖 > 

Proofread 𝑠′ =  𝑠 Proofread 𝑠′ =  𝑠𝑖

yesno

Figure 3: Generating a proofread sentence s′ from an
input sentence s.

ically, we fine-tune a RoBERTa-base model with
fixed parameters: the number of epochs is set to
10, the batch size to 64, and the learning rate to
2 × 10−5 for all experiments. Additionally, we
implement early stopping with a patience level of
3 on validation data to prevent overfitting.

4 Evaluation

4.1 Individual Models

We conducted experiments using the XSum
dataset (Narayan et al., 2018), which consists
of news articles written by humans3. This text
was processed using twelve popular large lan-
guage models developed by well-known compa-
nies, as listed in Table 1. These models have
shown stability and display a comprehensive un-
derstanding of all prompts mentioned in this pa-
per, consistently generating high-quality outputs.
Due to the significant cost associated with pro-
prietary large language models such as GPT-4o
and Gemini, we randomly processed 5,000 sen-
tences. These sentences were then divided into
training, validation, and testing sets at ratios of
80%, 10%, and 10%, respectively. The number
of testing samples is equivalent to the experiments
conducted in the paper by DetectGPT (Mitchell
et al., 2023). To achieve our goal of distinguish-
ing between human and machine-generated text,
we filtered out pairs that were identical. Follow-

3Experiments with other datasets are described in Ap-
pendix C.

Model Version Developer
ChatGPT GPT 3.5-turbo OpenAI
GPT-4o GPT-4o 2024-05-13 OpenAI
Yi Yi 34B 01.AI
OpenChat 3.5 1210 7B Alignment AI
Gemini Gemini 1.5 Pro Google
LLaMa LLaMa 2 70B Meta
Phi Phi 2 Microsoft
Mixtral 8x7B Instruct v0.1 Mistral AI
QWen QWen 1.5 72B Alibaba
OLMO 7B Instruct Allen AI
WizardLM 13B V1.2 WizardLM
Vicuna 13B v1.5 LMSYS

Table 1: The details regarding large language models
utilized for text generation.

ing DetectGPT (Mitchell et al., 2023), we used
ROC accuracy as the primary metric throughout
this paper. Additionally, we maintained a temper-
ature of 0, a common practice for producing stable
outputs.

We compare SimLLM with eight exist-
ing methods4 and a Baseline model. The
RoB-base and RoB-large models (Solaiman
et al., 2019) are trained on a combination
of generated examples and original docu-
ments sourced from the WebText test set.
Approaches including log p(x) (Gehrmann
et al., 2019), Rank (Gehrmann et al.,
2019), LogRank (Mitchell et al., 2023), and
Entropy (Gehrmann et al., 2019) estimate
the probability of generating the next word.
DetectGPT (Mitchell et al., 2023) analyzes
the probability change in text following the
replacement of certain words. BART (Zhu et al.,
2023) assesses similarity using BART-score
between the input and revised text, comparing it
against a predetermined threshold derived from
the training dataset. In the Baseline scenario, we
fine-tune a model on the same training dataset,
employing the RoBERTa model with identical
hyperparameters (epochs, learning rate, batch
size, etc.). A summary of the results can be found
in Table 2.

The results indicate that the first seven methods
are ineffective in detecting generated text. When
large language models are used for proofreading,
they only introduce minor alterations to a small

4The comparison with other existing methods is presented
in Appendix D.
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Prompt ChatGPT LLaMA

Proofreading for the text: “The gap

suggests Mercedes are favorites for the

race, even if Ferrari can be expected to

push them.”

The sentence is grammatically correct,

but for improved clarity and flow, you

might consider the following revision:

“The gap suggests that Mercedes is the

favorite for the race, although Ferrari

can be expected to push them.”

Here's the proofread text:

“The gap indicates that

Mercedes are the favorites

for the race, even though

Ferrari is likely to

challenge them.”

Proofreading for the text: “The gap

suggests Mercedes are favorites for the

race, even if Ferrari can be expected to

push them.” Only output the proofread

text.

“The gap suggests Mercedes is

favorites for the race, even if Ferrari

can be expected to push them.”

“The gap suggests

Mercedes are favourites

for the race, even if

Ferrari can be expected to

push them.”

Proofreading for the text: “The gap

suggests Mercedes are favorites for the

race, even if Ferrari can be expected to

push them.” Only output the proofread

text without explanation.

The gap suggests Mercedes is favorites

for the race, even if Ferrari can be

expected to push them.

The gap suggests

Mercedes are favorites for

the race, even if Ferrari

can be expected to push

them.

Figure 4: Exploring variations in outputs generated by large language models across different prompts. The mod-
ifications in outputs are emphasized with underlining and bold. Simpler prompts tend to yield more imaginative
outputs.

Model RoB-baseRoB-large log p(x)RankLogRankEntropyDetectGPTBARTBaseline SimLLM

ChatGPT 0.558 0.571 0.555 0.538 0.554 0.522 0.528 0.842 0.830 0.916
GPT-4o 0.535 0.537 0.530 0.503 0.517 0.525 0.521 0.639 0.786 0.816
Yi 0.550 0.565 0.538 0.531 0.536 0.535 0.521 0.874 0.880 0.947
OpenChat 0.563 0.573 0.517 0.514 0.519 0.557 0.520 0.875 0.887 0.954
Gemini 0.547 0.549 0.527 0.501 0.521 0.518 0.513 0.791 0.777 0.859
LLaMa 0.591 0.594 0.541 0.521 0.531 0.511 0.549 0.663 0.846 0.883
Phi 0.518 0.538 0.393 0.398 0.398 0.636 0.434 0.761 0.914 0.937
Mixtral 0.541 0.556 0.451 0.451 0.444 0.604 0.519 0.652 0.835 0.837
Qwen 0.544 0.555 0.481 0.489 0.474 0.544 0.493 0.767 0.844 0.900
OLMo 0.545 0.573 0.466 0.460 0.470 0.579 0.485 0.762 0.812 0.895
WizardLM 0.567 0.570 0.512 0.510 0.510 0.536 0.518 0.755 0.813 0.856
Vicuna 0.593 0.599 0.540 0.518 0.536 0.543 0.553 0.756 0.824 0.866
Average 0.554 0.565 0.504 0.495 0.501 0.551 0.513 0.761 0.837 0.889

Table 2: Detecting generated text with individual large language models.

portion of the content. Consequently, these meth-
ods often mistake generated text for the original,
resulting in detection performance similar to ran-
dom guessing. For example, we analyzed log p(x)
and LogRank features on average, finding that the
difference between human and machine-generated
features by ChatGPT is significantly smaller at the
sentence level than at the document level in De-
tectGPT’s paper (Mitchell et al., 2023), leading
to lower detection accuracy as shown in Table 3.
In contrast, BART, alongside the Baseline and
SimLLM, undergo specialized training for this
text type, yielding substantial advancements. The
Baseline, through analyzing the inherent char-
acteristics of the input text, achieves greater re-
finement compared to the BART-based method,
which primarily estimates the similarity between

the input and its revised form. SimLLM com-
bines the strengths of both strategies, resulting
in superior performance. Given that the initial
seven methods exhibit performance similar to ran-
dom guessing, we present BART, Baseline, and
SimLLM in subsequent experiments.

We compared the performance of the top three
methods while varying the sample size, as illus-
trated in Figure 5. The text was generated by
ChatGPT. The performance of BART remains al-
most unchanged with varying sample sizes, in-
dicating that BART’s single output value cannot
fully exploit the similarity between the input text
and its generation. In contrast, both the Baseline
and SimLLM benefit from larger sample sizes.
SimLLM consistently maintains an approximately
8% performance gap over the Baseline.
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Method Granularity Human Feature Machine Feature ROC Accuracy
log p(x) Document -2.77 -1.95 0.921
LogRank Document -1.41 -0.87 0.932
log p(x) Sentence -3.33 -3.20 0.555
LogRank Sentence -1.79 -1.70 0.554

Table 3: Feature extraction from log p(x) and LogRank between document and sentence levels.
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Figure 5: Detecting generated text through changes in
sample size.

4.2 Multiple Models
We carried out experiments in situations where
there was ambiguity about which LLM generated
the text. These experiments involved three distinct
LLMs: ChatGPT, Yi, and OpenChat. ChatGPT is
a widely-used proprietary LLM with over 175 bil-
lion parameters. In contrast, Yi and OpenChat are
mid-size and small-size open-source LLMs with 7
billion and 34 billion parameters respectively. We
used various combinations of these LLMs to train
BART, Baseline, and SimLLM models, and then
evaluated their performance on a separate LLM.
This was divided into two groups, as shown in
Table 4. In the first group, the testing LLM was
not included in the training LLM(s). In the sec-
ond group, the testing LLM was also one of the
training LLM(s).

In the first group, when tested on a different
LLM, BART significantly reduces performance.
In contrast, both Baseline and SimLLM achieve
superior performance, particularly when trained
using multiple models, with accuracy exceeding
81%. SimLLM performs competitively with the
Baseline model in most scenarios. In the second
group, when the model used for testing is among
those used for training, SimLLM outperforms the
Baseline.

4.3 Rigorous Scenarios
We conducted experiments across various scenar-
ios using the ChatGPT model, while other mod-

els produced similar results. When faced with
an unfamiliar prompt conveying a similar mean-
ing, we adopted the prompt utilized in the BART-
based approach (Zhu et al., 2023): “Revise the fol-
lowing text: <sentence>.” Conversely, for un-
known prompts conveying opposite meanings, we
employed the prompt: “Rewrite the text with the
opposite meaning: <sentence>.” In cases where
the temperature was unknown, we adhered to an-
other common temperature setting of the Chat-
GPT model, which is 0.7. In scenarios involv-
ing unknown text, where training was conducted
on news articles from the XSum dataset, we
evaluated performance on academic text sourced
from the SQuAD dataset (Rajpurkar et al., 2016).
This dataset consists of sentences extracted from
Wikipedia. We also used ChatGPT for attacking
by paraphrasing with the prompt: “Paraphrase the
following text: <sentence>.” Table 5 presents
the corresponding results.

Similar and opposite texts significantly af-
fect BART, especially the latter. Temperature
changes, unknown texts, and paraphrase attacks
impact both BART and Baseline. In all scenar-
ios, SimLLM inherits characteristics from both
Baseline and BART, maintaining stable perfor-
mance under a variety of rigorous conditions.

4.4 Run Time

We estimated the running time of SimLLM as
shown in Table 6. Specifically, we conducted
experiments on approximately 1,000 words (40
sentences of human and ChatGPT-generated text).
Both BART and SimLLM use ChatGPT for gen-
erating these texts. The completion time for Chat-
GPT was 33.34 seconds. The running times for
SimLLM and existing methods are reported be-
low. The results show that both BART (Zhu et al.,
2023) and SimLLM are significantly affected by
the time taken for ChatGPT generation, yet they
remain faster than DetectGPT.
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Scenario Train Test BART Baseline SimLLM

Test /∈ Train

ChatGPT Yi 0.709 0.858 0.858
OpenChat 0.706 0.806 0.796

Yi ChatGPT 0.754 0.823 0.810
OpenChat 0.760 0.821 0.792

OpenChat ChatGPT 0.711 0.786 0.764
Yi 0.695 0.817 0.758

ChatGPT and Yi OpenChat 0.727 0.819 0.823
ChatGPT and OpenChat Yi 0.710 0.862 0.843
Yi and OpenChat ChatGPT 0.735 0.823 0.819

Test ∈ Train

ChatGPT and Yi ChatGPT 0.793 0.827 0.903
Yi 0.790 0.870 0.923

ChatGPT and OpenChat ChatGPT 0.777 0.836 0.878
OpenChat 0.793 0.867 0.903

Yi and OpenChat Yi 0.793 0.866 0.902
OpenChat 0.817 0.875 0.895

ChatGPT, Yi, and OpenChat
ChatGPT 0.769 0.841 0.857

Yi 0.767 0.874 0.888
OpenChat 0.776 0.873 0.881

Table 4: Detecting generated text through training on multiple large language models.

Scenario BART Baseline SimLLM

Similar 0.733 0.858 0.869
Opposite 0.544 0.844 0.845
Temperature 0.789 0.796 0.871
Unknown text 0.720 0.790 0.884
Paraphase 0.820 0.816 0.901

Table 5: Detecting generated text across various sce-
narios, including text with similar or opposite mean-
ings produced from unfamiliar prompts, text generated
with varying temperature settings, text originating from
different fields, and text modified by paraphrase.

Method Generate Detect Total
RoB-base 0 0.02s 0.02s
RoB-large 0 0.03s 0.03s
log p(x) 0 0.77s 0.77s
Rank 0 0.84s 0.84s
LogRank 0 0.84s 0.84s
Entropy 0 0.83s 0.83s
DetectGPT 0 3m10.44s 3m10.44s
BART 33.34s 0.09s 33.43s
Baseline 0 0.02s 0.02s
SimLLM 33.34 0.33s 33.67s

Table 6: Run time for detecting approximately 1,000
words of human-written and ChatGPT-generated texts.

Metric Mean(H)Var(H)Mean(M)Var(M)

BLEU 0.918 0.132 0.990 0.039
ROUGE 0.909 0.113 0.989 0.041
BART -0.679 0.273 -0.367 0.172

Table 7: The similarity between the input text and
its generation. The input text includes both human-
written (H) and machine-generated (M) sentences by
ChatGPT.

4.5 Discussion

Similarity We observe the similarity between
the input text and its generated counterpart. This
similarity is calculated across the entire test set,
where the text is generated by ChatGPT. We
use three common metrics—BLEU, ROUGE, and
BART—to calculate the similarity, as shown in
Table 7. The results indicate that the similar-
ity of human text tends to be lower than that of
machine-generated text. Among the three metrics,
BART estimates similarity based on the entire sen-
tence and the meanings of words. It provides a
clearer measure of similarity compared to BLEU
and ROUGE, which rely solely on word n-gram
matching.

Harmful Text Evaluation We have focused on
two primary categories of harmful generated text,
each of which contains multiple words that over-
lap with the original text. The first retains the orig-
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inal meaning, possibly manipulating review sys-
tems or avoiding spam detection. The second al-
ters the original meaning, spreading disinforma-
tion. Future studies will evaluate the effects of
harmful text on actual systems and how SimLLM
mitigates it.

5 Conclusion

This paper presents a novel method, named
SimLLM, designed to identify sentences gener-
ated by large language models. Specifically, we
augment the original input sentence by integrating
re-generated alternatives from candidate large lan-
guage models. Subsequently, this augmented data
is input into a classifier to ascertain the origin of
the text, whether it is human-generated or from a
large language model. Experimental results from
diverse large language models demonstrate the su-
perior performance of SimLLM compared to ex-
isting methods across various scenarios.
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Limitations

Candidate Selection Selecting suitable large
language model candidates for SimLLM is cru-
cial. Given the widespread use of major large lan-
guage models, particularly ChatGPT, it should be
considered a prime candidate for SimLLM.

Adaptive Attack This research focuses primar-
ily on cases where ordinary users are unaware of
the detector’s existence or advanced users who try
to mimic human text to evade the detector through
paraphrasing attacks. In subsequent steps, we will
address advanced attackers who persistently mod-
ify texts until they deceive the detector.

Granularity SimLLM is designed to detect text
generated by large language models at the sen-
tence level. We are currently exploring methods
to expand SimLLM to handle long text in the next
stage.

Running Time SimLLM is affected by the time
taken for LLM generation. As newer LLM mod-
els, such as GPT-4o mini, tend to run faster,
SimLLM can leverage these advancements for
practical applicability.
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A Comparison with Existing Datasets

There are two key differences between the pro-
posed SimLLM (XSum) dataset and existing
datasets:

1. Granularity: SimLLM (XSum) operates at
the sentence level, whereas existing datasets
are at the document level.

2. Similarity: SimLLM (XSum) exhibits
a higher similarity between human and
machine-generated text compared to other
datasets.

We demonstrate these differences by comparing
SimLLM (XSum) with MGTBench (He et al.,
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Dataset Granularity Length(Words) BLEU Overlap ratio
SimLLM (XSum) Sentence 24.86 0.918 91.6%
MGTBench (Essay) Document 752.47 0.345 24.8%
MGTBench (Writing Prompts) Document 645.59 0.446 33.5%
MGTBench (Reuters) Document 564.64 0.453 34.4%

Table 8: Comparison between SimLLM and MGTBench datasets across various domains.

“Revise” prompt “Proofread” prompt

“Revised” text from the original text: “Chris

Maguire of Oxford United took a left-footed shot

from the center of the box, aiming for the bottom

left corner.”

“Proofread” from the original text: “Chris Maguire

(Oxford United) took a left-footed shot from

the center of the box, finding the bottom left

corner.”

“Re-revised” text from the “revised” text: “Chris

Maguire , a player from Oxford United, skillfully

executed a left-footed shot from the center of the

box, with the intention of targeting the bottom left

corner.”

“Re-proofread” text from the “proofread” text:

“Chris Maguire (Oxford United) took a left-footed

shot from the center of the box, finding the bottom

left corner.”

Figure 6: Exploring variations in outputs generated by large language models between “Revise” and “Proofread”
prompts. The original text is “Chris Maguire (Oxford United) left footed shot from the centre of the box to the
bottom left corner.” Modifications in the outputs are emphasized with underlining and bold.

Prompt Mean(H)Var(H)Mean(M)Var(M)

Revise 0.605 0.160 0.742 0.139
Proofread 0.918 0.132 0.990 0.039

Table 9: The similarity between the input text and
its generation under the “Revise” and “Proofread”
prompts. The input text consists of both human-written
(H) and machine-generated (M) sentences by Chat-
GPT.

Method Training Testing ROC
BART Revise Proofread 0.507
BART Proofread Revise 0.733
BART Revise Revise 0.654
BART Proofread Proofread 0.842
SimLLM Revise Proofread 0.779
SimLLM Proofread Revise 0.869
SimLLM Revise Revise 0.892
SimLLM Proofread Proofread 0.961

Table 10: Detecting generated text using “Revise” and
“Proofread” prompts.

2023), noting that other datasets (Verma et al.,
2024; Zhang et al., 2024; Li et al., 2024) show sim-
ilar trends. Specifically, we compared the gran-
ularity and similarity across all domains of the
MGTBench dataset as shown in Table 8. Granu-
larity is measured by the average length of the text,
while similarity is assessed using BLEU scores
and the overlap ratio of words between human

and LLM-generated text. For granularity, the av-
erage length of texts in MGTBench is significantly
longer than in SimLLM (XSum). In terms of sim-
ilarity, although MGTBench attempts to generate
text on the same topic or headline, the similarity
in MGTBench remains significantly lower than in
SimLLM (XSum).

B Comparison between the Prompts
“Revise” and “Proofread”

We observe that the “Revise” prompt (Zhu et al.,
2023) tends to rewrite even well-constructed text.
We randomly selected an original sentence, “Chris
Maguire (Oxford United) left footed shot from the
centre of the box to the bottom left corner,” and
used the “Revise” and our “Proofread” prompts
to generate revised, re-revised, proofread, and re-
proofread texts, highlighting the changes in the
output text from the input text as shown in Fig-
ure 6.

Both the “proofread” and “revised” texts were
improved from the original by splitting long sen-
tences with commas or using more reader-friendly
words. However, while the “Proofread” prompt
keeps the “re-proofread” text intact, the “Revise”
prompt makes “re-revised” text with further al-
terations from the already well-constructed “re-
vised” text. This observation aligns with the
BLEU scores for as shown in Table 9, which are
0.990 and 0.742 for the “Proofread” and “Revise”
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Dataset Domain BART Baseline SimLLM

MGTBench Essay 0.753 0.777 0.866
GhostBuster Creative Writing 0.788 0.776 0.836
MGTL Goodnews 0.777 0.699 0.837
MAGE Review (Yelp) 0.807 0.846 0.877

Table 11: Detecting generated text on existing datasets.

Model Perplexity Binoculars LLM-Detector MPU-Roberta SimLLM

ChatGPT 0.453 0.403 0.541 0.649 0.916
GPT-4o 0.481 0.433 0.532 0.649 0.816
Yi 0.461 0.404 0.554 0.654 0.947
OpenChat 0.483 0.412 0.491 0.595 0.954
Gemini 0.466 0.437 0.530 0.612 0.859
LLaMa 0.433 0.381 0.543 0.750 0.883
Phi 0.581 0.386 0.491 0.487 0.937
Mixtral 0.601 0.381 0.538 0.640 0.837
Qwen 0.505 0.428 0.532 0.668 0.900
OLMo 0.527 0.450 0.515 0.621 0.895
WizardLM 0.469 0.416 0.558 0.675 0.856
Vicuna 0.448 0.381 0.541 0.731 0.866
Average 0.492 0.409 0.531 0.644 0.889

Table 12: Detecting generated text with other detectors.

prompts, respectively. This gap can explain the
performance difference since both SimLLM and
BART (Zhu et al., 2023) operate on the hypothe-
sis that small changes should be made to the re-
generated text. We also conducted experiments
using these prompts in various scenarios for de-
tecting the text generated by ChatGPT as shown
in Table 10, and the results show that the training
with “Proofread” is stable across different scenar-
ios.

C Evaluation on Existing Datasets

SimLLM is designed to detect generated text at
the sentence level, making it unsuitable for direct
use on datasets like MGTBench (He et al., 2023),
GhostBuster (Verma et al., 2024), MGTL (Zhang
et al., 2024), and MAGE (Li et al., 2024). To
adapt to this scenario, we randomly selected 5,000
human sentences from these datasets. For each
dataset, we randomly chose non-duplicated do-
mains, and the generated sentences were cre-
ated using ChatGPT. The results, shown in Ta-
ble 11 for the three main detectors (BART (Zhu
et al., 2023), Baseline, and SimLLM), demon-
strate that SimLLM outperforms both the BART
and Baseline methods across various datasets and
domains.

D Evaluation with Other Detectors

We conducted the same experiments using
other existing methods including Perplexity,
Binoculars (Hans et al., 2024), LLM-
Detector (Wang et al., 2024), and MPU-
Roberta (Tian et al., 2024) as shown in the
Table 12. For Perplexity, we used GPT-XL to
calculate the score. The results demonstrate that
existing methods fail to detect the LLM-generated
text effectively.

We evaluate the types of changes the LLM
makes by removing duplicated words between the
human and machine text generated by ChatGPT
across the entire dataset and categorizing the re-
maining words into three groups. These groups
represent potential features for a simple rule-based
approach to detect LLM text based on edits be-
tween the input text and the re-generated text:

1. Confusable (58.2%): This group contains
words that appear in both human and ma-
chine text. A large proportion of these
words are stop words (56.6%) and punctua-
tion marks (23.4%).

2. Non-reusable (19.1%): These words appear
only once in the dataset and thus cannot be
reused for classification.
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3. Distinguishable (22.7%): This group con-
sists of words that appear more than once
exclusively in human or machine text, of-
ten due to normalization (e.g., “Mr” to “Mr.”
or “Prof ” to “Prof.”) or standardization
(e.g., “organisation” to “organization” or
“behaviour” to “behavior”).

The statistics demonstrate that these edits are in-
sufficient to reliably distinguish between human-
written and LLM-generated text.
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