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Abstract
Current Large Language Models (LLMs) have
shown strong reasoning capabilities in com-
monsense question answering benchmarks, but
the process underlying their success remains
largely opaque. As a consequence, recent ap-
proaches have equipped LLMs with mecha-
nisms for knowledge retrieval, reasoning and
introspection, not only to improve their capa-
bilities but also to enhance the interpretabil-
ity of their outputs. However, these meth-
ods require additional training, hand-crafted
templates or human-written explanations. To
address these issues, we introduce ZEBRA, a
zero-shot question answering framework that
combines retrieval, case-based reasoning and
introspection and dispenses with the need for
additional training of the LLM. Given an input
question, ZEBRA retrieves relevant question-
knowledge pairs from a knowledge base and
generates new knowledge by reasoning over
the relationships in these pairs. This gener-
ated knowledge is then used to answer the in-
put question, improving the model’s perfor-
mance and interpretability. We evaluate our
approach across 8 well-established common-
sense reasoning benchmarks, demonstrating
that ZEBRA consistently outperforms strong
LLMs and previous knowledge integration ap-
proaches, achieving an average accuracy im-
provement of up to 4.5 points.

1 Introduction

Over recent years, the research community has
explored how to improve the reasoning capabil-
ities of language models and the interpretability
of their predictions, with many approaches rely-
ing on knowledge augmentation (Liu et al., 2022b;
Zhang et al., 2022; Yu et al., 2022; Liu et al., 2023).
For instance, Das et al. (2021) introduced case-
based reasoning (Aamodt and Plaza, 1994) into
the training process of a knowledge-based ques-
tion answering system to guide its reasoning. At

* Equal contribution.

Figure 1: Performance benefits of using ZEBRA against
standard retrieval augmentation methods for common-
sense reasoning across four Large Language Models.

the same time, Shwartz et al. (2020) and Liu et al.
(2022b) investigated how to prompt LLMs to gener-
ate useful knowledge via hand-crafted templates or
human-written explanations, while Yu et al. (2022)
introduced an approach to teach an LLM to reason
over a knowledge base of commonsense knowl-
edge, which is accessed via a retriever. Further-
more, Liu et al. (2022a) introduced the concept
of knowledge introspection, which is the process
of generating contextually relevant knowledge in
response to given questions.

However, some of these approaches rely on com-
monsense knowledge bases, which are finite by
definition and, therefore, may not include the ex-
act information needed to augment the input for
downstream tasks. Moreover, most of the afore-
mentioned approaches require the user to train – or,
at least, fine-tune – existing LLMs; not only is this
process resource-intensive but it also leads to task-
specific models, which may result in sub-optimal
performance outside the domain of their training
datasets. To address these issues, we introduce
ZEBRA, a zero-shot framework for commonsense
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reasoning and question answering that aims to com-
bine the benefits of knowledge retrieval, case-based
reasoning, and introspection without fine-tuning
the underlying LLM. ZEBRA stems from two ob-
servations: first, direct retrieval of commonsense
facts may provide useful hints, but it is limited
by the finite nature of knowledge bases and the
noise therein; second, introspection can generate
contextually relevant knowledge which is tailored
to the input question, but this is limited to what
the LLM already “knows”. In contrast, rather than
directly retrieving or generating knowledge for the
specific input question, ZEBRA: i) retrieves one
or more examples – also referred to as cases in
the literature – that elicit a correct reasoning pro-
cess for the input question based on commonsense,
ii) generates commonsense knowledge tailored for
the input question by following the relationship in
the question-knowledge pairs contained in the re-
trieved examples, and iii) uses the generated knowl-
edge to answer the input question.

We can summarize the contributions of this work
as follows:

• We introduce ZEBRA, a zero-shot example-
based retrieval augmentation framework for
commonsense reasoning and question answer-
ing that combines the benefits of knowledge
retrieval and introspection while dropping the
need for additional training of the LLM.

• We create ZEBRA-KB, a high-quality silver
knowledge base for commonsense question
answering, where each entry is composed of
a question, a list of choices, and a list of ex-
planations based on commonsense reasoning.

• We evaluate ZEBRA and ZEBRA-KB across 8
commonsense reasoning benchmarks, demon-
strating that ZEBRA consistently outperforms
the baselines, achieving an average accuracy
improvement of up to 4.5 points.

We believe that ZEBRA represents a signifi-
cant step forward for improving the capabilities of
LLMs in commonsense question answering tasks,
as outlined in Figure 1. We release our software
and data at https://github.com/sapienzanlp/
zebra.

2 Related Work

Over the years, the research community has pro-
posed several approaches for the integration of
commonsense knowledge into language models.

Commonsense generation. There is a large
body of work that has investigated how to pre-train
or fine-tune language models to generate common-
sense knowledge based on the information avail-
able in commonsense knowledge bases and com-
monsense corpora. Notably, Bosselut et al. (2019)
introduced COMET, a language model trained us-
ing explicit knowledge derived from commonsense
knowledge bases, such as ConceptNet (Speer et al.,
2018) and ATOMIC (Sap et al., 2019). Similarly,
Zhou et al. (2020) proposed CALM, a procedure
to pre-train language models by integrating gener-
ative and contrastive objectives for learning com-
monsense. In addition, other approaches, exem-
plified by Unicorn (Lourie et al., 2021), fine-tune
generative language models to solve a wide-array
of commonsense-based tasks in a multitask fash-
ion. These methods now represent a milestone in
the field of commonsense reasoning, as they have
shown themselves to be effective in generating
structured commonsense knowledge and reasoning
over it. However, these approaches require training
and/or fine-tuning on large quantities of data. Fur-
thermore, since they generate the answers directly,
they remain hard to interpret for humans.

Knowledge integration. Other efforts shifted
their focus onto improving the reasoning abilities
of language models by grounding them in external
commonsense knowledge graphs. Notable works
in this direction include KagNet (Lin et al., 2019),
GRF (Ji et al., 2020), QA-GNN (Yasunaga et al.,
2021) and GreaseLM (Zhang et al., 2022), among
others, which encode commonsense-based knowl-
edge graphs at the input level to guide the reason-
ing process, while also increasing its interpretabil-
ity. However, these approaches not only still re-
quire extensive training and fine-tuning, but their
performance is also upper-bounded by the quality
and completeness of the knowledge graph.

Knowledge retrieval. There have also been sev-
eral efforts to equip LLMs with mechanisms to
retrieve commonsense knowledge from structured
and unstructured data (Lewis et al., 2020). Note-
worthy is the work by Yu et al. (2022), who in-
troduced RACo, a retriever-generator approach
to retrieve and use commonsense knowledge in
knowledge-intensive tasks. More specifically, the
knowledge is drawn by the retriever from a large
knowledge base comprising twenty million com-
monsense statements, situations, and events col-
lected from various resources and benchmarks,
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(QE, CE, XE)
Question (Q): A revolving 
door is useful for two 
direction travel, but also 
serves as a security 
measure where?

Choices (C): Bank, New 
York, Store, Library, Hotel 
lobby. 

(Q,C)

Example Question (QE) :  Where 
can you find a revolving door at a 
location you spend the night?

Example Choices (CE) : Bank, 
Hotel lobby, Apartment, New 
York, Public place.

Example Explanation (XE) : 
Revolving doors are commonly 
found in hotel lobbies and banks.

Answer: Bank

Step 2: knowledge generation

(X)

Explanation (X): 
Revolving doors are used 
as a security measures in 
banks.

Retriever

ZEBRA-KB

LLM

Step 1: example retrieval Step 3: informed reasoning

LLM

Figure 2: The ZEBRA framework in its entirety. Starting with a question Q and its possible choices C, the first step
(example retrieval) is to ask the retriever to fetch relevant examples from a collection made of questions along with
their choices and associated knowledge explanations (Qe, Ce, Xe). Then, the model is asked to generate one or
more explanations X for the question Q with choices C emulating the relationship in the elements (Qe, Ce, Xe) of
the examples (knowledge generation step). Finally, during the informed reasoning step, the same model is asked to
perform question answering on the question Q given the choices C and the generated knowledge explanations X .

such as ConceptNet, ATOMIC, and GKB (Bhak-
thavatsalam et al., 2020), among others. Then, the
knowledge is integrated into a reader model via
Fusion-in-Decoder (Izacard and Grave, 2020, FiD)
that is trained to output the correct answer. Un-
fortunately, these approaches suffer from the same
drawbacks as the previous ones, as they require ad-
ditional training and fine-tuning, and their perfor-
mance is limited by the quality and completeness
of the knowledge base used.

Knowledge generation. Shwartz et al. (2020,
Self-Talk) and Liu et al. (2022b, GKP) were the
first to introduce approaches to generate common-
sense knowledge about the input question before
providing the answer. However, the generalizabil-
ity and application of such approaches to broader
domains is hindered by the need for human inter-
vention: Self-Talk requires hand-crafted templates
specific to each dataset, whereas GKP requires
human-written explanations designed specifically
for each task.

Finally, introspection has been proposed to im-
prove the interpretability of language models by
generating contextually relevant knowledge for a
given question. Liu et al. (2022a) were the first to
introduce the concept of knowledge introspection,
which paved the way to the development of intro-
spective reasoners, including Rainier (Liu et al.,
2022a) and Crystal (Liu et al., 2023). These ap-
proaches are based on teaching an LLM to gen-
erate knowledge that is specifically helpful in an-
swering a given question and, at the same time,

in optimizing their generated answers conditioned
on the knowledge generated during the first phase
via reinforcement learning techniques. Although
introspective reasoners have achieved remarkable
results, they still require additional training and
fine-tuning; moreover, the generated knowledge
and their reasoning patterns are strongly limited by
what they have seen at training time. In conclusion,
to the best of our knowledge, no work has yet ex-
plored combining retrieval and introspection with
a view to enhancing the reasoning capabilities of
language models in a zero-shot setting without the
need for additional training of the LLM.

3 ZEBRA

In this section, we introduce ZEBRA, our novel
zero-shot example-based retrieval augmentation
framework for commonsense reasoning that com-
bines the benefits of knowledge retrieval and in-
trospection while dropping the need for additional
training of the LLM. ZEBRA’s pipeline is com-
posed of three main steps, as illustrated in Figure 2:
i) example retrieval (Section 3.1), ii) example-
guided knowledge generation (Section 3.2), and
iii) knowledge-informed reasoning (Section 3.3).

3.1 Example Retrieval

The first step of ZEBRA is to retrieve the “exam-
ples” from a dedicated knowledge base. The key
difference from standard knowledge retrieval is
that, instead of retrieving isolated facts or state-
ments, we retrieve complete examples. Each ex-
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ample consists of a question, a list of choices, and
simple explanations that clarify how commonsense
knowledge justifies the correctness or incorrectness
of each choice in relation to the input question.1

Retrieving full examples allows ZEBRA to provide
a broader context for the reasoning process that
the LLM has to follow to generate the knowledge
necessary to answer the question.

Retriever architecture. Our example retriever
builds on top of DPR (Karpukhin et al., 2020,
Dense Passage Retrieval), which uses an encoder
to produce a dense representation of the query and
the passages. Given an input query q and a passage
p ∈ P , where P is a collection of passages, the
Retriever(·) model computes the embeddings of
q and p:

EQ(q) = Retriever(q), EP (p) = Retriever(p)

Then, we rank the most relevant passages with re-
spect to q using the similarity function sim(q, p) =
EQ(q)

⊤EP (p), i.e., the dot product between the
query and passage embeddings. The retriever re-
turns the top-k passages P(q) that are most similar
to the input query q.

Query and passage representation. For our re-
triever to work, it is fundamental to encode the
queries (input questions and their choices) and the
passages (questions of the examples and the corre-
sponding choices) in a way that allows the model
to retrieve the most relevant ones, i.e., the posi-
tives, and tell them apart from the irrelevant ones,
i.e., the negatives. Let the query q = (Q,C) be
composed of a question Q and a list of possible
choices C = (c1, c2, . . . , cn). Then, we represent
the query q as the concatenation of the question Q
and each choice ci separated by a special token:

Q [SEP] c1 [SEP] c2 . . . [SEP] cn (1)

For each query q, we sample a set of positive pas-
sages P(q) from all the queries in the knowledge
base of examples. More specifically, a passage p
is considered the positive of a query q if the two
share the same main topic, i.e., they are about the
same concept. In addition, we augment the set of
positive passages by permuting, removing, or re-
ordering the choices in the queries, as the model
should be able to retrieve relevant examples even

1In the following, we use the terms “explanations” and
“knowledge” interchangeably to refer to “explanations that use
commonsense knowledge.”

when the choices are presented in a different order
or present different distractors.

Training objective. We train the retriever using
multi-label noise contrastive estimation (NCE) as
the training objective. The LRetriever loss for q is
defined as:

− log
∑

p+∈P(q)

esim(q,p
+)

esim(q,p+) +
∑

p−∈P̂(q)
esim(q,p−)

(2)
where P(q) are the positives for q, and P̂(q) is
the set of negative samples for q, built using the
positives of the other queries in the same batch.

3.2 Example-Guided Knowledge Generation

Given a question Q and a list of choices C =
(c1, c2, . . . , cn), the next step in ZEBRA is to gener-
ate a list of explanations X that can help in answer-
ing the question Q. Unlike introspective reasoners,
which generate relevant knowledge directly, we
build on top of case-based reasoning. Our approach
encourages an LLM to generate knowledge by em-
ulating the relationship in the question-knowledge
pairs found in the retrieved examples. More specif-
ically, we retrieve the top k examples E that are
conceptually relevant to the given input q:

E = top-k(Retriever(q)) (3)

Each example ei ∈ E ∀i = 1, . . . , k is composed
of a question Qei , choices Cei = (c1ei , c

2
ei , . . . , c

n
ei)

and a sequence of gold or silver explanations
Xei = (x1ei , x

2
ei , . . . , x

m
ei ) that can help answering

Qei . Subsequently, we construct a prompt con-
taining all of these items of information and ask
the LLM to generate a list of explanations X for
(Q,C), following the relationship in the questions
Qe1:k , choices Ce1:k , and explanations Xe1:k of the
top-k retrieved examples:

X = Prompt(Qe1:k , Ce1:k , Xe1:k , Q,C) (4)

We provide more details about the construction of
the prompt in Appendix A.1.

3.3 Knowledge-Informed Reasoning

Having generated the list of explanations X for
(Q,C), ZEBRA proceeds to the final step, where
the LLM is asked to perform question answering
on the input question Q with the list of choices C
and the explanations X . Therefore, the model is
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asked to predict the correct answer A by condition-
ing on the input (Q,C,X):

A = argmaxc∈C P (c|Q,C,X) (5)

where P (c|Q,C,X) is the probability of the
choice c given Q, C, and X . In practice, we com-
pute the probability of the label assigned by the
model to each choice c and select the one with
the highest probability as the final prediction. We
note that this approach can easily be extended to
a few-shot setting by providing the model with a
few examples before asking the question Q. We
provide additional details about the prompt used
for this step in Appendix A.2.

3.4 ZEBRA-KB
ZEBRA requires a knowledge base of examples
to retrieve and generate commonsense knowledge.
Specifically, each example in the knowledge base
is composed of a question, a list of choices, and
a list of explanations that can help answering the
question. These examples can be drawn from the
training sets of well-established question answer-
ing datasets. A dataset providing such examples is
the CommonsenseQA dataset (Talmor et al., 2019),
which benefits from a manually-annotated expla-
nations (Rajani et al., 2019; Aggarwal et al., 2021,
CoS-E and ECQA). However, not every QA dataset
provides such explanations. To obtain an inexpen-
sive but effective solution, we propose ZEBRA-KB,
a new knowledge base of examples with gold and
silver explanations, the latter being generated us-
ing commercially-available LLMs, such as GPT
and Gemini. We provide more details about the
generation of ZEBRA-KB in Section 4.3 and Ap-
pendix A.3.

4 Experimental Setup

In this section, we describe the experimental setup
used to train and evaluate ZEBRA. More specifi-
cally, we provide an overview on the training pro-
cess of the retriever (Section 4.1), the datasets used
to evaluate our framework (Section 4.2), the pro-
cess to generate ZEBRA-KB (Section 4.3), as well
as the models that we consider for our experiments
(Section 4.4).

4.1 Retriever
We build our retriever on top of E5-base-v2 (Wang
et al., 2022), a small-sized transformer-based en-
coder (about 109M parameters) that is pre-trained

HuggingFace model ID Alias

mistralai/Mistral-7B-Instruct-v0.2 Mistral-v0.2
microsoft/Phi-3-small-8k-instruct Phi-3-Small
meta-llama/Meta-Llama-3-8B-Instruct Llama-3
microsoft/Phi-3-mini-128k-instruct Phi-3-Mini

Table 1: List of LLMs considered for ZEBRA. For better
readability, we provide a mapping from the original
HuggingFace model IDs to their aliases.

on a large corpus of text. We fine-tune the retriever
on the training set of CommonsenseQA (Talmor
et al., 2019, CSQA) using the procedure described
in Section 3.1. In CSQA, each question is associ-
ated with a topic or concept, which we use to con-
struct the set of positive examples for each query.
More specifically, we consider two questions q and
q′ in the dataset as pair-wise positives if they are
tagged with the same topic or concept. We select at
most 64 positive examples for each query and use
up to 200 negatives per batch. We train the encoder
for a maximum of 25,000 steps using RAdam (Liu
et al., 2020) with a learning rate of 1e-5 and a lin-
ear learning rate decay schedule. At the end of the
training, we select the best model based on the loss
on the validation set of CSQA. We highlight that
the retriever is trained only once and is then used
to retrieve examples for all the LLMs and datasets
we evaluate. Moreover, the retriever is the only
trained component in ZEBRA, as the parameters of
the LLMs are kept frozen during the entire process.

4.2 Evaluation Benchmarks

We evaluate our approach against 8 well-
established QA datasets: CommonsenseQA (Tal-
mor et al., 2019, CSQA), OpenBookQA (Mi-
haylov et al., 2018, OBQA), ARC-Easy and
ARC-Challenge (Clark et al., 2018), PIQA (Bisk
et al., 2019), WinoGrande (Sakaguchi et al., 2019,
WG), CommonsenseQA 2.0 (Talmor et al., 2022,
CSQA2) and QASC (Khot et al., 2020). To en-
sure fair and consistent comparisons with recent
work (Yu et al., 2022; Liu et al., 2023), we follow
standard practice by evaluating on test sets when
their labels are publicly available, and otherwise
on development sets. Specifically, we use the de-
velopment sets for CSQA, PIQA, WG, CSQA2,
and QASC, and the test sets for ARC and OBQA.

4.3 Creating ZEBRA-KB

CommonsenseQA features a manually annotated
set of explanations for each question that was origi-

22433



ZEBRA

Size Model k = 1 k = 3 k = 5 k = 10 k = 20 Oracle

7 ∼ 8B
Mistral-v0.2 68.2 68.6 72.5 73.3 72.1 71.8 90.3
Phi-3-Small 77.2 80.8 80.7 80.9 79.5 79.6 95.2
Llama-3 73.9 77.4 78.7 78.7 78.0 76.6 95.5

∼ 4B Phi-3-Mini 73.4 75.3 74.9 74.8 73.9 72.8 94.9

Average 73.2 75.5 76.7 76.9 75.9 75.2 94.0
∆ Improvement – +2.3 +3.5 +3.7 +2.7 +2.0 +20.8

Table 2: Results in terms of accuracy on the CSQA development set. Here, k is the number of examples used
during the knowledge generation step. “Oracle” indicates the results of the models when they have access to the
manually-created explanations of ECQA. Best results are in bold, while second-best results are underlined.

nally introduced in prior work (Aggarwal et al.,
2021, ECQA). However, this is not a realistic
scenario for QA datasets in general and for real-
world applications. As a matter of fact, CSQA and
OBQA are the only datasets in our evaluation that
provide such explanations. However, this limita-
tion does not prevent us from evaluating our frame-
work on the other datasets, as we can generate
the required explanations using a silver annotation
procedure that is effective and inexpensive.

To create our silver explanations we start from
the training set of each dataset and, for each sam-
ple, we consider its question Q, choices C, and –
most importantly – the correct answer A. Then,
we use Google’s GenerativeAPI to prompt Gemini-
1.5-Flash2 to generate a list of explanations given
Q, C, and A, setting the temperature to 0.0 (for
reproducibility) and the maximum number of new
tokens to 256. We select the top-10 explanations
returned by Gemini. The result is a knowledge
base of exemplar commonsense knowledge, which
we refer to as ZEBRA-KB. We note that relying on
commercially-available LLMs limits their output,
i.e., the generated explanations, when the questions
and/or the possible choices concern sensitive and
possibly unsafe topics, e.g., drugs, sex, violence,
and race, among others (Tedeschi et al., 2024). Fu-
ture work may address this limitation in order to
generate more comprehensive and diverse explana-
tions. We provide the details about the prompt used
for the generation of ZEBRA-KB in Appendix A.3.

4.4 Models

We evaluate ZEBRA using four instruction-tuned
LLMs. Table 1 presents the models selected for

2All our explanations are generated using the latest version
of Gemini-1.5-Flash available in May 2024.

evaluation and provides a mapping from their orig-
inal HuggingFace model IDs to the aliases used
in this paper for better readability. Three of these
models – Mistral-v0.2, Phi-3-Small, and Llama-3
– feature a similar number of parameters. We also
include Phi-3-Mini to evaluate the effectiveness
of ZEBRA on a LLM with a significantly lower
number of parameters (3.8 billion compared to 7–8
billion of the others). This set of LLMs allows us
to evaluate our approach on top of the strongest
LLMs available at the time of writing, as well as
on smaller models that are computationally less
expensive.

5 Results

In this section, we present and discuss the results of
ZEBRA on the 8 commonsense question-answering
benchmarks introduced in Section 4.2 using the
models listed in Section 4.4.

5.1 Results on CSQA

Table 2 provides an overview of the results ob-
tained by different LLMs on CSQA (Talmor et al.,
2019). For each model, we report the score ob-
tained in the zero-shot setting, as well as the per-
formance when using the ZEBRA framework with
different numbers of retrieved examples k. Note
that, here, k is the number of examples used during
the knowledge generation step, not the number of
in-context examples used for question answering.
We also report the “oracle” accuracy of each model
when using the manually-created explanations pro-
vided in ECQA (right-most column in Table 2),
which should represent the upper bound of the per-
formance for an LLM when a human provides one
or more explanations to a question having the cor-
rect answer available. It is important to underline
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Model ARC-C ARC-E OBQA PIQA WG CSQA2 QASC Avg. ∆

Mistral-v0.2 72.4 / 75.2 85.8 / 87.4 68.8 / 75.8 76.1 / 80.2 55.8 / 60.7 58.5 / 67.5 66.1 / 68.3 69.1 / 73.6 +4.5
Phi-3-Small 90.4 / 91.6 96.9 / 97.7 90.4 / 91.2 86.6 / 88.1 79.1 / 81.0 68.0 / 74.6 83.5 / 81.0 85.0 / 86.4 +1.4
Llama-3 79.4 / 83.5 91.7 / 92.9 73.4 / 79.6 78.3 / 84.0 56.2 / 63.2 64.3 / 69.4 78.2 / 79.1 74.5 / 78.8 +4.3
Phi-3-Mini 85.7 / 88.0 95.4 / 96.0 82.8 / 87.8 80.4 / 84.2 67.3 / 72.9 59.3 / 64.6 74.7 / 73.9 77.9 / 81.0 +3.1

Table 3: Results in terms of accuracy on 7 commonsense benchmarks: ARC-Challenge (ARC-C), ARC-Easy
(ARC-E), OpenBookQA (OBQA), PIQA, WinoGrande (WG), CommonsenseQA 2.0 (CSQA2), and QASC. The
results are reported in the format zero-shot / ZEBRA with k = 5 retrieved examples. Best results are in bold.

that, because our retriever model is trained specifi-
cally on the CSQA training set, these results can
also be viewed as an extrinsic evaluation of the
in-domain performance of the retriever.

We can immediately see that ZEBRA consis-
tently improves the performance of all the LLMs,
with an average increase of 3.7 points of accuracy
when k = 5. Moreover, we can observe that the
performance gain is approximately the same across
different LLMs, independently of the architecture
and the number of parameters, highlighting the
reliability of our approach. Although the results
obtained with the oracle knowledge seem to sug-
gest an even higher increase in performance, we
stress the fact that those explanations often contain
an explicit link between the question and the cor-
rect answer, making the models more likely to take
a “shortcut” to the correct answer. Indeed, as men-
tioned above, the explanations are hand-crafted
by a human who has access not only to the ques-
tion and the choices but also to the correct answer,
which is not the case in a real-world scenario. We
provide examples of this pattern in Appendix A.4.

5.2 Results on Other Benchmarks

The results of ZEBRA on CSQA in Table 2 help us
determine the best number of examples to use dur-
ing the knowledge generation step, which we find
to be k = 5. Having established the best value for
k, we shift our focus to the evaluation of the gen-
eralizability of ZEBRA on another 7 benchmarks,
which assess different aspects of commonsense rea-
soning, e.g., physical interactions in PIQA, coref-
erence resolution in WG, science knowledge in
ARC and OBQA, etc. Importantly, for each of
these benchmarks, we retrieve the k examples for
each question from the corresponding training set
contained in ZEBRA-KB.

Table 3 summarizes the results, where we can
see that ZEBRA consistently outperforms the base-
lines across all the 7 benchmarks and all the 4
LLMs that we consider, with the exception of

QASC for Phi-3-Small and Phi-3-Mini. The con-
sistent improvement in performance across differ-
ent datasets and LLMs highlights the reliability
of ZEBRA even when the knowledge base is gen-
erated through a silver annotation procedure and
even when the retriever is trained on a dataset
(CSQA) which is potentially very different from
the ones used in this evaluation. In Appendix A.5,
we present additional experiments demonstrating
that ZEBRA remains effective even when the re-
trieved examples do not come from the same dis-
tribution of the evaluation dataset. This highlights
ZEBRA’s robustness when both the retriever and
the knowledge base are affected by domain shift.

5.3 Comparison with Knowledge Retrieval

To further show the effectiveness of ZEBRA, we
carry out a 1-to-1 comparison against an approach
that retrieves commonsense knowledge statements
directly. Specifically, we train a retriever to fetch
commonsense knowledge statements (rather than
full examples) that are relevant to the input ques-
tion using the same retrieval strategy as that intro-
duced in RACo (Yu et al., 2022). Moreover, to
ensure a fair comparison, we replace the special-
ized reader in RACo – a T5 model trained using
FiD (Izacard and Grave, 2020) – with the same
LLMs we use in our experimental setup. We refer
to this approach as RACo-based Retrieval (RBR).

Figure 3 compares the results of the four LLMs
that we consider in this work when using ZEBRA

and RBR on the CSQA development set. Here, we
can see that ZEBRA consistently outperforms RBR
across all the LLMs and all the values of k with the
exception of Phi-3-Mini when k = 20. Interest-
ingly, standard knowledge retrieval often leads to a
negative impact on the performance of the LLMs,
as we can see in the case of Mistral-v0.2, Llama-
3 and Phi-3-Mini, where we observe a decrease
in performance when using RBR compared to the
vanilla LLMs. Our analysis highlights the limita-
tions of current commonsense knowledge bases

22435



60

65

70

75

k = 1 k = 3 k = 5 k = 10 k = 20

Mistral-v0.2 Mistral-v0.2 w/ RBR
Mistral-v0.2 w/ ZEBRA

(a) Mistral-v0.2

75

77

79

81

83

k = 1 k = 3 k = 5 k = 10 k = 20

Phi-3-Small Phi-3-Small w/ RBR
Phi-3-Small w/ ZEBRA

(b) Phi-3-Small

70

72

74

76

78

80

k = 1 k = 3 k = 5 k = 10 k = 20

Llama-3 Llama-3 w/ RBR
Llama-3 w/ ZEBRA

(c) Llama-3

71

72

73

74

75

76

k = 1 k = 3 k = 5 k = 10 k = 20

Phi-3-Mini Phi-3-Mini w/ RBR
Phi-3-Mini w/ ZEBRA

(d) Phi-3-Mini

Figure 3: Comparison of the LLMs performance on the CSQA development set using ZEBRA and direct knowledge
retrieval (RACo-based Retrieval) as the number of retrieved examples/knowledge statements k increases.

System Generator Reasoner CSQA ARC-C ARC-E OBQA QASC PIQA CSQA2 WG AVG

Llama-3 – Llama-3 73.9 79.4 91.7 73.4 78.2 78.3 64.3 56.2 74.4

Su
pe

rv
. Rainier-large T5 0.77B Llama-3 72.9 76.0 88.6 71.4 74.5 76.6 57.1 59.3 72.0

Crystal-3B T5 3B Llama-3 72.6 75.5 89.5 72.6 75.9 77.7 58.6 60.1 72.8
Crystal-11B T5 11B Llama-3 75.1 77.3 91.2 72.6 78.4 78.2 60.0 60.5 74.1

U
ns

up
er

v. Self-Talk Llama-3 Llama-3 70.6 78.7* 91.4* 72.2* 78.3* 77.2 63.4* 58.3 73.8
GKP Llama-3 Llama-3 74.0 78.5* 91.5* 70.0* 76.9 76.5* 65.9 60.4* 74.2
ZEBRA (Ours) Llama-3 Llama-3 78.7 84.3 90.9 80.0 79.1 84.0 63.2 69.4 78.7

Table 4: Accuracy scores on the CSQA, ARC-Challenge, ARC-Easy, OBQA, QASC, PIQA, CSQA2 and WG
benchmarks when using ZEBRA compared to the baselines. Best results are in bold, while second-best results
are underlined. A green cell indicates an improvement in performance compared to Llama-3 without generated
knowledge, while a red cell indicates a decrease. *: results computed using the original methodology on datasets
not evaluated by the baseline authors.

and underscores the need for explanations derived
from a reasoning process specific to the input ques-
tion, rather than relying on general commonsense
facts, which may not be sufficient to solve the task
effectively.

5.4 Comparison with Knowledge Generation

One important aspect of our approach is the manner
in which the knowledge is generated. Therefore,
here we compare the quality of the knowledge gen-
erated by ZEBRA against previous methods: two
unsupervised – namely, Self-Talk (Shwartz et al.,
2020) and GKP (Liu et al., 2022b) – and two super-
vised (introspective reasoners) – namely, Rainier
(Liu et al., 2022a) and Crystal (Liu et al., 2023).

To test the quality of the generated knowledge
of each system in a fair setting, we evaluate the
different knowledge generators (i.e., the module
of the system that generates the knowledge) us-
ing the same LLM as a reasoner (i.e., the module
of the system that answers the question) for all
the systems. This allows us to evaluate whether
ZEBRA’s example-based retrieval augmentation
framework produces knowledge that is of higher
quality compared to the hand-crafted templates in
Self-Talk and the manually-curated explanations in

GKP. Moreover, this setting enables a direct com-
parison between ZEBRA, which does not require
fine-tuning of the underlying LLM, and models
that are specifically trained to generate relevant
knowledge, such as Rainier and Crystal.

Table 4 shows the accuracy scores of ZEBRA

and all the baselines over the 8 benchmarks intro-
duced in Section 4.2. Interestingly, we observe
that most systems – except for ZEBRA – encounter
difficulties in scoring higher than a vanilla Llama-
3 model in a consistent way across the datasets
without any input knowledge (first row in Table 4).
These results suggest that current approaches are
not suitable for improving the reasoning capabili-
ties of current LLMs. Instead, ZEBRA surpasses
the best performing baseline by an average of 4.3
points of accuracy, showcasing the effectiveness
of retrieving relevant examples for the input ques-
tion and allowing the model to generate knowl-
edge by mimicking the relationship in the retrieved
question-knowledge pairs. Notably, ZEBRA is also
able to outperform supervised techniques that have
been explicitly trained to generate and leverage
knowledge when answering an input question.3

3For example, the original reasoner (Khashabi et al., 2020,
UnifiedQA) in Rainier is trained for question answering but
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These results highlight the effectiveness of ZEBRA

in providing a simple and effective framework to
improve the performance of current LLMs on com-
monsense reasoning tasks.

5.5 Human Evaluation

Besides better results on standard benchmarks, one
of the most important strengths of ZEBRA is the in-
terpretability of the answers provided by the LLMs.
Indeed, the knowledge generated by the LLMs can
be used by humans to understand the reasoning
process that led to the final answer. To evaluate
this aspect, we conduct a small-scale manual anal-
ysis on the quality of the knowledge generated by
the LLMs. We randomly sample 100 instances
from the CSQA development set and ask three an-
notators to validate the quality of the knowledge
generated by ZEBRA when using Llama-3. The
annotation process is conducted in a blind fash-
ion, i.e., each annotator is not aware of the labels
assigned by the other annotators.

Following standard practice in the field (Liu
et al., 2022b), each human annotator is assigned
the task of evaluating the quality of the generated
knowledge in relation to the input question, its
answer choices, and the correct answer. The as-
sessment is carried out using three metrics:

• Relevance: whether the generated knowledge
is relevant to the topic or concepts mentioned
in the question; relevant knowledge is not
necessarily factual or helpful.

• Factuality: whether the generated knowledge
is factually correct; factual knowledge is not
necessarily relevant or helpful.

• Helpfulness: whether the generated knowl-
edge helps in answering the question in a di-
rect or indirect way. We distinguish between
three categories: helpful (i.e., supports the
correct answer), harmful (i.e., negates the cor-
rect answer or supports an incorrect answer),
or neutral (neither helpful nor harmful).

Note that an item of helpful knowledge may be
factually incorrect, hence all the three dimensions
are important for a comprehensive evaluation.

Our human evaluation shows a strong consen-
sus among annotators regarding the quality of the

kept frozen during the training of the knowledge generator,
whereas Crystal is jointly trained on question answering and
knowledge generation using reinforcement learning.

knowledge generated by ZEBRA using Llama-3.
Specifically, all three annotators labeled 96 out of
100 instances as “relevant”, 88 out of 100 instances
as “factual”, and 74 out of 100 instances as “help-
ful”. Moreover, in only 13 out of 100 cases was
the knowledge deemed “harmful” by at least one
annotator, while only 6 instances were tagged as
“harmful” by all three annotators. Finally, there was
no instance which was tagged as “not relevant, not
factual and harmful” by an annotator, showing the
reliability of the explanations generated with ZE-
BRA. For reference, in Appendix A.6 we provide a
number of qualitative examples of the knowledge
generated by ZEBRA when using Llama-3 over the
CSQA development set.

6 Conclusions

In this paper we presented ZEBRA, a novel zero-
shot example-based retrieval augmentation frame-
work for commonsense reasoning. ZEBRA is com-
posed of two main components: an example re-
triever that fetches examples that are relevant to the
input question from a dedicated knowledge base,
and an LLM that generates relevant knowledge for
the input question by following the relationship
in the questions and knowledge provided in the
examples. This allows ZEBRA to tackle the limita-
tions of previous methods such as commonsense
knowledge retrievers, unsupervised methods rely-
ing on human intervention and introspective rea-
soners, providing a simple and effective way to im-
prove the performance of LLMs on commonsense
reasoning and question answering tasks. Since a
knowledge base of curated examples may not al-
ways be available, we also introduced ZEBRA-KB,
a novel knowledge base of examples with silver
knowledge explanations for each question, show-
ing how ZEBRA can be used in conjunction with
ZEBRA-KB to achieve strong zero-shot results on
8 well-established QA datasets for commonsense
reasoning. Our experiments support the effective-
ness of ZEBRA over other state-of-the-art meth-
ods for knowledge augmented reasoning, such as
specialized commonsense retrievers and introspec-
tive reasoners. Finally, we investigated the inter-
pretability of the answers provided by the LLMs
through a human evaluation of the knowledge gen-
erated by ZEBRA. The results demonstrate that
the knowledge is often perceived as reasonable by
humans, aiding their understanding of the model’s
reasoning process leading to the final answer.
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Limitations

ZEBRA is not without its limitations. There are
several aspects that could be improved in future
work. Here, we list and briefly discuss some of the
main limitations of our current approach, which
may be addressed in future work.

Retriever Performance: The performance of
the retriever is crucial for the overall performance
of ZEBRA. In this work, our training strategy for
the retriever is based on a contrastive learning ap-
proach that mainly identifies the positive for a ques-
tion based on whether the two questions q and q′

share or “talk” about the same concept. Despite
this approach showing itself to be effective in our
experiments, it may not be the most effective strat-
egy for all types of questions. Our positive identifi-
cation and negative mining strategies are similar to
what is commonly used in the literature for dense
retrieval, nevertheless, future work may focus on
developing more effective and efficient retrieval
methods for commonsense reasoning.

Knowledge Base: The quality of the knowledge
base is crucial for the overall performance of ZE-
BRA. In this work, we overcome the lack of
manually-crafted explanations for the training sets
of many of the evaluation benchmarks we use in
our evaluation by using ZEBRA-KB, a knowledge
base of examples with silver knowledge explana-
tions created through Google’s Gemini-1.5-Flash,
which is relatively fast and inexpensive to interro-
gate. Future work may focus on the generation of
better explanations by using more advanced clean-
ing and filtering techniques.

Multilinguality and cross-linguality: Our ap-
proach is currently limited to English language
benchmarks. Future work may focus on extending
the framework to multilingual and cross-lingual
settings, where the knowledge base is composed of
examples in multiple languages, and the LLMs are
able to generate knowledge in a language different
from the input question, as well as being able to
handle input questions written in other languages.
This would be interesting to investigate, as the lan-
guage diversity of the examples in the knowledge
base may help or penalize the LLMs on different
languages and improve the overall performance of
the framework.
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A Appendix

A.1 Knowledge Generation Prompts
In Table 5 we report the prompt used for the knowl-
edge generation step. The number of choices spec-
ified under the System tag is dynamically adapted
according to the number of choices available in the
QA dataset.

System: You are given a question and 5 choices.
Your task is to write one or more explanations
that support the most likely option.
Note that:
* there is always one option that is correct and
more likely than the others.
* the explanations must support only the most
likely option and refute all the others.
* the explanations must be simple and concise
(max 15 words).
Do you understand the task?

Assistant: Yes, I understand. Please provide the
question and the possible choices.

User:
Question:
{question}

Choices:
{choices}

Assistant: List of knowledge:

Table 5: Prompt for the knowledge generation step.

A.2 Question Answering Prompts

In Table 6 we report the prompt used for the ques-
tion answering task without additional input knowl-
edge, which is the one used for the evaluation of
the vanilla LLMs. The number and the list of labels
appearing under the System tag are adjusted accord-
ing to the number of choices available in each QA
dataset. Moreover, in Table 7 we also report the
prompt for the informed reasoning step, which is
the exact same prompt as the one used for question
answering, but with additional knowledge included.
This latter can come from the knowledge genera-
tion step, from retrieval methods such as RACo, or
from manual annotations such as ECQA.

A.3 ZEBRA-KB Generation

In Table 8 we show the prompt used to generate the
silver knowledge using the Google GenerativeAPI
and the Gemini-1.5-Flash large language model.
The number and the list of labels appearing under
the System tag are adjusted according to the number
of choices available in each QA dataset.

A.4 ECQA Explanations

In Table 9 we report five examples of instances
coming from the development set of the Com-
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System: You are a helpful assistant for question
answering.
You are given a question and 5 choices (labeled
A, B, C, D and E).
Your task is to choose the label corresponding
to the best answer for the question.
Do you understand the task?

Assistant: Yes, I understand. Please provide the
question and the possible choices.

User:
Question:
{question}

Choices:
{choices}

Assistant: Answer:

Table 6: Prompt for the question answering task.

System: You are a helpful assistant for question
answering.
You are given a question, 5 choices (labeled A,
B, C, D and E) and a list of explanations.
Your task is to choose the label corresponding
to the best answer for the question based on the
given explanations.
Do you understand the task?

Assistant: Yes, I understand. Please provide the
question and the possible choices.

User:
Question:
{question}

Choices:
{choices}

Explanations
{knowledge}

Assistant: Answer:

Table 7: Prompt for the informed reasoning step.

monsenseQA dataset (Talmor et al., 2019, CSQA),
which were manually annotated with a list of expla-
nations by Aggarwal et al. (2021) (ECQA). From
the table we can see how the explanations contain
an explicit link between the question and the cor-
rect answer, like What would go on top of wood?

System: You are a helpful assistant for question
answering.
You are given a question requiring commonsense
knowledge to be solved, together with three pos-
sible choices (labeled A, B and C) and the label
corresponding to the correct answer.
For each choice, generate a sentence with ex-
plicit commonsense knowledge that supports or
refutes the choice.
The format of the generated knowledge should
be in the following form:
A. ...
B. ...
C. ...

User:
Question:
{question}

Choices:
{choices}

Table 8: Prompt for the generation of the silver knowl-
edge given a question and its choices.

where the correct answer is carpet and the expla-
nation is It is the carpet that could go on top of
wood. If these explanations were to be used as
oracle knowledge during the informed reasoning
step, the model would likely exploit the informa-
tion to select the correct answer, resulting in a high
probability of success. Consequently, although the
results in Table 2 under the oracle column exhibit
a significant performance increase compared to
both the baselines and ZEBRA, we contend that
this improvement is predominantly attributable to
the models leveraging this shortcut.

A.5 Out-of-domain Results

In Table 10 we report the score of ZEBRA in an out-
of-domain scenario. Specifically, for each dataset,
the examples that we retrieve for the knowledge
generation step do not come from the related train-
ing set contained in ZEBRA-KB. Instead, we fetch
relevant examples from the CSQA training set
equipped with the ECQA knowledge explanations
(Aggarwal et al., 2021). This setup ensures that
the examples that we provide to the LLMs do not
share the same distribution as the input questions
for evaluation. In the table, under every dataset,
the ECQA column reports the score of retrieving
examples from the CSQA training set equipped
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Question Oracle Knowledge Choices

The man often made smart remarks,
like that any restaurant is a Mexican

restaurant where?

Mexican restaurants are found in
Mexico. Mexico has many Mexican

places.

A. city
B. mexica
C. san diego
D. spain
E. mexico

The man in the white suit was very
lazy. He did nothing useful.

Meanwhile, the man in the blue suit
had put in effort and was very what?

The man in the white suit was very
lazy. He did nothing useful.

Meanwhile, the man in the blue had
put in effort and was very

productive.

A. restless
B. active
C. lazybutt
D. productive
E. hard work

What could go on top of wood?
It is the carpet that could go on top

of wood.

A. lumberyard
B. synagogue
C. floor
D. carpet
E. hardware store

Where could you find a toilet that
only friends can use?

Your friends come to your
apartment. A toilet your apartment
can only be used by your friends.

A. rest area
B. school
C. stadium
D. apartment
E. hospital

The weasel was becoming a
problem, it kept getting into the
chicken eggs kept in the what?

The weasel was becoming a problem
at the barn. The chicken eggs were
kept into the barn and weasel was

getting into it.

A. forest
B. barn
C. public office
D. out of doors
E. freezer

Table 9: Examples of gold explanations from ECQA. The gold answers for the questions are in bold.

with the explanations contained in ECQA (out-of-
domain), while the ZKB column reports the result
of retrieving examples from the related training set
contained in ZEBRA-KB (in-domain). From the
table, we can see that the out-of-domain results are
lower than the in-domain ones by an average of
only 1.6 points across all the LLMs, highlighting
the scalability of our approach even in scenarios
in which gold or silver knowledge annotations are
not available for a certain domain.

A.6 Knowledge Generated with ZEBRA

We provide examples of the knowledge generated
by the LLMs under the ZEBRA framework. With
reference to Table 11, we report 5 examples of
knowledge generated by Llama-3 during the knowl-
edge generation step of ZEBRA. Specifically, the
first four examples show instances of knowledge
which were deemed relevant, factual and helpful
by all three human annotators, while the last exam-
ple shows an item of knowledge which was anno-
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Model ARC-C ARC-E OBQA PIQA QASC CSQA2 WG AVG

ECQA ZKB ECQA ZKB ECQA ZKB ECQA ZKB ECQA ZKB ECQA ZKB ECQA ZKB ECQA ZKB

Mistral v2 74.4 75.2 86.9 87.4 73.6 75.8 77.6 80.2 68.6 68.3 65.6 67.5 59.1 60.7 72.3 73.6
Phi-3-Small 90.9 91.6 97.2 97.7 89.8 91.2 87.4 88.1 81.1 81.0 72.1 74.6 78.4 81.0 85.3 86.4
Llama-3 82.2 83.5 92.4 92.9 76.8 79.6 79.8 84.0 80.2 79.1 68.2 69.4 60.8 63.2 77.2 78.8
Phi-3-Mini 86.3 88.0 95.4 96.0 84.2 87.8 82.0 84.2 73.7 73.9 64.7 64.6 69.5 79.2 79.4 81.9

Table 10: Out-of-domain results. The ECQA column shows the score obtained by retrieving examples from the
CSQA training set, augmented with the explanations provided by ECQA (out-of-domain), while the ZKB column
represents the results of retrieving examples from the corresponding training set within ZEBRA-KB (in-domain).

tated as relevant, factual and harmful. The model
demonstrates its capability to generate relevant and
high-quality commonsense knowledge for answer-
ing questions. However, there are instances where
the model produces useful knowledge that, while
generally accurate from a commonsense perspec-
tive, is not directly related to the correct choice or
may harm the final prediction. Consequently, this
information, despite its correctness, fails to provide
the information to answer the question correctly.
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Question Choices Generated Knowledge

Where in your home would you keep
a ballpoint pen when not in use?

A. backpack
B. bank
C. desk drawer
D. eat cake
E. office desk

Desk drawers are used for storing
office supplies.

Pens are office supplies.
Desk drawers are a common place to

store pens.

Where is a likely place for an ivy
plant?

A. flower pot
B. shelf
C. windowsill
D. outside
E. sill

Ivy is a climbing plant that thrives
outdoors.

Ivy often grows on walls, fences,
and other surfaces.

Ivy is commonly found growing
outside.

Where is a control room needed to
prevent wide spread disaster?

A. airbase
B. prison
C. mill
D. nuclear plant
E. studio

Nuclear plant is a place where a
disaster can spread widely.

Control room is needed to prevent
widespread disaster in a nuclear

plant.

When a person admits his mistakes,
what are they doing?

A. accident
B. learn to swim
C. thank god
D. feel relieved
E. act responsibly

Admitting mistakes means taking
responsibility for one’s actions.

Taking responsibility is a sign of
acting responsibly.

What do the feathers look like on
birds found in the rainforest?

A. pretty smart
B. singing
C. dark
D. very colourful
E. light

Rainforests are known for their
dense and dark environment.

Dark colors help birds blend in with
their surroundings.

Table 11: Examples of knowledge generated by Llama-3 during the knowledge generation step of ZEBRA. The first
four examples feature explanations that have been deemed to be relevant, factual and helpful by all three human
annotators; the last example features explanations that have been judged to be relevant, factual and harmful by all
three human annotators. The gold answers for the questions are in bold.
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