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Abstract
Algorithmic reasoning tasks that involve com-
plex logical patterns, such as completing Dyck
language, pose challenges for large language
models (LLMs), despite their recent success.
Prior work has used LLMs to generate pro-
gramming language and applied external com-
pilers for such tasks. Yet, when on the fly, it
is hard to generate an executable code with the
correct logic for the solution. Even so, code
for one instance cannot be reused for others,
although they might require the same logic to
solve. We present THINK-AND-EXECUTE, a
novel framework that improves LLMs’ algo-
rithmic reasoning: (1) In THINK, we discover
task-level logic shared across all instances, and
express such logic with pseudocode; (2) In EX-
ECUTE, we tailor the task-level pseudocode to
each instance and simulate the execution of
it. THINK-AND-EXECUTE outperforms several
strong baselines (including CoT and PoT) in di-
verse algorithmic reasoning tasks. We manifest
the advantage of using task-level pseudocode
over generating instance-specific solutions one
by one. Also, we show that pseudocode can
better improve LMs’ reasoning than natural lan-
guage guidance, even though they are trained
with natural language instructions.

1 Introduction

Reasoning in large language models (LLMs) typ-
ically entails analyzing the logical structure un-
derlying a problem and realizing the logic into
a sequence of reasoning steps to derive the final
answer (Zhou et al., 2022a,b; Hao et al., 2023).
In particular, algorithmic reasoning has long been
a formidable challenge for LLMs, as it requires
to scrutinize a complicated reasoning pattern and
to translate it into a long sequence of reasoning
steps (Suzgun et al., 2022; Valmeekam et al., 2022;
Pan et al., 2023; Zelikman et al., 2023).

To improve the reasoning capabilities of LLMs,
prior works have primarily pursued two direc-
tions. The first direction includes enhancing the

reasoning execution step by generating a rationale
in natural language (e.g., Chain-of-Thought (Wei
et al., 2022; Kojima et al., 2022)) or a piece of
code (e.g., Program-of-Thought (Chen et al., 2023),
Program-Aided LMs (Gao et al., 2023)). How-
ever, such approaches perform step-by-step rea-
soning on-the-fly, without a dedicated phase for
planning. This necessitates that the LLM analyze
the logic and execute it within a single inference
call, which constrains its expressiveness. More-
over, when encountering a similar problem, the
LLM should solve it without being able to reuse
the logic previously understood.

The second direction involves explicitly gener-
ating a plan described in natural language (NL)
with LLMs. The plan describes the logic of the
task and the LLM would subsequently concretize
it into a sequence of reasoning steps (e.g., Least-to-
Most (Zhou et al., 2022b), Plan-and-Solve (Wang
et al., 2023)). Yet, as prior works have mentioned,
in our preliminary experiments, we find that NL
might not be the optimal medium to describe the
logic of the problem (Li et al., 2023). In addition,
prior works mostly rely on generating a plan by
observing a single instance, which hinders analyz-
ing the core reasoning pattern shared across similar
instances in a single task (Zhou et al., 2024).

To address these issues, we introduce THINK-
AND-EXECUTE, an algorithmic framework that dis-
covers a logic that reflects the shared reasoning pat-
tern behind a given task, and conducts reasoning
by tailoring the logic into each instance. THINK-
AND-EXECUTE consists of three distinctive steps;
We first ask an LLM to THINK about common rea-
soning patterns of a task by providing it with a few
example questions. Then, the LLM translates the
NL description of the logic in a pseudocode format.
The pseudocode format allows more flexibility in
applying the logic to each instance compared to
programming language such as Python. Finally, in
EXECUTE step, the LLM simulates the execution
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First, let's analyze the statements: 

1. Vina tells the truth. 2. Helene says 
Vina lies. 3. Kandi says Helene tells 
the truth. 4. Jamey says Kandi lies. 5. 
Ka says Jamey lies. From statement 
2, we can infer that Helene lies, 
which means ...... 

...... we can infer that Ka tells the 
truth. Therefore, Ka tells the truth.
 

Therefore, the answer is Yes.

def solution():

    vina = True

    helene = not vina

    kandi = vina

    jamey = not kandi

    ka = not jamey

    

    return ‘Yes’ if ka else ‘No’

solution()


Instance from Web of Lies THINK-and-EXECUTE

Chain-of-Thought Program-of-Thought

>>> Yes

Applied to 

the generated

pseudocode

prompt

Read an given input text and answer the question in the 
input text with "Yes" or "No".


Input Text: 


Vina tells the truth. Helene says Vina lies. Kandi says 
Helene tells the truth. Jamey says Kandi lies. Ka says 
Jamey lies. Does Ka tell the truth?

LLM LLM

LLM

Vina says the truth. Vina tells the truth: True

...... says Kandi lies. Jamey tells the truth: True

Ka says Jamey lies. Ka tells the truth: False

Final answer: No 

def

for in

if
not

else

if else

 (input_text):

    statements, question = extract_information(input_text)

    statements = statements.split( ) ...

    ( , question)

    truth_dict = {}



     statement  statements:

        action = get_action(statement)

        person1, person2 = get_people(statement)

         action == :

            truth_dict[person1] =  truth_dict[person2]

        :

            truth_dict[person1] = truth_dict[person2]

        (f"  says  .  tells the truth: 

")



    person_to_check = get_target_person(question)

    answer =   truth_dict[person_to_check]  

 answer

web_of_lies

", "
“Question: ”

"lies"

'Yes' 'No'



    return

print

print {person1} {person2} {action} {person1}
{truth_dict[person1]}

Use abstract functions to 
express the logic.

Print() statements to output CoT rationales.

Figure 1: An illustration of THINK-AND-EXECUTE, compared with Zero-shot Chain-of-Thought (Kojima et al.,
2022) and Program-of-Thoughts (Chen et al., 2023).

of the task-level pseudocode to follow the logic in
it and predicts the output result of the pseudocode.

Through extensive experiments on 7 algorith-
mic reasoning tasks from Big-Bench Hard (Suz-
gun et al., 2022), we show the effectiveness of
THINK-AND-EXECUTE over the challenging base-
lines. The superior performance of THINK-AND-
EXECUTE over PoT suggests that discovering the
common logic for a given task and applying it to
each instance would be more helpful than writing
instance-specific code for every instance. Note-
worthily, simulating the execution of pseudocode is
shown to improve LMs’ reasoning more than plan-
ning with NL, even though they are trained to fol-
low NL instructions. Furthermore, we empirically
show that the pseudocode prompt discovered by an
LLM can be applied to small LMs (SLMs), such
as CodeLlama-7B, to boost their reasoning abil-
ity. This indicates the efficiency of THINK-AND-
EXECUTE over other code prompting methods that
require the LLM to generate instance-specific code
every time (e.g., PoT).

To summarize, our contributions are as follows:

• We introduce THINK-AND-EXECUTE, a
framework that performs reasoning with a
pseudocode that contains the common logi-
cal structure of a given task.

• We show that THINK-AND-EXECUTE

achieves notable improvements over strong
baselines, including Chain-of-Thought and
Program-of-Thought prompting, across
various algorithmic tasks in Big-Bench Hard.

• We demonstrate that the pseudocode written
by an LLM can be transferred to SLMs, show-
ing the efficiency of our approach.

2 THINK-AND-EXECUTE

In this section, we introduce THINK-AND-
EXECUTE and provide a detailed explanation of
how LLMs perform reasoning with it. We incor-
porate an Instructor LM I and a Reasoner LM R,
for THINK and EXECUTE, respectively. Figure 2
shows the overview of our framework.

2.1 THINK: Describing the Underlying Logic
of a Task in a Pseudocode Format

The goal for the Instructor LM I in this phase
is to discover the underlying logic for solving a
given task t, and generate a prompt describing the
logic, which will be further applied to all instances
of the task (in EXECUTE). This prompt is con-
structed with pseudocode rather than natural lan-
guage, which is used in prior work to guide the LM
to perform step-by-step reasoning (Kojima et al.,
2022; Wang et al., 2023).

Step 1: Constructing a meta prompt. To
prompt the Instructor LM I to generate a task-
level pseudocode for the given target task t, we
provide P of other tasks as demonstrations in a
meta prompt.1 In practice, we construct the meta
prompt with 3 randomly sampled tasks (3 example
questions, analysis, and P for each task) from T

1We manually annotate P for each task in T in advance.
See Appendix B.1 for examples.
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THINK: Task-level Instruction EXECUTE: Instance-level Reasoning

Legend

Instances AnswersI A

Answer 

Pseudocode 
Prompt 

Question 

+

Reasoner
LM

Task 1

Question * 3

...
...

Analysis

Task 2

...

Task 3

Question * 3

Analysis

Pseudocode Prompt Pseudocode Prompt 

Target Task: Web of Lies

Meta prompt

Question * 3

Pseudocode Prompt
def

for in

return

 (input_text):

   

     statement  statements:

        action = get_action(statement)

        

     answer

web_of_lies

Instructor LM Instructor LM

...

Analysis

Building a truthfulness map

Processing statements

: 

Create a map or dictionary to represent the 
relationships between ......


: 

For each statement, update the 
truthfulness map ...... 

Figure 2: An overview of THINK-AND-EXECUTE. In THINK (Top), an LLM analyzes the given task provided in
the meta prompt and generates a pseudocode prompt that describes the necessary logic for solving the task. Then, in
EXECUTE (Bottom), the LLM conducts reasoning for each instance by simulating the execution of the pseudocode
prompt.

as demonstrations and the target task t (3 example
questions without the answers).2

Step 2: Analyzing the target task. Given the
meta prompt, I generates an analysis containing
key reasoning logic that is required to solve the
target task regardless of the instances (questions).
For example, in Figure 2 (Top), the generated anal-
ysis points out that building a truthfulness map and
updating it by processing statements are needed to
solve the task, i.e., Web of Lies. This step guides I
to focus on the reasoning process shared among all
the instances, which would be crucial in making a
task-level prompt.

Step 3: Generating a pseudocode prompt based
on the analysis. Next, based on the analysis,
I writes a prompt P in the form of pseudocode,
which breaks down the necessary reasoning steps
for solving the target task. We choose to use the
pseudocode format over the form of natural lan-
guage plan (Kojima et al., 2022; Wang et al., 2023)
for two main reasons: (1) the efficiency of it in
describing the logic behind a task (e.g., avoid us-

2We use the questions of the examples instances in the
few-shot prompt in Big-Bench Hard.

ing repetitive instructions via for loop), and (2)
the guidance of what and when to generate ratio-
nales via the argument in print() statement and
the location within the execution of code. For
example, in Figure 2, the P contains the state-
ment, print(f"{person1} says {person2} {action}.
{person1} tells the truth: {truth_dict[person1]}"),
which instructs the Reasoner LM to generate a ra-
tionale that is helpful in keep tracking of the truth
map containing the truthfulness of each person, dur-
ing the execution of P . We provide more examples
and detailed explanations in Appendix G.

2.2 EXECUTE: Simulating the Execution of
Pseudocode Prompt for an Instance

The reasoner LM R then conducts reasoning with
the generated pseudocode prompt P , tailoring the
logic in P for the given instance. Following Wei
et al. (2022), we aim to maximize the reasoning
abilities of the LM by instructing them to explicitly
generate intermediate reasoning steps, known as
chain-of-thought (CoT) reasoning. R is instructed
to predict not only the final output result of the
code, but also the intermediate execution outputs as
rationales. Specifically, R predicts a list of outputs
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Reasoner/Method DL GS Nav CO TS SO WL Avg

CodeLlama-7B
Direct Prompting 0.0 9.0 39.0 24.4 4.4 11.2 47.6 19.4
Zero-shot CoT (Kojima et al., 2022) 0.0 16.8 26.0 10.8 20.0 10.4 44.8 18.4
NL Planning 0.0 10.0 52.0 0.4 7.6 18.8 50.4 19.9
Zero-shot PoT (Chen et al., 2023) 0.0 10.0 47.2 23.6 4.4 3.2 45.2 19.1
THINK-AND-EXECUTE 2.0 13.2 70.8 49.6 19.2 22.0 38.8 30.8

CodeLlama-13B
Direct prompting 0.0 3.2 39.0 28.8 0.0 6.8 37.2 16.4
Zero-shot CoT (Kojima et al., 2022) 0.0 24.8 62.4 28.0 21.6 15.6 44.8 28.2
NL Planning 1.2 8.8 24.8 28.8 7.2 17.6 53.6 20.3
Zero-shot PoT (Chen et al., 2023) 1.2 16.4 45.6 38.8 10.8 35.6 20.4 24.1
THINK-AND-EXECUTE 8.0 18.4 70.4 50.4 25.2 32.4 49.6 36.3

GPT-3.5-Turbo
Direct prompting 1.0 33.0 57.0 52.4 41.2 20.0 54.0 36.9
Zero-shot CoT (Kojima et al., 2022) 4.4 46.8 73.2 70.4 44.4 37.6 59.2 48.0
NL Planning 1.2 35.6 58.8 46.8 32.0 40.0 50.4 37.8
Zero-shot PoT (Chen et al., 2023) 0.4 21.2 77.2 45.6 0.4 28.0 54.0 32.4
Chain-of-Code (Li et al., 2023) 2.8 17.6 57.2 26.0 16.8 29.6 46.4 28.1
Plan-and-Solve (Wang et al., 2023) 4.0 41.2 84.8 74.8 52.4 37.2 58.0 50.3
THINK-AND-EXECUTE 6.0 41.6 96.8 72.0 68.0 65.6 72.8 60.4

Table 1: Zero-shot performance of THINK-AND-EXECUTE compared with the baselines on seven algorithmic
reasoning tasks, including Dyck Languages (DL), Geometric Shapes (GS), Navigate (Nav), Reasoning about
Colored Objects (CO), Temporal Sequences (TS), Tracking Shuffled Objectives (SO), and Web of Lies (WL). We
curate these tasks from Big-Bench Hard (Suzgun et al., 2022).

O = {o1, o2, ..., ok} of the pseudocode by simulat-
ing the execution process of P , where oi denotes
the i-th system output from print() statements,
and {o1}k−1

1 are CoT rationales toward the final
answer ok. We assume that tracking intermediate
execution results would benefit R to keep track
of the state of variables while they change over
the execution of the code. We enable R to mimic
the behavior of a compiler with a system mes-
sage “Generate the expected outputs
(from all print() functions) of
the code.”. The final answer for a given
question is outputted with “print("Final
answer:{answer}")” command as the last
system output ok.

3 Experimental Setup

3.1 Datasets
We curate seven algorithmic reasoning tasks from
Big-Bench Hard (Suzgun et al., 2022), includ-
ing: dyck languages; geometric shapes; navi-
gate; reasoning about colored objects; temporal
sequence;tracking shuffled objectives; web of lies.
These are specifically designed to measure the step-
by-step reasoning capability of LLMs. Model per-

formance on evaluated in zero-shot settings, where
we do not provide demonstrations in the prompt.
We provide detailed explanations in Appendix A.5.

3.2 Baselines

We consider the following baselines: (1) Direct
prompting: Directly predicting the answer without
generating any rationales. (2) Zero-shot CoT (Ko-
jima et al., 2022): A setting where LLMs are
evoked to generate the reasoning steps with “Let’s
think step by step”, before the answer. (3) Zero-
shot PoT (Chen et al., 2023): A setting where an
LLM generates an instance-specific Python code
that can be executed with a Python interpreter.
Then, the execution result is used as the final an-
swer. (4) NL planning: A variation of THINK-
AND-EXECUTE, where the task-level plan is gener-
ated in natural language, instead of pseudocode.

3.3 Models

For the Reasoner LM R, we adopt GPT-3.5-
Turbo (OpenAI, 2023), which shows strong perfor-
mance in various reasoning benchmarks and code
generation tasks (Zellers et al., 2019; Cobbe et al.,
2021; Muennighoff et al., 2024), as well as the 7B
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and 13B versions of CodeLlama (Roziere et al.,
2023), which are trained on both code and natural
language corpora and further fine-tuned to follow
natural language instructions. As for the Instructor
LM I, we choose GPT-3.5-Turbo.

4 Results

4.1 THINK-AND-EXECUTE Improves
Algorithmic Reasoning

We start by comparing our framework with direct
prompting and zero-shot CoT (Kojima et al., 2022)
in Table 1. We find that zero-shot CoT performs
better than direct prompting with average improve-
ments of 11.1% with GPT-3.5-Turbo, respectively,
suggesting zero-shot CoT to be a strong baseline.
Our THINK-AND-EXECUTE, however, further out-
performs both of them significantly regardless of
model sizes, which indicates that explicitly gener-
ating a plan is a more effective way to improve the
LLM’s reasoning than simply encouraging LLMs
to generate their intermediate reasoning steps.

4.2 Task-level Pseudocode Prompts Benefits a
Wider Range of Algorithmic Reasoning
Tasks than Instance-specific Python Code

In Table 1, PoT shows performance gains in some
tasks over direct prompting (e.g., Navigate; Track-
ing Shuffled Objects) with Python code generated
specifically for each instance and the correspond-
ing interpreter output as the answer. However, such
improvement is difficult to generalize to all tasks,
e.g., 0.4% accuracy in both Dyck Language and
Temporal Sequences, with GPT-3.5-Turbo. By con-
trast, THINK-AND-EXECUTE outperforms PoT and
direct prompting in all tasks with GPT-3.5-Turbo.
This suggests that making the task-level strategy
with pseudocode and applying it to each instance
can benefit LLM’s reasoning in a wider range of al-
gorithmic reasoning tasks than generating instance-
specific Python codes.

4.3 The Logic Discovered by an LLM can be
Transferred to SLMs

We further explore if the pseudocode prompt writ-
ten by an LLM (i.e., GPT-3.5-Turbo as the in-
structor) can be applied to smaller LMs: the
CodeLlama family in Table 1. When applying
the pseudocode prompts generated by GPT-3.5-
Turbo, CodeLlama-7B and -13B significantly out-
perform direct prompting. Moreover, THINK-AND-
EXECUTE with CodeLlama-13B shows compara-

Method Avg

w/o Analysis 21.8
THINK-AND-EXECUTE 60.4

Table 2: Ablation on Step2 of THINK phase.

ble performance with GPT-3.5-Turbo with PoT and
direct prompting.

4.4 Pseudocode Better Describes the Logic for
Solving a Task than Natural Language

We also compare our approach with NL planning,
a variant of ours that utilizes natural language to
write the task-level instruction, instead of pseu-
docode. In practice, we provide human-written NL
plans that contain a similar amount of information
to P in the meta prompt and use it to generate the
task-level NL plan for the given task. Surprisingly,
although the LMs are fine-tuned to follow natural
language instructions, we find that task-level pseu-
docode prompts can boost their performance more
than NL plans (Table 1).

4.5 Ablation Studies

Components of the pseudocode prompt. We
conduct an ablation study on each component of
the pseudocode prompt. For that, we prepare four
types of pseudocode prompts: (1) Human-written
pseudocode; (2) Human-written prompt w/o com-
ments and semantics by removing the comments
that explain the code and replacing variable names
with meaningless alphabets, such as X, Y, and Z;
(3) Human-written prompt w/ for loop and (4) w/
intermediate print() statements. The results are
in Figure 3. Model performance decreases signifi-
cantly when applying prompts w/o comments and
semantics, especially in Temporal Sequences. This
implies that semantics play an important role in
guiding the LLMs to apply the discovered logic
and reasoning with it accordingly. Also, we find
that printing out the intermediate execution steps
with print() is crucial in reasoning, which is
consistent with the finding from Wei et al. (2022).

Generating the analysis before the pseudocode
prompt. Table 2 shows a notable decrease in
model performance when generating pseudocode
prompts without conducting the analysis first. This
suggests that explicitly generating analysis on the
task can elicit a better pseudocode prompt that con-
tains the necessary logic for solving the task.

22475



0

20

40

60

80

temporal sequences tracking shuffled 
objectives

reasoning about 
colored objects

navigate

w/o intermediate print() w/o comments & semantics w/o for loop Human-written pseudocode

Figure 3: Ablation study of the components of pseudocode prompt using GPT-3.5-Turbo.

Method Avg

Self-Discover w/ GPT-4 77.9
THINK-AND-EXECUTE w/ GPT-4 81.7

Table 3: Comparison of THINK-AND-EXECUTE and
Self-Discover (Zhou et al., 2024) using GPT-4 on Big-
Bench Hard. The results of Self-Discover are obtained
from the original paper, because the code and prompts
are not provided. The full results are in Appendix A.4.

4.6 Comparison with other Baselines

We further compare THINK-AND-EXECUTE with
another three baselines: (1) Plan-and-Solve (Wang
et al., 2023), where an LLM sequentially gener-
ates a natural language plan for solving the given
instance, step-by-step reasoning according to the
plan, and the final answer; (2) Chain-of-Code (Li
et al., 2023), where Python code is generated as
a part of intermediate reasoning steps specifically
for a given instance; (3) Self-Discover (Zhou et al.,
2024), a concurrent work that devises a task-level
reasoning structure in a JSON format before infer-
encing the instance. First, as presented in Table 3
(Left), we find THINK-AND-EXECUTE largely out-
performs Plan-and-Solve and Chain-of-Code by
10.9 and 32.3 percentage points in terms of accu-
racy, respectively. Second, while Self-Discover
also incorporate task-level instruction, in Table 3
(Right), our THINK-AND-EXECUTE with pseu-
docode prompts shows better performance when
using GPT-4 (Achiam et al., 2023).3 These findings
indicate that generating (1) task-level instruction
with (2) pseudocode can better represent the nec-
essary logic for solving a task and benefit LLM’s

3We use gpt-4-0613 for GPT-4.

algorithmic ability.

5 Analysis

We conduct experiments to address the following
research questions:

• RQ1: Is task-level pseudocode more helpful
than instance-specific pseudocode?

• RQ2: Does pre-training on code corpora im-
prove reasoning?

• RQ3: How is the quality of the logic discov-
ered by THINK-AND-EXECUTE compared to
human-written logic?

5.1 Implementing the Underlying Logic is
more Effective than Instance-specific
Logic in Pseudocode (RQ1)

We conduct an analysis to check if the improve-
ment of THINK-AND-EXECUTE is contributed
by our chosen format for the task-level instruc-
tion, i.e., pseudocode. We compare THINK-AND-
EXECUTE with a concurrent work, Chain-of-Code
(CoC) (Li et al., 2023). In Table 1, THINK-AND-
EXECUTE outperforms CoC, showing about 2x im-
provement in the average score. The main differ-
ence between THINK-AND-EXECUTE and CoC is
that we use pseudocodes which are generated to
express logic shared among the tasks instances,
while CoC incorporates pseudocode as part of the
intermediate reasoning steps towards the solution
of a given instance. Hence, the results indicate the
advantages of applying pseudocode for the genera-
tion of task-level instruction by re-using them over
solely using them as a part of the rationales.
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Figure 4: Analysis on the effect of code pre-training on the reasoning capability in applying THINK-AND-EXECUTE.
Without pre-training on code corpora the accuracies drop notably.

Reasoner/Method DL GS Nav CO TS SO WL Avg

CodeLlama-7B
Human-written P 2.4 0.0 40.4 29.6 12.0 18.0 52.8 22.2
THINK-AND-EXECUTE 2.0 13.2 70.8 49.6 19.2 22.0 38.8 30.8

CodeLlama-13B
Human-written P 2.8 14.8 72.8 40.4 16.8 15.6 49.6 30.4
THINK-AND-EXECUTE 8.0 18.4 70.4 50.4 25.2 32.4 49.6 36.3

GPT-3.5-Turbo
Human-written P 12.4 50.0 86.0 50.8 84.0 32.4 74.4 55.7
THINK-AND-EXECUTE 6.0 41.6 96.8 72.0 68.0 65.6 72.8 60.4

Table 4: Comparison between THINK-AND-EXECUTE and Human-written P .

5.2 THINK-AND-EXECUTE Requires
Knowledge in Code (RQ2)

To understand whether SLMs acquire the ability
to understand the task-level logic written in pseu-
docode during pre-training on code corpora, we
compare the performance of CodeLlama-13B with
Llama-13B using THINK-AND-EXECUTE. In Fig-
ure 4, CodeLlama-13B shows better reasoning
capabilities compared to Llama-13B in all tasks.
These results suggest that the improvement from
using THINK-AND-EXECUTE could depend on the
knowledge of code, which is usually obtained by
pre-training with code corpora. Writing code usu-
ally involves understanding the logic behind the
given problem and expecting the execution results
of a code, which resemble the same reasoning pro-
cess of THINK-AND-EXECUTE.

5.3 Models Prefer Pseudocode from
THINK-AND-EXECUTE Compared to
Human’s (RQ3)

To gauge LLMs’ capabilities in discerning the
underlying logic of a task, we compare THINK-
AND-EXECUTE (using GPT-3.5-Turbo as the In-

structor) with human-written pseudocode prompts.
The results are shown in Table 4. Using the GPT-
3.5-Turbo the Reasoner, THINK-AND-EXECUTE

scores 60.4% in terms of accuracy, which is supe-
rior to the human-written P (with an accuracy of
55.7%). Especially, in the tasks of Navigate and
Tracking Shuffled Objectives, pseudocode prompts
generated by THINK-AND-EXECUTE elicit better
performance. This also holds true when adopting
CodeLlama-7B and -13B as the Reasoner, further
suggesting the effectiveness of our THINK step over
human prompt engineers.

5.4 Impact of LLMs’ Capability on
THINK-AND-EXECUTE

In examining the impact of LLMs’ capabilities
within our framework, we investigate the influ-
ence of both the Reasoner and Instructor compo-
nents on performance, as depicted in Table 5. No-
tably, higher accuracy scores are observed when
utilizing GPT-3.5-Turbo as Reasoners compared to
CodeLlama-13B and CodeLlama-34B. Addition-
ally, the effectiveness of the Instructor also plays
a crucial role, with GPT-3.5-Turbo exhibiting the
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Reasoner Instructor

CodeLlama-13B CodeLlama-34B GPT-3.5-Turbo

CodeLlama-13B 30.9 33.0 36.4
CodeLlama-34B 32.5 34.2 39.1
GPT-3.5-Turbo 33.9 35.9 60.4

Table 5: Analysis of the effect of the capability of Reasoner and Instructor on the performance. We report the
average performance on the 7 tasks.

Method Generating P Reasoning with P
Chain-of-Code N ∗ C1 N ∗ C2

Ours 1 ∗ C1 N ∗ C2

Table 6: Number of tokens used by THINK-AND-
EXECUTE for each step of pseudocode generation
(Think, denoted as C1) and reasoning with pseudocode
(Execute, denoted as C2).

Figure 5: Analysis on the computational efficiency of
THINK-AND-EXECUTE on the 7 algorithmic reasoning
tasks. The dotted line denotes the Pareto frontier.

highest accuracy scores across all configurations.
These results underscore the significance of both
the Reasoner and Instructor components in enhanc-
ing the performance of THINK-AND-EXECUTE.

5.5 THINK-AND-EXECUTE is cost-effective by
re-using the generated pseudocode

We analyze the computational efficiency of THINK-
AND-EXECUTE. First, we analytically calculate the
amount of token usage by breaking our framework
into two steps, i.e., Think (Section 2.1) and Exe-
cute (Section 2.2). We denote the number of token
usage for each step as C1 and C2, respectively. As
we show in Table 6, our task-level approach is N
times efficient in pseudocode generation, as we re-
use the generated prompt for shared task instances.

In addition, we empirically measure the token
usage and compare it with task performance. The
results are shown in Figure 5. While THINK-AND-

Method Accuracy

CoT 8.7
PoT 12.6
NL Planning 9.7
Chain-of-Code 14.6
Plan-and-Solve 4.9
THINK-AND-EXECUTE 25.7

Table 7: Results on SayCan, a task designed for plan-
ning in robotics. The baselines are zero-shot settings.

EXECUTE requires more token usage compared
to the baselines, such as CoT and PoT, we would
like to highlight that our method remains competi-
tive when considering both performance and cost.
When plotting accuracy against cost per instance,
our approach sits at the pareto-front, indicating an
optimal trade-off between these factors. Thus, we
believe THINK-AND-EXECUTE remains a viable
option, particularly in scenarios where performance
takes precedence over cost.

5.6 Application to Planning in Robotics

We investigate whether THINK-AND-EXECUTE

can be applied to real-world tasks that require logi-
cal reasoning. As a demonstrative experiment, we
apply THINK-AND-EXECUTE on SayCan, where
the task is to generate plans (i.e., a sequence of
actions) for robots. This task requires LLMs to
generate actions that robots can operate, thus it re-
quires meeting some constraints (i.e., action space).
We use the same meta prompt and follow the
same pipeline as our main experiments in Sec-
tion 4. We shot the results in Table 7. We find that
THINK-AND-EXECUTE generates more accurate
plans compared to the baselines by incorporating
task-level pseudocode prompts. The results suggest
a possibility that Think-and-Execute can be applied
to real-world tasks.
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6 Related Work

Chain-of-Thought (CoT) prompting. CoT
prompting evokes LMs to generate intermediate
reasoning steps that guide and explain the solution
toward the final answer (Wei et al., 2022; Wang
et al., 2022; Wu et al., 2023). One common
paradigm of this is zero-shot CoT prompt-
ing (Kojima et al., 2022). Without specifically
designed question-explanation-answer triplets as
demonstrations, zero-shot CoT prompting elicits a
plausible reasoning path towards the final answer
with simple instruction, such as "Let’s think
step-by-step", eliciting better model performance
in tasks that require multi-step reasoning.

In the context of improving zero-shot CoT, Wang
et al. (2023) propose to first generate a plan break-
ing down the target task into smaller subtasks, and
then solve each subtask according to the plan. Sim-
ilar to our approach, a concurrent work (Zhou et al.,
2024) devises a task-level reasoning structure that
can be applied to each instance (question) of the tar-
get task. The most significant distinction between
these prior studies and ours is that our THINK-
AND-EXECUTE adopts pseudocode (as opposed
to natural language) to express the necessary logic
for solving the task. We demonstrate that our task-
level pseudocode prompt empowers LMs with bet-
ter ability of zero-shot reasoning than natural lan-
guage plans under various settings in Section 5.

Incorporation of code in reasoning. With un-
ambiguous syntax and strict structure, program-
ming languages such as Python have been applied
to LLM-based systems to improve system perfor-
mance in solving tasks. For instance, Gao et al.
(2023) and Chen et al. (2023) use LLMs to gener-
ate Python code for given mathematical questions,
and run the generated code on external compilers
to obtain/calculate the answers.

Besides, there has been a line of work on im-
proving LLMs’ capabilities with pseudocode (Ze-
likman et al., 2023; Mishra et al., 2023). Con-
currently with our work, Li et al. (2023) present
chain-of-code (CoC), where pseudocode is also in-
corporated along with the Python code for solving
a given question (instance). While this approach
generates instance-specific code as intermediate
reasoning steps for each individual instance, our
THINK-AND-EXECUTE, by contrast, focus on the
task-level pseudocode prompt that can be applied
to all instances. We compare CoC and THINK-
AND-EXECUTE in Section 4. Another concurrent

work (Weir et al., 2024), inspired by our study,
delves into training LLMs that are specialized to
generate task-level pseudocodes.

7 Conclusion

In this paper, we present THINK-AND-EXECUTE,
an algorithmic reasoning framework that generates
a logic for solving the given task into a pseudocode
and performs reasoning by simulating the execution
of the pseudocode with language models. Through
extensive experiments, we show the effectiveness
of THINK-AND-EXECUTE, over the strong base-
lines. These results underscore not only the useful-
ness of pseudocode in eliciting language models’
reasoning capabilities but also the efficiency of our
framework in discovering the high-quality logic
behind a given task.

8 Limitations and Discussion

A possible limitation of our approach is that we
focus on algorithmic reasoning, as we believe it
is the best setting to assess LLMs’ capabilities in
understanding complex logic and carrying out a
sequence of reasoning step, following the logic.
However, we believe that THINK-AND-EXECUTE

can be applied to other domains of reasoning that re-
quire following a long sequence of reasoning steps,
such as multi-hop reasoning (Ji et al., 2020) and
symbolic reasoning (Madaan and Yazdanbakhsh,
2022). As an example of these tasks, we conduct
a demonstrative experiment in Section 5.6 and we
find that THINK-AND-EXECUTE also can applied
to real-world tasks opening up new possibilities
for complex reasoning in diverse practical appli-
cations. Lastly, our framework requires a set of
human-annotated meta prompts for pseudocode
generation, but we believe that the provided meta
prompt can be a promising starting point.
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A Experimental Details

A.1 Models
We use several LLMs, including GPT-3.5-Turbo
(OpenAI, 2023) and GPT-4 (Achiam et al., 2023),
which are available via OpenAI API4, and open-
source LLM, CodeLlama (Roziere et al., 2023) as
the Instructor LM I and the Reasoner LM R.

• GPT-3.5-Turbo: gpt-3.5-turbo-0125

• GPT-4: gpt-4-0613

• CodeLlama: CodeLlama encompasses varia-
tions of LLaMA2 fine-tuned for code domains
using code corpus. This comprehensive col-
lection features models of various sizes (7B,
13B, 34B, and 70B) and diverse types, in-
cluding the foundation model, Python-focused
model, and instruction-following model. In
our study, we employ the CodeLlama-Instruct
model (7B5, 13B6).

A.2 Inference
We use vLLM to improve inference throughput.7

During our experiments, we adopt temperature sam-
pling with T = 0.0 (i.e., greedy decoding) to ef-
ficiently generate outputs. For a task comprising
250 instances, GPT-3.5-Turbo achieves an infer-
ence time of 30 seconds. Additionally, utilizing 2
A100 GPUs, CodeLlama achieves inference times
of approximately 2 and 5 minutes for 7B and 13B
models, respectively.

A.3 Evaluation
To extract answers for evaluation, LLMs gener-
ate the final answer triggered by the phrase "Final
answer: ". Following Suzgun et al. (2022), we
provide all multiple-choice options to LLMs as
input, then measure accuracy using exact match
(EM), which compares the generated output with
the ground-truth label. To ensure fair comparison
between PoT and other baselines, we also admit the
prediction that includes the text of correct choice,
e.g., blue, but without a choice tag, e.g., "(A)".

A.4 Experimental Results
We provide the full result of comparison with Self-
Discover (Zhou et al., 2024).

4https://openai.com/blog/openai-api
5https://huggingface.co/codellama/

CodeLlama-7b-Instruct-hf
6https://huggingface.co/codellama/

CodeLlama-13b-Instruct-hf
7https://github.com/vllm-project/vllm

A.5 Datasets

We take 7 algorithmic benchmarks from Big-Bench
Hard (Suzgun et al., 2022) dataset. All datasets
contain 250 examples respectively. We provide the
descriptions of each dataset regarding the goals and
contexts.

• Dyck Languages (DL): Complete a partially
given Dyck-4 sequence by predicting the nec-
essary sequence of closing brackets that are
missing at the end.

• Geometric Shapes (GS): Determine the ge-
ometric figure formed by following all the
instructions in a specified SVG path element
containing several commands.

• Navigate (Nav): Evaluate whether a set of
directional commands will return a navigator
to the starting point.

• Reasoning about Colored Objects (CO):
Given a scenario, deduce the color of a spe-
cific object placed on a surface, using the pro-
vided context for guidance.

• Temporal Sequences (TS): Examine a
chronology of a person’s daily activities to
find when they could fit an additional activity
into their schedule.

• Tracking Shuffled Objectives (SO): Ascer-
tain the final positions of several objects after
they have been moved from their original lo-
cations through a sequence of exchanges. We
use the version of the task with 5 objectives.

• Web of Lies (WL): Assess the veracity of a
Boolean function presented within a narrative
problem to establish its truthfulness.

B Details of THINK-AND-EXECUTE

B.1 Human-annotation on the Tasks in the
Task Pool

Please see Appendix D for human-written pseu-
docode prompts.

B.2 Components of a Pseudocode Prompt

We highlight some components of code prompt
that would be helpful in describing the underlying
reasoning logic.
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Reasoner/Method DL GS Nav CO TS SO WL Avg

Self-Discover 77.0 60.0 90.0 79.0 100.0 68.0 71.0 77.9
THINK-AND-EXECUTE 55.6 72.8 70.0 96.0 97.2 99.6 88.4 82.8

Table 8: Comparison between THINK-AND-EXECUTE and Self-Discover (Zhou et al., 2024) using GPT-4.

• Conditional branch: To allow the reasoning
model to take different reasoning paths based
on the condition, we use if and else state-
ment to describe the logic.

• Loop: We can efficiently present repetitive
instructions that iterate over a list of items by
using loops, such as for and while loop.

• Abstraction: In programming, we can encap-
sulate a complex logic into a single function.
Focusing on this, we adopt modular design in
constructing pseudocode prompts by encapsu-
lating complex and repetitive process into an
abstract function.

• Variables: Variables are essential in program-
ming languages as they store data values to
execute instructions. Similarly, in reasoning,
keeping track of variables is crucial for main-
taining state, passing data, and for general
data manipulation tasks.

• Comments and docstrings: As human pro-
grammers can rely on the assistance of com-
ments to better understand codes, we provide
more detailed explanations on the intent of
code via comments. Also, comments and doc-
strings can compensate the limitation when
some semantics cannot be directly expressed
with programming language.

B.3 Comparison to Related Work

Table 9 summarizes some related approaches to
ours.

Method Granularity of plan/logic Use of pseudocode Transferability to SLMs

Plan-and-Solve (Wang et al., 2023) Instance-level
Self-Discover (Zhou et al., 2024) Task-level
Chain-of-Code (Li et al., 2023) Intance-level
THINK-AND-EXECUTE (this work) Task-level

Table 9: A comparison of THINK-AND-EXECUTE to
closely related prior approaches.

C Prompts Used in Our Experiments

C.1 Meta Prompt for generating an analysis
(THINK: Step 2).

Generate an explanation, analyzation,
and plan to generate code prompt for
the last task considering the example
task instances. Your plan should show
enough intermediate reasoning steps
towards the answer. Construct the plan
as much as you can and describe the
logic specifically. When constructing
the plan for the code prompt, actively
use 'if else statement' to take
different reasoning paths based on the
condition, 'loop' to efficiently
process the repititive instructions, '
dictionary' to keep track of
connections between important variables
.

[Example 1]
Example task instances:
{example_instances_of_task1}

Output format:
{output_format_of_task1}

Explanation:
{analysis_of_task1}

...

[Example 4]
Example task instances:
{example_instances_of_target_task}

Output format:
{output_format_of_target_task}

Explanation:

C.2 Meta Prompt for pseudocode prompt
genration (THINK: Step 3).

Generate the code prompt for the last
task using the similar style of the
example codes. Add enough print()
functions following the provided steps
in the provided explanation to output
intermediate reasoning steps towards
the answer and keep track of important
variables. Implement the code prompt as
much as you can and describe the logic
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in code following the provided
explanation but do not make a code that
is biased toward a single task example
instance. For example, do not use hard
-coded variables that are obtained from
task instances (e.g., using specific
name of person in the question). The
code prompt must be able to be applied
to various instances of same task. When
returning the final answer, carefully
consider the output format. Especially,
for the multiple choice questions, the
final answer should be one of the
given options. The main function name
should be '{function_name}'. Along with
the main function, you may want to
define some helper functions that might
be helpful for implementing the '{
function_name}'. But you don't have to
explicitly implement the helper
functions, but just define them with
function name and a single-line
explanation in comment. When
constructing the main function, ...

[Example 1]
Task description:
{description_of_task1}

Example task instances and the code
usage:
{
example_task_instances_and_code_usages_of_target_task
}

Format of the Final answer:
{output_format_of_task1}

Explanation:
{analysis_of_task1}

Code prompt:
{code_prompt_of_task1}

...

[Example 4]
Task description:
{description_of_target_task}

Example task instances and the code
usage:
{
example_task_instances_and_code_usages_of_target_task
}

Format of the Final answer:
{output_format_of_target_task}

Explanation:
{analysis_of_target_task}

Code prompt:

C.3 Prompt for NL Planning

Generate a plan for the last task
considering the example task instances.
Your plan should show enough
intermediate reasoning steps towards
the answer. Construct the plan as much
as you can and describe the logic
specifically.

[Example 1]
Task description:
{description_of_task1}

[Example 1]
Example task instances:
{example_instances_of_task1}

Output format:
{output_format_of_task1}

Plan:
{analysis_of_task1}

...

[Example 4]
Example task instances: {
example_instances_of_target_task}

Output format:
{output_format_of_target_task}

Plan:

C.4 Prompt for EXECUTE phase

{prompt}
input_text = "{input_text}"
final_answer = {function_name}(
input_text)
print("Final answer:"+ final_answer)
Generate the expected execution output
(output from all print() functions) of
the code. You don't have to actually
run the code and do not care about 'not
implemented error'.

C.5 Prompt for evaluating Direct Prompting

{prompt}
text for the task: {input_text}
Final answer should be at the end of
your answer and its format should be
like "Final answer: your_answer".
Generate output following the task
description above.
Output:
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C.6 Prompt for evaluating Zero-shot CoT

{prompt}
text for the task: {input_text}
Final answer should be at the end of
your answer and its format should be
like "Final answer: your_answer".
Generate output following the task
description above.
Output:
Let's think step by step.

C.7 Prompt for evaluating Zero-shot PoT

You will write python program to solve
the below problem. You will only write
code blocks. Your python promgram must
be executable and returns the right
answer for the problem.

Q: {question}

# solution using Python:

def solution():
"""{question}"""

C.8 Prompt for evaluating Plan-and-Solve

{prompt}
text for the task: {input_text}
Final answer should be at the end of
your answer and its format should be
like "Final answer: your_answer".
Generate output following the task
description above.
Output:
Let's first understand the problem and
devise a plan to solve the problem.
Then, let's carry out the plan and
solve the problem step by step.

D Human-written Pseudocode Prompts

D.1 Human-written P of Dyck Languages

def complete_dyck_languages(input_text)
:

# Step 1: Initialize a stack to
keep track of open parentheses and
split the input text to identify and
define all types of open parentheses in
the text.

stack = []
character_list = input_text.split()
open_to_close_parenthesis_dict = {"

(": ")", "<": ">", "{": "}", "[": "]"}
opening_parenthesis = ["(", "<", "{

", "["]

print(f"Parse characters in the
input and initialize a stack to track
of open parentheses. \nCurrent stack: {
stack}. Parsed characters: {
character_list}")

# Step 2: Through iteration over
the input characters, identify opening
parentheses among the input characters
and add them to the stack.

print("Check if a character is an
opening parenthesis while iterating
over the input characters.")

for char in character_list:
if char in opening_parenthesis:

print(f"
Iteration {i+1}: Current character {
char} is an opening parenthesis.")

stack.append(char)
print(f"Thus, we append {

char} to the stack. Current stack after
insertion: {', '.join(stack)}")

# Step 3: For each open
parentheses, find the corresponding
closing parentheses and close the open
parentheses.

else:
print(f"Iteration {i+1}:

Current character {char} is not an
opening parenthesis.\n Thus we delete
the last item {stack[-1]} from the
stack\n current stack before deletion:
{" ".join(stack)} -> updated stack
after deletion: {' '.join(stack[:-1])
if stack else 'empty'}")

stack.pop() # Remove the
last added open parentheses assuming a
correct match.

# Step 4: Generate the sequence of
closing parentheses based on remaining
open parentheses in the stack.

print(f"The resulting stack is {'
'.join(stack)}.")

print(f"We will need to pop out {'
'.join(stack[::-1])} one by one in that
order.")

closing_list = [parentheses_pairs[
opening] for opening in stack[::-1]]

# Step 5: Output the completed
sequence. Generate the input sequence
concatenated with the generated closing
sequence of parentheses, ensuring a
well-formed structure.

return " ".join(closing_list)

D.2 Human-written P of Geometric Shapes

def recognize_shape_from_svg(input_text
):

# Step 1: Get the SVG path data
from the input text and generate the
extracted SVG path.
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paths = parse_path(input_text)
print("SVG paths:\n ", paths)

# Step 2: Initialize a coordinate
map that maps each coordinate with the
other connected coordinates and the
connection type.

coordinate_map = dict()

# Step 3: Update the coordinate map
referring to the each SVG path.

for i, path in enumerate(paths):
coordinate_map =

update_coordinate_map(coordinate_map,
path)

print(f"Step {i} - path: {path},
updated coordinate map: {coordinate_map
}")

# Step 4: Conduct calculation to
analyze each characteristic of the
shape.

analysis_results_dict =
analyze_characteristics(coordinate_map)

print(f"Anlysis results: {
analysis_results_dict}")

# Step 5: Identify a geometric
shape with reasons using the completed
coordinates map and the analysis
results.

reason_for_the_decision,
name_of_the_shape =
identify_shape_with_explanation(
coordinate_map, analysis_results_dict)

print(f"Reason for the decision: {
reason_for_the_decision}")

print(f"Thus, the shape of the path
is {name_of_the_shape}.")

# Step 6: Find the corresponding
option from the given options and only
output the label of the option as the
final answer to the question.

options = parse_options(input_text)
print(f"Options: {options}")
answer = None
for option in options:
if name_of_the_shape in option:
answer = option[:3]

return answer

D.3 Human-written P of Navigate

def ends_up_at_start(input_text):
# Step 1: Initialize coordinates

and direction by setting the starting
point at (0, 0) and face north.

cur_x, cur_y = 0, 0
cur_direction = 0

# Step 2: Identify and list up
instructions from the input text.

instructions = parse_instructions(
input_text)

# Step 3: Process each instruction
and update the current coordinates and
direction. In order to keep track of
changes, output the instruction,
current and updated coordinates and
direction.

for i, instruction in enumerate(
instructions):

new_x, new_y, new_direction =
process_instruction(instruction, cur_x,
cur_y, cur_direction) # process
instruction to calculate new position
and direction

print(f"Step {i}: {instruction}
- current coordinates: ({cur_x}, {
cur_y}), current direction: {
cur_direction} -> updated coordinates:
({new_x}, {new_y}), updated direction:
{new_direction}")

cur_x, cur_y, cur_direction =
new_x, new_y, new_direction

# Step 4: Return "yes" if the final
coordinates are (0, 0). Otherwise,
return "no" as the final answer.

return 'yes' if cur_x == 0 and
cur_y == 0 else 'no'

D.4 Human-written P of Reasoning about
Colored Objects

def solve_colored_objects(input_text):
# Step 1: Start by identifying the

objects along with their associated
properties, such as color and spatial
positioning from the input text. Show
the list of objects.

objects_list = extract_objects(
input_text)

print("Objects and their properties
:", objects_list)

# Step 2: Identify the specific
question asked. Determine whether the
question is about identifying the color
of a specific object, counting objects
of a certain color, or reasoning about
the spatial arrangement of objects and
output the question type.

question = extract_question(
input_text)

print("Question specifics:",
question)

# Step 3: Identify and list up
available options provided in the input
text.

options = input_text.split("\n")
[-5:]

# Step 4: Process according to the
question type and show what the
question type is:
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# If the question is about
identifying color, identify and ouput
the target object the question is
asking for the color of. Determine and
output its color.

if question['type'] == '
identify_color':

print("Question type is =
identify_color")

print(f"Identifying color for:
{question['details']}")

target_object = target(
objects_list, question['details'])

print(f"The question is asking
for the color of : {target_object}")

pre_answer = extract_color(
target_object, question['details'])

print(f"Identified color: {
pre_answer}")

# If the question is about counting
objects, identify and ouput the
objects the question is asking for the
number of. Go through each object in
the list in steps and count each object
. Show the counting steps. Output the
final number of objects that meet the
specified criteria (e.g., a specific
color).

elif question['type'] == '
count_objects':

print("Question type is =
count_objects")

print(f"Counting objects for: {
question['details']}")

print("Total iterations:", len(
objects_list))

for i, object in enumerate(
objects_list):

single_object_count =
count_single_object(object, question['
details'])

intermediate_count +=
single_object_count

print(f"Step ({i}) - {
object}: {single_object_count},
Intermediate count: {intermediate_count
}")

pre_answer = count_objects(
objects_list, question['details'])

print(f"Objects count: {
pre_answer}")

# If the question is about spatial
reasoning, identify and ouput the
relative positions the question is
asking for. Arrange the objects from
left to right and output the order.
Determine the relative positions of
objects and output the result.

elif question['type'] == '
spatial_reasoning':

print("Question type is =
spatial_reasoning")

print(f"Applying spatial
reasoning for: {question['details']}")

arranged_object =
arrange_from_left_to_right(objects_list

)
print(f"Arraged objects: {

arranged_object})
pre_answer = spatial_reasoning(

arranged_object, question['details'])
print(f"Spatial reasoning

result: {pre_answer}")

# Step 5: Recall the identified
options and match the outcome of Step 4
(the identified color, the count of
objects, or the result of spatial
reasoning) with the provided options to
determine the correct answer.

answer = find_correct_option(
pre_answer, options)

# Step 6: Return the final answer
chosen at Step 5.

return answer

D.5 Human-written P of Temporal Sequences

def solve_temporal_sequences_quiz(
input_text):

# Step 1: Identify statements and
options from the input_text and output
the statements.

statement_text, option_text =
input_text.split("\nOptions:\n")

parts = statement_text.split("\n")
statements = parts[1:-2]
options = option_text.split("\n")
print("Statements:", statements)

# Step 2: Check the start and end
of the possible time.

print("Start of the possible time:
", parts[0])

print("End of the possible time: ",
parts[-2])

# Step 3: Initialize an available
time map with the time slots in the
options and output it. The time slots
are marked as 'free' initially.

available_time_map = {option[4:]: "
free" for option in options}

print(f"Initial available time
dictionary: {available_time_map}")

# Step 4: Sequentially go through
each statement, marking the times when
the individual was seen or known to be
engaged in specific activities. In this
step, you should generate the target
time slots and the updated available
time map according to the statement.

for i, statement in enumerate(
statements):

event, time_span =
extract_information(statement)

print(f"\nStep {i}: {statement}
")
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print(f"current time occupation
: {available_time_map}")

print(f"Time span to be
occupied: {time_span}")

available_time_map[time_span] =
"not available"

print(f"updated time occupation
: {available_time_map}")

# Step 5: By checking the available
time map, identify which time slot is
marked as 'free'. For each time slot,
output the time slot is free or not
available.

for key in available_time_map:
if available_time_map[key] == "

free":
print(f"{key} is free.")
free_time = key

else:
print(f"{key} is not

available.")
# Step 6: Review the provided

options and return the one that matches
the identified free time slot in Step
5.

print(f"Options:\n{option_text}")
for option in options:

if free_time in option:
return option

D.6 Human-written P of Tracking Shuffled
Objectives

def track_swaps(input_text):
# Step 1: Identify Initial State.

Begin by identifying and outputing the
initial state of all objectives (e.g.,
who holds which ball or who is dancing
with whom) from the input text before
any swaps happen.

state_dict = find_initial_state(
input_text)

print(f"Initial state: {state_dict}
")

# Step 2: Identify and output the
sequences of swaps from the input text.
Each swap should be understood in
terms of who exchanges with whom.

swap_sequences_list =
find_swap_sequences(input_text)

print("Swap sequences: ",
swap_sequences_list)

print("Total iterations: ", len(
swap_sequences_list))

# Step 3: Carry out the swaps. For
each swap in swap sequences,
sequentially update and output the
current status of objectives by
exchanging them between the two
participants involved in the swap.

for i, sequence in enumerate(
swap_sequences_list):

player1, player2 =
extract_player(sequence)

state_dict[player1], state_dict
[player2] = state_dict[player2],
state_dict[player1]

print(f"({i}) {sequence} -> {
state_dict}")

Step 4: Understand the Question.
After processing all swaps, identify
what the question is asking for in the
input text and output the question.

question = extract_question(
input_text)

print("Question:", question)

Step 5: Analyze Options. Examine
and output the provided options in the
input text.

options = input_text.split("\n")
[-5:]

print("Options:", options)

Step 6: Determine the Correct
Option. Using the updated state after
all swaps, determine which option
correctly answers the question and
output the answer.

answer = find_correct_option(
question, options, state_dict)

return answer

D.7 Human-written P of Web of Lies

def evaluate_boolean_word_problem(
input_text):

# Step 1: Divide the input text
into individual statements and the
final question. Output each statements.

statements = input_text.split("")
[:-1]

question = input_text.split("")[-1]
print("Parsed statements:",

statements)

# Step 2: Create a Truth Map to
keep track of the assumed truthfulness
of each person mentioned in the
statements. No truth values are
assigned initially.

truth_map = {statement.split()[0]:
None for statement in statements}

# Step 3: Analyze Each Statement.
For each statement, first output the
statement number and the statement.
identify the subject person (who makes
the statement), the object person (who
the statement is about), and the
expected truth value (whether the
object person is said to tell the truth
or lie). Output the current statement
under analysis along with the object
person and the expected truth value for
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clarity.
for i, statement in enumerate(

statements):
print(f"({i}): {statement}")
speaker, target_person,

expected_truth_value_of_target_person =
extract_person_and_truth_value(
statement) # speaker - says -
target_person -
expected_truth_value_of_target_person

print(f"{speaker} says : {
target_person} - {
expected_truth_value_of_target_person}"
)

print(f"Truth value of {
target_person}: {truth_map[
target_person]}")

# Step 4: Update the Truth Map
based on the analysis of each statement
. If the statement's claim aligns with
the current assumption about the object
person's truthfulness, mark the
subject person as truthful. Otherwise,
mark them as untruthful. After each
update, print the name of the person
being updated, their determined truth
value, and the updated truth map to
track changes.

if truth_map[target_person] ==
None: # if the statement does not need
to be checked

print(f"{
expected_truth_value_of_target_person}
matches {truth_map[target_person]}")

truth_map[target_person] =
expected_truth_value_of_target_person

else:
print(f"{

expected_truth_value_of_target_person}
does not match {truth_map[target_person
]}")

if truth_map[target_person]
==
expected_truth_value_of_target_person:
# the speaker tells the truth

truth_map[speaker] =
True

else: # the speaker lies
truth_map[speaker] =

False

print(f"Person to update: {
speaker} - {truth_map[speaker]}")

print(f"updated truth_map: {
truth_map}")

print("\n\n")

# Step 5: Using the completed truth
map, determine the truthfulness of the
person in the final question. Output
the question for reference before
making the determination.

print("question:", question)
target_person_in_question =

extract_target_person_from_question(

question)
target_truth_value = truth_map[

target_person_in_question]
print(f"{target_person_in_question

}: {target_truth_value})

# Step 6: Based on the evaluation,
output "Yes" if the person in the final
question is determined to tell the
truth, otherwise output "No".

answer = "Yes" if
target_truth_value else "No"

return answer

E Generated Analyses

E.1 Generated Analysis of Dyck Languages

Explanation:
This task involves completing a
sequence of parentheses to ensure they
are closed properly. The challenge is
to understand the nesting structure of
the parentheses and add the appropriate
closing brackets to match each opening
bracket.

Analyzing the Task:
1. Parentheses Matching: Each opening
parenthesis should have a corresponding
closing parenthesis to ensure the
sequence is valid.

2. Nested Parentheses: The parentheses
can be nested within each other, so it'
s crucial to maintain the correct
nesting structure.

3. Proper Closure: The goal is to add
the necessary closing brackets to
complete the sequence and make sure all
parentheses are closed properly.

Constructing the Code Prompt:
1. Parsing Input: Extract the sequence
of parentheses from the input text.

2. Stack Implementation: Use a stack
data structure to keep track of the
opening parentheses that need closing.

3. Iterating Over the Sequence: Iterate
over each character in the sequence
and push opening parentheses onto the
stack.

4. [Important] Closing Parentheses:
When encountering a closing parenthesis
, pop the corresponding opening
parenthesis from the stack to ensure
proper closure.

5. Generating Output: After processing
the entire sequence, the stack should
be empty if all parentheses are closed
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properly. If not, add the necessary
closing brackets to match the remaining
opening brackets.

6. Returning the Result: Output the
generated closing brackets as a string,
separated by spaces, to complete the
sequence.

E.2 Generated Analysis of Geometric Shapes

Explanation:
This task involves analyzing SVG path
elements to determine the shape that is
being drawn. The path elements consist
of a series of commands that define
the movements and curves in the SVG
image. By understanding these commands
and their implications, we can identify
the shape being drawn.

Analyzing the Task:
1. SVG Path Commands: The SVG path
element contains commands like M (move
to), L (line to), A (arc), etc., each
of which contributes to the overall
shape being drawn.

2. Interpreting Path Commands: Each
command in the path element corresponds
to a specific action, such as moving
to a point, drawing a line, or creating
an arc. Understanding these commands
is crucial to identifying the shape.

3. Recognizing Geometric Shapes:
Different combinations of path commands
result in different geometric shapes
like circles, triangles, rectangles,
etc. We need to match the commands to
the shapes they represent.

Constructing the Code Prompt:
1. Parsing SVG Path Element: Extract
the path commands from the SVG path
element provided in the task. This
involves splitting the string and
identifying each command.

2. Processing Path Commands: Iterate
over each command in the path element
and execute the corresponding action.
This involves:
- Moving to a new point (M command).
- Drawing a line to a point (L command)
.
- Drawing an arc (A command).
- Other commands as necessary.

3. [Important] Tracking Coordinates:
Keep track of the coordinates as the
path commands are executed. This
involves updating the current position
based on the commands.

4. Determining the Shape: After
processing all commands, analyze the
resulting path to determine the shape
being drawn. This can be done by
comparing the final path with the
characteristics of known shapes.

5. Matching with Provided Options:
Compare the identified shape with the
options provided in the task to select
the correct answer.

6. Returning the Result: Return the
identified shape as the output in the
specified format ('(A)', '(B)', '(C)',
...).

By following these steps and accurately
interpreting the SVG path commands, we
can determine the shape being drawn
and select the correct option from the
given choices.

E.3 Generated Analysis of Navigate

Explanation:
This task involves following a series
of instructions related to movement and
direction to determine if the final
position is the same as the starting
point. The challenge lies in accurately
tracking the movements and rotations
to deduce the final position.

Analyzing the Task:
1. Movement Tracking: Keep track of the
steps taken in each direction (forward
, backward, left, right) to determine
the final position.

2. Directional Changes: Account for any
rotations (turning left or right) that
may alter the orientation during
movement.

3. Spatial Reasoning: Apply logical
reasoning to calculate the final
position based on the cumulative effect
of the movements and rotations.

Constructing the Code Prompt:
1. Extracting Instructions: Parse the
input text to extract the sequence of
movements and rotations.

2. Processing Movements:
- Initialize variables to track the

current position (x, y coordinates) and
orientation (direction faced).

- Iterate over each instruction,
updating the position and orientation
accordingly.

3. [Important] Determining the Final
Position:
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- Calculate the final position based
on the cumulative effect of movements
and rotations.

- Check if the final position
matches the starting point to determine
if the participant returns to the
starting point.

4. Matching with Options: Compare the
final position with the starting point
to determine if the participant returns
to the starting point.

5. Returning the Final Answer: Output '
Yes' if the participant returns to the
starting point, 'No' otherwise.

E.4 Generated Analysis for Reasoning about
Colored Objects

Explanation:
This task involves identifying specific
attributes of items based on their
descriptions and positions relative to
each other. The task requires careful
reading of the descriptions and
analyzing the spatial relationships
between the items.

Analyzing the Task:
The task involves interpreting the
descriptions of items and their spatial
relationships to answer specific
questions. This task does not require
variable tracking but rather a free
format reasoning approach to extract
the necessary information and make
logical deductions.

Constructing the Code Prompt:

1. Parse the descriptions: Extract the
descriptions of items and their colors
from the input text.

2. Identify the spatial relationships:
Determine the positions of items
relative to each other based on the
descriptions provided.

3. [Free format reasoning] Derive the
answer with explanation: Analyze the
descriptions and spatial relationships
to answer the specific question posed
in the task. Use a function like '
derive_answer_with_explanation' to
provide both the reasoning and the
correct answer.

4. Match the answer with the options:
Compare the derived answer with the
given options and select the correct
one.

5. Return the final answer: Output the
final answer in the specified format.

By following these steps, the task can
be effectively solved by reasoning
through the descriptions and spatial
relationships of the items provided in
the task instances.

E.5 Generated Analysis of Temporal
Sequences

Explanation:
This task involves determining the
possible time intervals during which a
person could have visited a specific
location based on the given schedule of
events throughout the day. The goal is
to identify the time frames that are
not conflicting with other activities.

Analyzing the Task:
1. Establishing the Timeline:
Understanding the sequence of events
and the times at which they occurred is
crucial for determining the available
time slots.

2. Identifying Conflicting Activities:
Recognizing the time intervals during
which the person was engaged in other
activities that would prevent them from
visiting the specified location.

3. Determining Possible Visitation
Times: By eliminating conflicting time
intervals, the remaining time slots
represent the possible visitation times
.

Constructing the Code Prompt:
1. Extracting Event Information: Parse
the given schedule of events to extract
the times at which each activity
occurred. This may involve creating a
data structure to store this
information.

2. Identifying Conflicting Time
Intervals: Determine the time intervals
during which the person was occupied
with other activities that would
prevent them from visiting the
specified location.

3. [Important] Calculating Available
Time Slots: By subtracting the
conflicting time intervals from the
total day duration, identify the time
frames during which the person could
have visited the specified location.

4. Matching with Options: Compare the
possible visitation times with the
provided options to determine the
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correct answer.

5. Returning the Correct Option: Return
the letter corresponding to the time
interval that matches the calculated
possible visitation times.

This task involves a logical deduction
process based on the given schedule of
events to determine the feasible time
intervals for visiting the specified
location. By systematically analyzing
the timeline and eliminating
conflicting activities, the correct
answer can be identified. The solution
should provide a clear and accurate
assessment of the available time slots
for the visitation.

E.6 Generated Analysis of Tracking Shuffled
Objectives

Explanation:
This task involves tracking the
positions or gifts of individuals as
they swap with each other in a sequence
of exchanges. The challenge is to keep
track of the swaps accurately and
determine the final position or gift of
a specific individual at the end of
the sequence.

Analyzing the Task:
1. Initial Assignments: Understanding
the starting positions or gifts of each
individual is crucial for tracking the
swaps accurately.

2. Pairwise Swaps: Identifying the
pairs of individuals who swap positions
or gifts at each step in the sequence.

3. Tracking Changes: Keeping a record
of the swaps and updating the positions
or gifts of individuals accordingly.

Constructing the Code Prompt:
1. Initialize Positions or Gifts: Set
up a dictionary mapping each individual
to their initial position or gift.

2. Define Swap Pairs: Create a list of
tuples representing the pairs of
individuals who swap positions or gifts
at each step.

3. [Important] Process Swaps: Iterate
over the swap pairs, update the
positions or gifts of the individuals
involved in each swap. Use an if-else
statement to handle different swap
scenarios.

4. Determine the Final Position or Gift
: After processing all swaps, identify

the final position or gift of the
specified individual.

5. Match and Output the Answer: Parse
the options from the input text, find
the corresponding option from the given
options, and only output the label of
the option as the final answer to the
question.

E.7 Generated Analysis of Web of Lies

Explanation:
This task involves determining the
truthfulness of a statement made by one
individual based on the statements
made by others in a chain. The task
requires understanding the
relationships between truth-tellers and
liars and applying logical reasoning
to determine the final answer.

Analyzing the Task:
1. Establishing Truth Relationships:
Each person's statement about another
person can be categorized as either
true or false. This forms the basis of
determining who tells the truth and who
lies.

2. Propagating Truthfulness: By
analyzing the statements in a
sequential manner, the truthfulness of
each person can be deduced based on the
statements made by others.

3. Identifying the Final Question: The
task usually asks whether a specific
person tells the truth or not based on
the chain of statements.

Constructing the Code Prompt:
1. Parsing Statements: Extract the
statements made by each person from the
input text. This involves identifying
who is talking about whom and whether
they are telling the truth or lying.

2. Establishing Truth Relationships:
Create a dictionary to store the
truthfulness of each person based on
the statements made by others. This
dictionary will be updated as the
statements are processed.

3. [Important] Analyzing Statements:
Iterate over each statement and update
the truthfulness of the individuals
involved based on the logic that if A
says B lies, then A is telling the
truth if B is a liar, and vice versa.
This step involves logical reasoning
and updating the truth dictionary.

4. Extracting the Final Question:
Identify the specific question asked in
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the input text regarding the
truthfulness of a particular person.

5. Determining the Answer: Based on the
final truthfulness of the person in
question as determined by the logic and
the statements provided, select 'Yes'
if the person tells the truth and 'No'
if they do not.

By following these steps and applying
logical reasoning to the statements
provided, the code can accurately
determine whether the specified
individual tells the truth or not.

F Generated Pseudocode Prompts

F.1 Generated P of Dyck Languages

def complete_dyck_languages(input_text)
:

# Step 1: Parse the input text to
extract the sequence of parentheses.

parentheses_sequence =
extract_parentheses(input_text)

print("Parentheses sequence:",
parentheses_sequence)

# Step 2: Initialize a stack to
keep track of opening parentheses that
need closing.

stack = []

# Step 3: Iterate over each
character in the sequence to handle
opening and closing parentheses.

for i, char in enumerate(
parentheses_sequence):

if char in ['(', '[', '{', '<'
]:

stack.append(char)
print(f"Step ({i}) - Pushed

{char} to stack")
elif char in [')', ']', '}', '>

']:
if len(stack) == 0:

print(f"Step ({i}) - No
matching opening bracket for {char}")

else:
opening_bracket = stack

.pop()
print(f"Step ({i}) -

Matched {opening_bracket} with {char}")

# Step 4: Check if the stack is
empty after processing the entire
sequence.

if len(stack) > 0:
print("Remaining unmatched

brackets in stack:", stack)
# Step 5: Generate the

necessary closing brackets to match the
remaining opening brackets.

closing_brackets =
generate_closing_brackets(stack)

print("Generated closing
brackets:", closing_brackets)

else:
print("All brackets are

properly matched.")

# Step 6: Return the generated
closing brackets as the final answer.

return closing_brackets

F.2 Generated P of Geometric Shapes

def recognize_shape_from_svg(
svg_path_element):

# Step 1: Parse the SVG path
element to extract the path commands.
Output the extracted path commands.

path_commands =
extract_path_commands(svg_path_element)

print("Extracted path commands:",
path_commands)

# Step 2: Process each path command
to execute the corresponding action.
Keep track of the coordinates as the
commands are executed.

current_position = (0, 0)
for command in path_commands:

action, coordinates =
process_path_command(command,
current_position)

print(f"Executing command: {
command} - Action: {action} - New
coordinates: {coordinates}")

current_position = coordinates

# Step 3: Determine the shape based
on the processed path commands. This
involves analyzing the final path drawn
.

identified_shape = identify_shape(
path_commands)

print("Identified shape:",
identified_shape)

# Step 4: Match the identified
shape with the provided options to
select the correct answer.

options = extract_options(
svg_path_element)

answer = match_shape_with_options(
identified_shape, options)

# Step 5: Return the identified
shape as the final answer.

return answer

F.3 Generated P of Navigate

def ends_up_at_start(input_text):
# Step 1: Extract the sequence of

movements and rotations from the input
text.
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instructions = extract_instructions
(input_text)

print("Instructions:", instructions
)

# Step 2: Initialize variables to
track the current position and
orientation.

x, y = 0, 0
orientation = "N"
print(f"Initial position: ({x}, {y

}), Orientation: {orientation}")

# Step 3: Process each instruction
to update the position and orientation
accordingly.

for instruction in instructions:
x, y, orientation =

process_instruction(instruction, x, y,
orientation)

print(f"Instruction: {
instruction} -> Position: ({x}, {y}),
Orientation: {orientation}")

# Step 4: Determine the final
position after following all
instructions.

final_position = (x, y)
print("Final Position:",

final_position)

# Step 5: Check if the final
position matches the starting point to
determine if the participant returns to
the starting point.

if final_position == (0, 0):
return 'Yes'

else:
return 'No'

F.4 Generated P for Reasoning about Colored
Objects

def solve_colored_objects(input_text):
# Step 1: Extract the descriptions

of items and their colors from the
input text.

items = parse_items(input_text)
print("Items on the surface:\n",

items)

# Step 2: Determine the positions
of items relative to each other based
on the descriptions provided.

spatial_relationships =
analyze_spatial_relationships(items)

print("Spatial relationships
between items:\n",
spatial_relationships)

# Step 3: Derive the answer with
explanation by analyzing the
descriptions and spatial relationships.

question = identify_question(
input_text)

print("The question is:", question)
reason, answer =

derive_answer_with_explanation(items,
spatial_relationships, question)

print("Reasoning for the answer:",
reason)

# Step 4: Compare the derived
answer with the given options and
select the correct one.

options = extract_options(
input_text)

print("Answer options:\n", options)
final_answer = None
for option in options:

if answer in option:
final_answer = option[:3]
break

# Step 5: Return the final answer.
return final_answer

F.5 Generated P of Temporal Sequences

def solve_temporal_sequences_quiz(
input_text):

# Step 1: Extract event information
from the input text to understand the
timeline of activities throughout the
day.

events_list = extract_events(
input_text)

print("Events and their timings:",
events_list)

# Step 2: Identify conflicting time
intervals when the person was engaged
in other activities that would prevent
them from visiting the specified
location.

conflicting_intervals =
find_conflicting_intervals(events_list)

print("Conflicting time intervals:"
, conflicting_intervals)

# Step 3: Calculate the available
time slots by subtracting conflicting
intervals from the total day duration.

available_intervals =
calculate_available_intervals(
conflicting_intervals)

print("Available time intervals for
visitation:", available_intervals)

# Step 4: Match the available time
slots with the provided options to
determine the correct answer.

options = input_text.split("\n")
[-5:]

# Step 5: Return the correct option
corresponding to the time interval
that aligns with the calculated
possible visitation times.

answer = find_correct_option(
available_intervals, options)
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return answer

F.6 Generated P of Tracking Shuffled
Objectives

def track_swaps(input_text):
# Step 1: Initialize Positions or

Gifts
initial_assignments =

extract_initial_assignments(input_text)
print("Initial assignments:",

initial_assignments)

# Step 2: Define Swap Pairs
swap_pairs = extract_swap_pairs(

input_text)
print("Swap pairs:", swap_pairs)

# Step 3: Process Swaps
final_assignments =

initial_assignments.copy()
for pair in swap_pairs:

if pair[0] in final_assignments
and pair[1] in final_assignments:

temp = final_assignments[
pair[0]]

final_assignments[pair[0]]
= final_assignments[pair[1]]

final_assignments[pair[1]]
= temp

print(f"After swapping {pair
[0]} and {pair[1]}: {final_assignments}
")

# Step 4: Determine the Final
Position or Gift

final_person =
identify_final_person(input_text)

final_position = final_assignments[
final_person]

print(f"The final position or gift
of {final_person} is: {final_position}"
)

# Step 5: Match and Output the
Answer

options = extract_options(
input_text)

print("Options:", options)
answer = None
for option in options:

if final_position in option:
answer = option[:3]

return answer

F.7 Generated P of Web of Lies

def evaluate_boolean_word_problem(
input_text):

# Step 1: Identify the statements
and the question from the input text.

statements, question = input_text.
split("?")

statements = statements.split(". ")
print("Statements:", statements)
print("Question:", question)

# Step 2: Initialize a truth
dictionary to keep track of who tells
the truth and who lies.

truth_dict = {}

# Step 3: Process each statement to
update the truth dictionary based on
the logic provided.

for statement in statements:
person1, action, person2 =

statement.split(" ")
if action == "lies":

truth_dict[person1] = not
truth_dict[person2]

else:
truth_dict[person1] =

truth_dict[person2]
print(f"{person1} says {person2

} {action}. {person1} tells the truth:
{truth_dict[person1]}")

# Step 4: Determine the
truthfulness of the person in question
based on the truth dictionary.

person_to_check = question.split("
")[-2]

answer = 'Yes' if truth_dict[
person_to_check] else 'No'

return answer

G Qualitative Analysis

We conduct a qualitative analysis by comparing the
outputs of our approach (THINK-AND-EXECUTE)
with those of the baseline methods. This compar-
ison is presented across Tables10,11,12,13,14,15,
and 16.

22495



Example Instance Complete the rest of the sequence, making sure that the parentheses are closed properly. Input: ( { {
} }

Ground truth Answer )

Method Output

Direct Prompting Final answer: { } ) (Wrong)

Zero-shot Prompting Step 1: ( { { } } )
Step 2: ( { { } } )
Therefore, the answer is } (Wrong)

PoT def solution():
stack = []
sequence = "( { { } }"

for char in sequence:
if char == "(" or char == "{":

stack.append(char)
elif char == ")" and stack[-1] == "(":

stack.pop()
elif char == "}" and stack[-1] == "{":

stack.pop()

for char in stack:
if char == "(":

sequence += ")"
elif char == "{":

sequence += "}"

return sequence

solution()
»> ( { { } }) (Wrong)

NL Planning Step 1: Opening brackets in the input sequence: ( { {
Step 2: Corresponding closing brackets:
( -> )
{ -> }
{ -> }
Step 3: Closing brackets in order: ) } }

Final answer: ) } } (Wrong)

Ours Bracket sequence: [’(’, ’{’, ’{’, ’}’, ’}’]
Step 0 - bracket: (
Updated stack: [’(’]
Step 1 - bracket: {
Updated stack: [’(’, ’{’]
Step 2 - bracket: {
Updated stack: [’(’, ’{’, ’{’]
Step 3 - bracket: }
Updated stack: [’(’, ’{’]
Step 4 - bracket: }
Updated stack: [’(’]
Rest of sequence: )
Stack is not empty. The sequence is not properly balanced.
Final answer: ) (Correct)

Table 10: A comparison of results for Dyck Languages between the baseline methods and THINK-AND-EXECUTE.
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Example Instance This SVG path element <path d="M 38.00,62.00 L 48.00,60.00 L 51.00,49.00 L 54.00,60.00 L
65.00,62.00 L 54.00,64.00 L 51.00,74.00 L 48.00,64.00 L 38.00,62.00"/> draws a Options: (A)
circle (B) heptagon (C) hexagon (D) kite (E) line (F) octagon (G) pentagon (H) rectangle (I) sector
(J) triangle

Ground truth Answer (F) octagon

Method Output

Direct Prompting Final answer: (C) hexagon (Wrong)

Zero-shot Prompting The given SVG path forms a shape with 8 sides, which is a hexagon.
Therefore, the answer is (C) hexagon. (Wrong)

PoT def solution():
return "C) hexagon"

solution()
»> C) hexagon (Wrong)

NL Planning Step 1: Identify the SVG Path Element. The given SVG path element is
<path d="M 38.00,62.00 L 48.00,60.00 L 51.00,49.00 L 54.00,60.00 L 65.00,
62.00 L 54.00,64.00 L 51.00,74.00 L 48.00,64.00 L 38.00,62.00"/>

Step 2: Analyze the Path Data. The path data commands used are ’M’
for move to and ’L’ for line to. The sequence of points mentioned are
(38.00,62.00), (48.00,60.00), (51.00,49.00), (54.00,60.00), (65.00,62.00),
(54.00,64.00), (51.00,74.00), (48.00,64.00), (38.00,62.00).

Step 3: Determine the Shape. Based on the sequence of points and
movements, the shape drawn appears to be a kite.

Step 4: Match with Options. The shape drawn matches with option (D) kite.

Step 5: Output the Correct Option.
Final answer: (D) kite (Wrong)

Ours Extracted path commands: [’M 38.00,62.00’, ’L 48.00,60.00’, ’L 51.00,49.00’,
’L 54.00,60.00’, ’L 65.00,62.00’, ’L 54.00,64.00’, ’L 51.00,74.00’, ’L 48.00,64.00’,
’L 38.00,62.00’]
Executing command: M 38.00,62.00 - Action: Move to (38.00, 62.00)
- New coordinates: (38.00, 62.00)
Executing command: L 48.00,60.00 - Action: Draw line to (48.00, 60.00)
- New coordinates: (48.00, 60.00)
Executing command: L 51.00,49.00 - Action: Draw line to (51.00, 49.00)
- New coordinates: (51.00, 49.00)
Executing command: L 54.00,60.00 - Action: Draw line to (54.00, 60.00)
- New coordinates: (54.00, 60.00)
Executing command: L 65.00,62.00 - Action: Draw line to (65.00, 62.00)
- New coordinates: (65.00, 62.00)
Executing command: L 54.00,64.00 - Action: Draw line to (54.00, 64.00)
- New coordinates: (54.00, 64.00)
Executing command: L 51.00,74.00 - Action: Draw line to (51.00, 74.00)
- New coordinates: (51.00, 74.00)
Executing command: L 48.00,64.00 - Action: Draw line to (48.00, 64.00)
- New coordinates: (48.00, 64.00)
Executing command: L 38.00,62.00 - Action: Draw line to (38.00, 62.00)
- New coordinates: (38.00, 62.00)
Identified shape: octagon
Final answer: (F) octagon (Correct)

Table 11: A comparison of results for Geometric Shapes between the baseline methods and THINK-AND-EXECUTE.
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Example Instance If you follow these instructions, do you return to the starting point? Take 3 steps. Turn around. Take
5 steps. Turn right. Turn right. Take 1 step. Take 1 step.

Ground truth Answer Yes

Method Output

Direct Prompting Final answer: no (Wrong)

Zero-shot Prompting First, take 3 steps. Then, turn around and take 5 steps in the opposite
direction. After that, turn right twice and take 1 step followed by
another step.
Therefore, the answer is no. (Wrong)

PoT def solution():
x = 0
y = 0
direction = 0 # 0: North, 1: East, 2: South, 3: West

# Take 3 steps
for _ in range(3):

if direction == 0:
y += 1

elif direction == 1:
x += 1

elif direction == 2:
y -= 1

else:
x -= 1

# Turn around
direction = (direction + 2) % 4

# Take 5 steps
...

return x == 0 and y == 0
solution()
»> True (Wrong)

NL Planning Final answer: No (Wrong)

Ours Instructions: [’Take 3 steps’, ’Turn around’, ’Take 5 steps’,
’Turn right’, ’Turn right’, ’Take 1 step’, ’Take 1 step’]
Initial position: (0, 0), Orientation: N
Instruction: Take 3 steps -> Position: (0, 3), Orientation: N
Instruction: Turn around -> Position: (0, 3), Orientation: S
Instruction: Take 5 steps -> Position: (0, -2), Orientation: S
Instruction: Turn right -> Position: (0, -2), Orientation: W
Instruction: Turn right -> Position: (0, -2), Orientation: N
Instruction: Take 1 step -> Position: (0, -1), Orientation: N
Instruction: Take 1 step -> Position: (0, 0), Orientation: N
Final Position: (0, 0)
Final answer: Yes (Correct)

Table 12: A comparison of results for Navigate between the baseline methods and THINK-AND-EXECUTE.
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Example Instance On the floor, there is one mauve cat toy, two purple cat toys, three grey cat toys, two mauve notebooks, three grey notebooks, three burgundy cat toys, and one
purple notebook. If I remove all the notebooks from the floor, how many grey objects remain on it? Options: (A) zero (B) one (C) two (D) three (E) four (F) five
(G) six (H) seven (I) eight (J) nine (K) ten (L) eleven (M) twelve (N) thirteen (O) fourteen (P) fifteen (Q) sixteen

Ground truth Answer (D) three

Method Output

Direct Prompting Final answer: (C) two (Wrong)

Zero-shot Prompting First, let’s count the number of grey objects on the floor before removing the notebooks: - Three grey cat toys - Three grey notebooks Total grey objects before
removing notebooks: 3 (grey cat toys) + 3 (grey notebooks) = 6 grey objects Now, let’s remove the notebooks from the floor: - Two mauve notebooks - Three grey
notebooks - One purple notebook Total notebooks removed: 2 (mauve notebooks) + 3 (grey notebooks) + 1 (purple notebook) = 6 notebooks Now, let’s calculate
how many grey objects remain on the floor after removing the notebooks: Total grey objects before removing notebooks: 6 grey objects Total notebooks removed:
6 notebooks Grey objects remaining on the floor: 6 (total grey objects) - 6 (notebooks removed) = 0 grey objects Therefore, the answer is (A) zero (Wrong)

PoT def solution():
# Total number of grey objects on the floor
total_grey_objects = 3 + 3

# Removing notebooks from the floor
removed_notebooks = 2 + 3

# Number of grey objects remaining on the floor
remaining_grey_objects = total_grey_objects - removed_notebooks

return remaining_grey_objects

solution()
»> 1 (Wrong)

NL Planning Step 1: - Mauve cat toy - Purple cat toys - Grey cat toys - Mauve notebooks - Grey notebooks - Burgundy cat toys - Purple notebook Step 2: - The question asks
about the number of grey objects remaining on the floor after removing all the notebooks. Step 3: - There are three grey cat toys and three grey notebooks on the
floor. Step 4: - After removing all the notebooks, there are three grey cat toys remaining. Step 5: - The answer to the question is (C) two. Final answer: (C) two
(Wrong)

Ours Items on the surface: ’mauve cat toy’: 1, ’purple cat toy’: 2, ’grey cat toy’: 3, ’mauve notebook’: 2, ’grey notebook’: 3, ’burgundy cat toy’: 3, ’purple notebook’:
1 Spatial relationships between items: ’mauve cat toy’: [’floor’], ’purple cat toy’: [’floor’], ’grey cat toy’: [’floor’], ’mauve notebook’: [’floor’], ’grey notebook’:
[’floor’], ’burgundy cat toy’: [’floor’], ’purple notebook’: [’floor’] The question is: how many grey objects remain on it? Reasoning for the answer: After
removing all the notebooks, only the grey cat toys remain on the floor. Answer options: [ ’(A) zero’, ’(B) one’, ’(C) two’, ’(D) three’, ’(E) four’, ’(F) five’, ’(G)
six’, ’(H) seven’, ’(I) eight’, ’(J) nine’, ’(K) ten’, ’(L) eleven’, ’(M) twelve’, ’(N) thirteen’, ’(O) fourteen’, ’(P) fifteen’, ’(Q) sixteen’] Final answer: (D) three
(Correct)

Table 13: A comparison of results for Reasoning about Colored Objects Shapes between the baseline methods and
ours.
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Example Instance Today, Jason went to the movies. Between what times could they have gone? We know that: Jason woke up at 10am. Linda saw Jason getting a coffee at the cafe
from 10am to 3pm. Jennifer saw Jason walking towards the Statue of Liberty from 6pm to 7pm. Sean saw Jason buying a phone at the electronics store from 7pm
to 10pm. The movies was closed after 10pm. Between what times could Jason have gone to the movies? Options: (A) 3pm to 6pm (B) 10am to 3pm (C) 7pm to
10pm (D) 6pm to 7pm

Ground truth Answer (A) 3pm to 6pm

Method Output

Direct Prompting Final answer: (C) 7pm to 10pm (Wrong)

Zero-shot Prompting Jason could have gone to the movies between 7pm to 10pm, as the
movies were closed after 10pm.
Therefore, the answer is (C) 7pm to 10pm (Wrong)

PoT def solution():
possible_times = []

# Jason could have gone to the movies between 3pm to 6pm
if 3 <= 6:

possible_times.append("3pm to 6pm")

# Jason could have gone to the movies between 10am to 3pm
if 10 <= 3:

possible_times.append("10am to 3pm")

# Jason could have gone to the movies between 7pm to 10pm
if 7 <= 10:

possible_times.append("7pm to 10pm")

# Jason could have gone to the movies between 6pm to 7pm
if 6 <= 7:

possible_times.append("6pm to 7pm")

return possible_times

solution()
»> [’3pm to 6pm’, ’7pm to 10pm’, ’6pm to 7pm’] (Wrong)

NL Planning Step 1:
- Jason woke up at 10am.
- Linda saw Jason at the cafe from 10am to 3pm.
- Jennifer saw Jason walking towards the Statue of Liberty from 6pm to 7pm.
- Sean saw Jason at the electronics store from 7pm to 10pm.
- The movies was closed after 10pm.
Step 2:
- The specific question is about the time range for Jason to have gone to the movies.
Step 3:
- Timeline:
- 10am: Jason woke up
- 10am to 3pm: Jason at the cafe
- 6pm to 7pm: Jason walking towards the Statue of Liberty
- 7pm to 10pm: Jason at the electronics store
- After 10pm: Movies closed
Step 4:
- Events placed on the timeline accordingly.
Step 5:
- Possible time range for Jason to have gone to the movies is after 10pm.
Step 6:
- Comparison results:
- Option (A) 3pm to 6pm: Not possible
- Option (B) 10am to 3pm: Not possible
- Option (C) 7pm to 10pm: Possible
- Option (D) 6pm to 7pm: Not possible
Step 7:
- Final answer: Jason could have gone to the movies between 7pm to 10pm. (Option C) (Wrong)

Ours Events and their timings: [(’Jason woke up’, ’10am’), (’Linda saw Jason getting a coffee at the cafe’, ’10am to 3pm’),
(’Jennifer saw Jason walking towards the Statue of Liberty’, ’6pm to 7pm’),
(’Sean saw Jason buying a phone at the electronics store’, ’7pm to 10pm’)]
Conflicting time intervals: [(’10am’, ’3pm’), (’6pm’, ’7pm’), (’7pm’, ’10pm’)]
Available time intervals for visitation: [(’3pm’, ’6pm’)]
Final answer: (A) 3pm to 6pm (Correct)

Table 14: A comparison of results for Temporal Sequences between the baseline methods and THINK-AND-
EXECUTE.
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Example Instance Alice, Bob, Claire, Dave, and Eve are playing a game. At the start of the game, they are each holding a ball: Alice has a orange ball, Bob has a black ball, Claire
has a pink ball, Dave has a white ball, and Eve has a red ball. As the game progresses, pairs of players trade balls. First, Alice and Dave swap balls. Then, Bob
and Claire swap balls. Then, Claire and Dave swap balls. Then, Dave and Bob swap balls. Finally, Alice and Eve swap balls. At the end of the game, Claire has
the Options: (A) orange ball (B) black ball (C) pink ball (D) white ball (E) red ball

Ground truth Answer (A) orange ball

Method Output

Direct Prompting Final answer: (D) white ball (Wrong)

Zero-shot Prompting 1. After Alice and Dave swap balls:
Alice has a white ball,
Bob has a black ball,
Claire has a pink ball,
Dave has an orange ball,
Eve has a red ball.

2. After Bob and Claire swap balls:
...

5. After Alice and Eve swap balls:
Alice has a red ball,
Bob has an orange ball,
Claire has a black ball,
Dave has a pink ball,
Eve has a white ball.

Therefore, the answer is (B) black ball (Wrong)

PoT def solution():
balls = {"Alice": "orange", "Bob": "black", "Claire": "pink",

"Dave": "white", "Eve": "red"}

# Define the swaps
swaps = [("Alice", "Dave"), ("Bob", "Claire"), ("Claire", "Dave"),

("Dave", "Bob"), ("Alice", "Eve")]

# Perform the swaps
for swap in swaps:

temp = balls[swap[0]]
balls[swap[0]] = balls[swap[1]]
balls[swap[1]] = temp

# Return the ball color Claire has at the end
return [key for key, value in balls.items() if value == "pink"][0]

solution()
»> Dave (Wrong)

NL Planning Step 1:
Alice - orange ball
Bob - black ball
Claire - pink ball
Dave - white ball
Eve - red ball

Step 2:
1. Alice and Dave swap balls
2. Bob and Claire swap balls
3. Claire and Dave swap balls
4. Dave and Bob swap balls
5. Alice and Eve swap balls

Step 3:
Alice - white ball
Bob - pink ball
Claire - black ball
Dave - black ball
Eve - orange ball

Step 4:
Final book assignment for Claire: black ball

Step 5:
Options: ...
Step 6: Final answer: (B) black ball (Wrong)

Ours Initial assignments: ’Alice’: ’orange ball’, ’Bob’: ’black ball’, ’Claire’: ’pink ball’, ’Dave’: ’white ball’, ’Eve’: ’red ball’
Swap pairs: [(’Alice’, ’Dave’), (’Bob’, ’Claire’), (’Claire’, ’Dave’), (’Dave’, ’Bob’), (’Alice’, ’Eve’)]
After swapping Alice and Dave: ’Alice’: ’white ball’, ’Bob’: ’black ball’, ’Claire’: ’pink ball’, ’Dave’: ’orange ball’, ’Eve’: ’red ball’
...
After swapping Alice and Eve: ’Alice’: ’red ball’, ’Bob’: ’black ball’, ’Claire’: ’orange ball’, ’Dave’: ’pink ball’, ’Eve’: ’white ball’
The final position or gift of Claire is: orange ball
Options: [(’(A) orange ball’, ’(B) black ball’, ’(C) pink ball’, ’(D) white ball’, ’(E) red ball’]
Final answer:(A) (Correct)

Table 15: A comparison of results for Tracking Shuffled Objectives between the baseline methods and THINK-AND-
EXECUTE.
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Example Instance Vina tells the truth. Helene says Vina lies. Kandi says Helene tells the truth.
Jamey says Kandi lies. Ka says Jamey lies. Does Ka tell the truth?

Ground truth Answer No

Method Output

Direct Prompting Final answer: Yes (Wrong)

Zero-shot Prompting First, let’s analyze the statements:
1. Vina tells the truth.
2. Helene says Vina lies.
3. Kandi says Helene tells the truth.
4. Jamey says Kandi lies.
5. Ka says Jamey lies.

From statement 2, we can infer that Helene lies, which means Vina
actually tells the truth.
From statement 3, we can infer that Kandi tells the truth.
From statement 4, we can infer that Jamey lies.
From statement 5, we can infer that Ka tells the truth.

Therefore, Ka tells the truth.
Therefore, the answer is Yes (Wrong)

PoT def solution():
vina = True
helene = not vina
kandi = vina
jamey = not kandi
ka = not jamey

return ka

solution()
»> True (Wrong)

NL Planning Step 1:
- Vina tells the truth.
- Helene says Vina lies.
- Kandi says Helene tells the truth.
- Jamey says Kandi lies.
- Ka says Jamey lies.
Step 2:

Person Truth-telling status
Vina True
Helene False
Kandi True
Jamey False
Ka False

Step 3:
- Based on Helene’s statement, Vina is lying. Since Vina tells the truth,
Helene is lying.
- Based on Kandi’s statement, Helene tells the truth. Since Helene lies,
Kandi is lying.
- Based on Jamey’s statement, Kandi lies. Since Kandi tells the truth,
Jamey is lying.
- Based on Ka’s statement, Jamey lies. Since Jamey lies, Ka is telling
the truth.
Step 4:

Person Truth-telling status
Vina True
Helene False
Kandi True
Jamey False
Ka True

Step 5:
- Ka tells the truth.
Final answer: Yes (Wrong)

Ours Statements: [’Vina tells the truth’, ’Helene says Vina lies’,
’Kandi says Helene tells the truth’,
’Jamey says Kandi lies’, ’Ka says Jamey lies’]
Question: Does Ka tell the truth
Vina says the truth. Vina tells the truth: True
Helene says Vina lies. Helene tells the truth: False
Kandi says Helene tells the truth. Kandi tells the truth: False
Jamey says Kandi lies. Jamey tells the truth: True
Ka says Jamey lies. Ka tells the truth: False
Final answer: No (Correct)

Table 16: A comparison of results for Web of lies between the baseline methods and THINK-AND-EXECUTE.
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