@inproceedings{heineman-etal-2024-improving,
title = "Improving Minimum {B}ayes Risk Decoding with Multi-Prompt",
author = "Heineman, David and
Dou, Yao and
Xu, Wei",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1255/",
doi = "10.18653/v1/2024.emnlp-main.1255",
pages = "22525--22545",
abstract = "While instruction fine-tuned LLMs are effective text generators, sensitivity to prompt construction makes performance unstable and sub-optimal in practice. Relying on a single {\textquoteleft}best' prompt cannot capture all differing approaches to a generation problem. Using this observation, we propose multi-prompt decoding, where many candidate generations are decoded from a prompt bank at inference-time. To ensemble candidates, we use Minimum Bayes Risk (MBR) decoding, which selects a final output using a trained value metric. We show multi-prompt improves MBR across a comprehensive set of conditional generation tasks, and show this is a result of estimating a more diverse and higher quality candidate space than that of a single prompt. Our experiments confirm multi-prompt improves generation across tasks, models and metrics."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="heineman-etal-2024-improving">
<titleInfo>
<title>Improving Minimum Bayes Risk Decoding with Multi-Prompt</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Heineman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Dou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While instruction fine-tuned LLMs are effective text generators, sensitivity to prompt construction makes performance unstable and sub-optimal in practice. Relying on a single ‘best’ prompt cannot capture all differing approaches to a generation problem. Using this observation, we propose multi-prompt decoding, where many candidate generations are decoded from a prompt bank at inference-time. To ensemble candidates, we use Minimum Bayes Risk (MBR) decoding, which selects a final output using a trained value metric. We show multi-prompt improves MBR across a comprehensive set of conditional generation tasks, and show this is a result of estimating a more diverse and higher quality candidate space than that of a single prompt. Our experiments confirm multi-prompt improves generation across tasks, models and metrics.</abstract>
<identifier type="citekey">heineman-etal-2024-improving</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.1255</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1255/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>22525</start>
<end>22545</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Minimum Bayes Risk Decoding with Multi-Prompt
%A Heineman, David
%A Dou, Yao
%A Xu, Wei
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F heineman-etal-2024-improving
%X While instruction fine-tuned LLMs are effective text generators, sensitivity to prompt construction makes performance unstable and sub-optimal in practice. Relying on a single ‘best’ prompt cannot capture all differing approaches to a generation problem. Using this observation, we propose multi-prompt decoding, where many candidate generations are decoded from a prompt bank at inference-time. To ensemble candidates, we use Minimum Bayes Risk (MBR) decoding, which selects a final output using a trained value metric. We show multi-prompt improves MBR across a comprehensive set of conditional generation tasks, and show this is a result of estimating a more diverse and higher quality candidate space than that of a single prompt. Our experiments confirm multi-prompt improves generation across tasks, models and metrics.
%R 10.18653/v1/2024.emnlp-main.1255
%U https://aclanthology.org/2024.emnlp-main.1255/
%U https://doi.org/10.18653/v1/2024.emnlp-main.1255
%P 22525-22545
Markdown (Informal)
[Improving Minimum Bayes Risk Decoding with Multi-Prompt](https://aclanthology.org/2024.emnlp-main.1255/) (Heineman et al., EMNLP 2024)
ACL