@inproceedings{chowdhury-etal-2024-nearest,
title = "Nearest Neighbor Normalization Improves Multimodal Retrieval",
author = "Chowdhury, Neil and
Wang, Franklin and
Shenoy, Sumedh and
Kiela, Douwe and
Schwettmann, Sarah and
Thrush, Tristan",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1257/",
doi = "10.18653/v1/2024.emnlp-main.1257",
pages = "22571--22582",
abstract = "Multimodal models leverage large-scale pretraining to achieve strong but still imperfect performance on tasks such as image captioning, visual question answering, and cross-modal retrieval. In this paper, we present a simple and efficient method for correcting errors in trained contrastive image-text retrieval models with no additional training, called Nearest Neighbor Normalization (NNN). We show an improvement on retrieval metrics in both text retrieval and image retrieval for all of the contrastive models that we tested (CLIP, BLIP, ALBEF, SigLIP, BEiT) and for both of the datasets that we used (MS-COCO and Flickr30k). NNN requires a reference database, but does not require any training on this database, and can even increase the retrieval accuracy of a model after finetuning."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chowdhury-etal-2024-nearest">
<titleInfo>
<title>Nearest Neighbor Normalization Improves Multimodal Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Neil</namePart>
<namePart type="family">Chowdhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franklin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sumedh</namePart>
<namePart type="family">Shenoy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Douwe</namePart>
<namePart type="family">Kiela</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Schwettmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Thrush</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multimodal models leverage large-scale pretraining to achieve strong but still imperfect performance on tasks such as image captioning, visual question answering, and cross-modal retrieval. In this paper, we present a simple and efficient method for correcting errors in trained contrastive image-text retrieval models with no additional training, called Nearest Neighbor Normalization (NNN). We show an improvement on retrieval metrics in both text retrieval and image retrieval for all of the contrastive models that we tested (CLIP, BLIP, ALBEF, SigLIP, BEiT) and for both of the datasets that we used (MS-COCO and Flickr30k). NNN requires a reference database, but does not require any training on this database, and can even increase the retrieval accuracy of a model after finetuning.</abstract>
<identifier type="citekey">chowdhury-etal-2024-nearest</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.1257</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1257/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>22571</start>
<end>22582</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Nearest Neighbor Normalization Improves Multimodal Retrieval
%A Chowdhury, Neil
%A Wang, Franklin
%A Shenoy, Sumedh
%A Kiela, Douwe
%A Schwettmann, Sarah
%A Thrush, Tristan
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F chowdhury-etal-2024-nearest
%X Multimodal models leverage large-scale pretraining to achieve strong but still imperfect performance on tasks such as image captioning, visual question answering, and cross-modal retrieval. In this paper, we present a simple and efficient method for correcting errors in trained contrastive image-text retrieval models with no additional training, called Nearest Neighbor Normalization (NNN). We show an improvement on retrieval metrics in both text retrieval and image retrieval for all of the contrastive models that we tested (CLIP, BLIP, ALBEF, SigLIP, BEiT) and for both of the datasets that we used (MS-COCO and Flickr30k). NNN requires a reference database, but does not require any training on this database, and can even increase the retrieval accuracy of a model after finetuning.
%R 10.18653/v1/2024.emnlp-main.1257
%U https://aclanthology.org/2024.emnlp-main.1257/
%U https://doi.org/10.18653/v1/2024.emnlp-main.1257
%P 22571-22582
Markdown (Informal)
[Nearest Neighbor Normalization Improves Multimodal Retrieval](https://aclanthology.org/2024.emnlp-main.1257/) (Chowdhury et al., EMNLP 2024)
ACL
- Neil Chowdhury, Franklin Wang, Sumedh Shenoy, Douwe Kiela, Sarah Schwettmann, and Tristan Thrush. 2024. Nearest Neighbor Normalization Improves Multimodal Retrieval. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 22571–22582, Miami, Florida, USA. Association for Computational Linguistics.