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Abstract

This study addresses the challenges of as-
sessing and enhancing social-pragmatic in-
ference in large language models (LLMs).
We first highlight the inadequacy of current
accuracy-based multiple choice question an-
swering (MCQA) formats in assessing social-
pragmatic reasoning, and propose the direct
evaluation of models’ free-form responses as
measure, which correlates better with human
judgment. Furthermore, we explore methods
to improve pragmatic abilities in LLMs, advo-
cating for preference optimization (PO) over
supervised finetuning (SFT), given the absence
of a definitive “gold” answer in social contexts.
Our results show that preferential tuning consis-
tently outperforms SFT across pragmatic phe-
nomena and offers a near-free launch in prag-
matic abilities without compromising general
capabilities. Lastly, we examine the internal
structure of LLMs, revealing that the significant
boost in pragmatic reasoning is tied to deeper
layer representations, analogous to human high-
level thinking. Our experiments span a variety
of pragmatic and social reasoning datasets, as
well as an image referential game requiring a
multimodal theory of mind (ToM). With our
refined paradigms for evaluating and enhanc-
ing pragmatic inference, this paper offers key
insights into building more socially aware lan-
guage models.

1 Introduction

Social-pragmatic inference is a key aspect of hu-
man communication, involving the ability to un-
derstand and respond to implied meanings, inten-
tions, and emotional states behind literal utterances
(Horn, 1972; Grice, 1975; Green, 1998; Carston,
2004), as well as shared social conventions (Goff-
man, 1959). Pragmatics spans a broad range of
phenomena, including implicatures, irony, humor,

*Work done during internship at Peking University.
†Corresponding author.

and metaphor, along with higher-level cognitive
skills like theory of mind (ToM) (Premack and
Woodruff, 1978), which are essential for interpret-
ing non-literal language and context-sensitive mes-
sages. For example, a friend’s statement, It’s chilly
in here, might be a polite request to close a win-
dow, rather than a simple observation about the
temperature.

The importance of social-pragmatic intelligence
in human communication underscores the need for
large language models (LLMs) to develop similar
capabilities in order to interact more naturally with
users. However, current approaches to enhancing
pragmatic abilities in LLMs face two lines of limi-
tations: 1) On the evaluation front, typical methods
rely on measuring classification accuracy on bench-
marks formatted as multiple (if not binary) choice
question answering (MCQA) (Le et al., 2019; Ruis
et al., 2023; Hu et al., 2023; Zhou et al., 2023;
Gandhi et al., 2023; Sravanthi et al., 2024). While
a model might correctly select the option label, it
may still fail to respond pragmatically by itself. For
example (see Fig. 1), a model might pick the right
answer in an MCQA task without fully understand-
ing the social complexity of changing the subject.
Moreover, real-world social interactions seldom
have a single “gold” answer. Relying on accuracy
in selecting predefined responses undermines the
assessment of a model’s true pragmatic capability
in flexible generations. 2) On the side of improving
pragmatic abilities, while inference-time methods
such as few-shot prompt engineering (Moghaddam
and Honey, 2023; Ruis et al., 2023) and external
graph modules (Sclar et al., 2023) have been pro-
posed to improve LLM performance in pragmatic
tasks, little effort has been made to directly invoke
the model’s internal social-pragmatic intelligence,
enabling it to autonomously generate pragmatically
appropriate responses.

In this paper, we propose paradigm shifts on both
fronts: 1) For evaluation, we argue for an open-
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Figure 1: An example of LLM outputs when queried about a social-pragmatic scenario, taken from Hu et al. (2023).
On the right, a LLAMA2-13B-Chat (Touvron et al., 2023) model correctly identifies the gold response ID in the
MCQA format but fails to fully grasp the underlying pragmatic meaning when generating its own response. On the
left, a smaller LLAMA2-7B-Chat model preference-tuned to contrast the gold answer with less pragmatic alternatives,
produces an open-ended response that is equally good and as pragmatically sound as the provided “gold” answer.

ended assessment protocol that directly evaluates a
model’s ability to respond to social scenarios. We
introduce the Length-Normalized Relative Score
(LNRS) that rates a model’s free-form response
relative to the provided “gold” answer, with GPT-4
(OpenAI, 2023) as the judge. This scoring system
is further de-biased to reduce length gameability
(Dubois et al., 2024; Galambosi, 2024). Backed by
human evaluation, our open-ended metric LNRS
is better correlated with human preferences than
MCQA accuracy. 2) For improving LLMs’ prag-
matic inference, we treat the non-selected answer
options in MCQA-formatted datasets not as incor-
rect, but as less pragmatically grounded compared
to the “gold” answer. We use preference optimiza-
tion (PO) objectives, such as DPO (Rafailov et al.,
2024), to finetune LLMs, allowing them to cap-
ture subtle nuances of pragmatic preferences. Our
experiments show that preferential tuning yields
significantly better results than conventional su-
pervised finetuning (SFT) across pragmatic phe-
nomena, with minimal impact on the model’s other
abilities inherited from the base LLM. Addition-
ally, in the multimodal setting of the image refer-
ential game (Corona et al., 2019; Zhu et al., 2021;
Liu et al., 2023) that explicitly requires theory of
mind (ToM) (Premack and Woodruff, 1978), PO
also results in a more capable, ToM-aware vision-
language speaker model, which further demon-
strates its superiority over SFT for enhancing prag-
matic abilities.

To better understand how the internal compo-
nents of a transformer-based LLM (Vaswani et al.,
2017) are responsible for invoking social-pragmatic
abilities, we explored finetuning specific trans-
former layers. Our results indicate that pragmatic
understanding is closely tied to deeper-down layers
in the model, which hints at a potential parallel with
how human pragmatic inference relies on higher-
level cognitive processes.

Overall, the main contributions of this paper are:
• Proposing open-ended evaluation of models’

free-form responses instead of MCQA classifica-
tion for assessing social-pragmatic understanding,
which better aligns with human judgment;

• Proposing preference optimization (PO) over
supervised finetuning (SFT) for improving LLMs’
pragmatic abilities without degrading other core
capabilities, as demonstrated through experiments
across various pragmatic datasets and the multi-
modal theory of mind (ToM) task;

• Providing empirical insights into how only
training deeper layers of LLMs can invoke signifi-
cant gains in pragmatic performance, which poten-
tially mirrors human high-level cognitive thinking.

2 Evaluating Pragmatic Abilities

2.1 Existing Evaluation

Existing works primarily assess a language model’s
pragmatic intelligence through multiple (or binary)
choice question answering (MCQA) tasks. In such
settings, for a given social scenario, the model must
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select an answer from a set of options (Le et al.,
2019; Ruis et al., 2023; Hu et al., 2023; Zhou et al.,
2023; Gandhi et al., 2023; Sravanthi et al., 2024),
and the accuracy of choosing the annotated “gold”
answer is used to gauge the model’s pragmatic
abilities (MCQA-Acc). In recent studies, the way
to elicit a model’s choice from the provided options
can be generally divided into two categories:

• Metalinguistic1 Probing: The model is explic-
itly prompted to choose from a set of answers
linked to symbolic indicators, such as alphabetic
letters (A|B|C|D) (Le et al., 2019; Sravanthi et al.,
2024; Robinson and Wingate, 2023) or numerical
indices (1|2|3|4) (Hu et al., 2023). The model
then generates the corresponding symbol for the
selected option.

• Probability Probing: The model is given the
scenario and question text (context, x), and we
compute the likelihood of the model generating
each answer option yi conditioned on the con-
text. The option with the highest probability is
considered the model’s choice. There are several
normalization techniques for probability calcula-
tion (Brown et al., 2020; Robinson and Wingate,
2023; Holtzman et al., 2021), leading to different
formulations: without normalization: P (yi | x);
with length normalization over j tokens in yi:∑ℓi

j=1 P(y
j
i |x,y1···j−1)
ℓi

; and with normalization by

unconditional answer probability2: P (yi|x)
P (yi|xuncond)

.
These accuracy-based MCQA evaluations have

several key limitations: 1) This format diverges
significantly from real-world social interactions,
where no fixed answer exists. Even the “gold” an-
swer provided in these benchmarks may not be the
best response for a given scenario. For example, the
preference-tuned model’s response in Fig. 1 (left
side) is equally valid from a social and pragmatic
perspective. 2) As noted by Robinson and Wingate
(2023), different models show varying levels of
proficiency in binding an option to its symbol (mul-
tiple choice symbol binding, MCSB), which can
be confused with true pragmatic intelligence, par-
ticularly in the metalinguistic probing approach.
3) Identifying the correct answer option does not
necessarily mean the model understands the social
scenario or can respond in a socially and pragmati-
cally appropriate manner on its own (see the right

1Term adopted from Hu and Levy (2023), also known as
multiple choice prompting in Robinson and Wingate (2023).

2Also referred to as domain conditional point-wise mutual
information by Holtzman et al. (2021).

side of Fig. 1), which is the actual ability desired
for real-world human-LLM interactions.

For these reasons, we argue for a shift in the
evaluation of machine pragmatics towards an open-
ended assessment of the model’s autonomous re-
sponse, while keeping the annotated “gold” answer
as a reference.

2.2 Open-Ended Evaluation
We introduce Length-Normalized Relative Score
(LNRS) to quantitatively assess how well a
model’s own response compares to the provided
“gold” answer. Rather than giving the model a set of
options, we directly obtain its free-form response
to the pragmatic question describing a social sce-
nario. Then, we query GPT-4 (OpenAI, 2023) to
score the model’s response relative to the annotated
“gold” answer.

GPT-4 Judge. We employ GPT-4 as the judge,
because it is the most reliable model available for
robust and human-matching performance across
various social-pragmatic tasks (Gandhi et al., 2023;
Sap et al., 2023; Zhou et al., 2023; Ruis et al., 2023;
Kosinski, 2023). Additionally, GPT-4 has been
widely used in numerous automatic settings, such
as instruction-following evaluations (Chiang et al.,
2023; Li et al., 2023; Dubois et al., 2024, 2023;
Wang et al., 2023a), and even as a “teacher” for
guiding other LLMs in reasoning tasks (Shridhar
et al., 2023; Hsieh et al., 2023). To reduce poten-
tial position bias, we query GPT-4 twice, reversing
the order of the model’s answer and the “gold” an-
swer. The prompt template for querying GPT-4
(gpt-4-1106-preview) is provided in Appx.A.

After parsing GPT-4’s responses into pairs of
scores, we compare the average score of the
model’s response to that of the “gold” answer. For
all test questions T , we compute the Relative Score
(RS) of the model’s response amodel with respect
to the “gold” answer agold as

RS =

∑
q∈T JS(amodel)∑
q∈T JS(agold)

where JS is the GPT-4 judge’s score. This mea-
sures how closely the model’s responses align
with or even surpass the quality of the "gold re-
sponses, reflecting the model’s understanding of
social norms and pragmatic rules.

Length Normalization. Inspired by recent
advancements in LLM evaluation, such as
AlpacaEval-2.0 (Dubois et al., 2024; Galambosi,
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2024), we carefully control for the influence of
response length on GPT-4’s judgment (referred
to as length gameability in Dubois et al. (2024)).
We adopt a logistic length normalization tech-
nique (Galambosi, 2024; Dubois, 2024)3 for our
open-ended evaluation. Specifically, the Length-
Normalized Relative Score (LNRS) adjusts the
RS by applying a temperature-weighted sigmoid
function to the length difference between the
model’s and the “gold” response:

LNRS =

∑
q∈T JS(amodel)∑
q∈T JS(agold)

· σ


 1

τ · T
∑

q∈T
(Len(agold)− Len(amodel))




(1)

where τ is a temperature hyperparameter, and JS
and Len represent the judge’s score and the token
length, respectively.

In §4.1, we empirically demonstrate that LNRS
outperforms MCQA-Acc, showing a stronger cor-
relation with real user preferences, as confirmed by
our human evaluation.

3 Improving Pragmatic Abilities

On top of the open-ended evaluation paradigm that
more closely reflects real-world scenarios, we also
aim to explore how to intrinsically enhance the
social-pragmatic capabilities of LLMs. Different
from previous works (§5) that primarily focus on
adding external modules for better cognitive abil-
ities (Sclar et al., 2023; Takmaz et al., 2023) or
rely on few-shot prompt engineering (Moghaddam
and Honey, 2023; Ruis et al., 2023), our approach
is centered on aligning the model’s intrinsic repre-
sentation toward a more socially and pragmatically
grounded distribution.

Let pθ represent an LLM parameterized by θ. In
our context, pθ takes a question q as input, which
describes a pragmatics-involved social scenario,
and agold is the annotated correct response.

Supervised Finetuning (SFT). The straightfor-
ward approach is to apply SFT using the question
q and the gold answer agold from each MCQA-
formatted data source D. The objective here is
to minimize the negative log-likelihood loss for

3The length control method used in AlpacaEval-2.0
(Dubois et al., 2024) can not be directly applied to our evalua-
tion without prior win-rate data. So we used length normal-
ization that achieves similar performance.

predicting each token in the gold answer agold con-
ditioned on the question q:

LSFT(θ) = −E(q,agold)∼D [logpθ(agold|q)] (2)

While SFT is a simple and widely used method,
it does not allow the model to discern between nu-
anced, socially acceptable responses, but instead
forces the selection of the predefined “gold” an-
swer. This may prevent the model from developing
the pragmatic flexibility needed to handle complex
social scenarios.

Preference Optimization (PO). In social contexts,
there is rarely a single definitive right answer. For
instance, in MCQA-formatted datasets such as the
one in Fig. 1, we might not consider option 3) a
wrong answer, but rather a response that is less so-
cially and pragmatically appropriate than option
4). This nuanced understanding – weighing possi-
ble responses based on their pragmatic soundness
and social appropriateness – is the kind of reason-
ing we aim to instill in the model.

To address this, we turn to the preference op-
timization (PO) paradigm, specifically using the
simplified direct preference optimization (DPO)
objective (Rafailov et al., 2024). Unlike SFT, DPO
does not rely solely on maximizing the likelihood
of the annotated answer. Instead, it focuses on
optimizing the model parameters θ to favor more
desirable responses over less desirable ones.

For each question q, we create pairwise triples
(q, agold, aother), where agold is the provided “gold”
and thus preferred response over any other answer
option aother. Given a data source D, the PO ob-
jective can be formulated as:

LDPO(pθ;pref) =

− E(q,agold,aother)∼D

[
log σ

(
β log

pθ(agold|q)
pref(agold|q)

− β log
pθ(aother|q)
pref(aother|q)

)]
(3)

where σ is the sigmoid function, and β controls the
impact of preference differences.

Compared to SFT, the DPO objective encourages
the model to learn to distinguish between responses
based on their pragmatic preferences, allowing for
more socially grounded reasoning.
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4 Experiments

4.1 Pragmatic Question Answering

Setup. We conducted experiments using four
popular social and pragmatic inference data
sources – SOCIAL-IQA (Sap et al., 2019), PRAG-
MEGA (Floyd, 2022; Hu et al., 2023), LUD-
WIG (Ruis et al., 2023), PUB (Sravanthi et al.,
2024). These datasets cover a wide range of prag-
matic phenomena, including implicature, metaphor,
irony, and various social norms. Tab. 4 summa-
rizes the dataset details. We experimented with
three base LLMs of varying pretraining data and
model sizes: PYTHIA-6.9B-Tulu (Wang et al.,
2023b), LLAMA2-7B-Chat, and LLAMA2-13B-Chat
(Touvron et al., 2023).4 Details of the training con-
figurations are listed in Tab. 5.

Human Evaluation. To further support our ar-
gument for open-ended assessment of pragmatic
abilities, we recruited 12 voluntary human partici-
pants from top educational institutions to evaluate
the quality of different responses. Given a social-
pragmatic context and related question, human
evaluators were presented with four types of re-
sponses (the dataset-annotated “gold” answer, the
base LLM’s response, and responses from DPO-
tuned and SFT-tuned models) in random order.
Evaluators were asked to rank the responses based
on their pragmatic understanding and fitness to the
context scenario. Detailed instructions used for this
study are provided in Appx.B. The ranking of the
four responses was converted into scores, with the
highest-ranked response receiving 4 points, and the
lowest-ranked response receiving 1 point. In to-
tal, we randomly sampled 192 data points with the
corresponding four responses. Each evaluator was
randomly assigned 16 data points for assessment.

Results. Fig. 2, Fig. 5, and Tab. 1 present the
performance of LLMs finetuned with different
paradigms (PO vs. SFT) – evaluated using the
open-ended framework (§2.2), the MCQA format5

(§2.1), and user study (described in the paragraph
above). The results reveal the following patterns:

PO-tuned LLMs consistently outperform
their SFT-trained counterparts, achieving sub-

4We used instruction-tuned chat models as baselines to
ensure they started with reasonable instruction-following abil-
ities, especially considering the limited availability of social-
pragmatic data, which may not be sufficient for general-
purpose alignment tuning.

5We used the length-normalized probability probing vari-
ant in our implementation.

stantial gains in pragmatic inference over the
base models across nearly all configurations
of base models, training data, test sets, and
evaluation paradigms (MCQA/open-ended/human-
eval). There are very few exceptions, such as
the marginally lower LNRS score on the LUD-
WIG_Test set for the PYTHIA-6.9B-Tulu model
DPO-tuned on PUB compared to SFT. Addi-
tionally, in the MCQA setup, the DPO-tuned
LLAMA2-13B-Chat underperforms relative to SFT
on PRAGMEGA_Test, which however contrasts
strongly with human evaluations (Tab. 1), where
the PO version of LLAMA2-13B-Chat is ranked
highest in response quality.

The open-ended evaluation paradigm shows
better alignment with human judgment than
the MCQA results. Tab. 1 clearly demonstrates
that humans prefer responses generated by PO-
tuned models, which are ranked the best (even
surpassing the annotated “gold” answer) for both
LLAMA2 models, and second only to the “gold” an-
swer for PYTHIA. In contrast, SFT-tuned models
receive lower ratings than their base LLMs, indi-
cating that SFT can even degrade pragmatic perfor-
mance. These human evaluation findings resonate
with the LNRS comparisons in Fig. 2, where sim-
ilar trends of PO’s superiority and SFT’s negative
impact on pragmatics are observed.

The PO objective facilitates stronger general-
ization to “out-of-domain” pragmatic phenom-
ena. Our test sets were intentionally designed to
include both “in-domain” data (i.e., similar data
source and phenomena as the training sets, such
as SOCIAL-IQA_Train/_Test) and “out-of-domain”
data (i.e., different data sources and phenomena
from the training sets). We occasionally observe
even greater performance gains for PO on data from
different sources. For example, on the SOCIAL-
IQA_Test set, LLAMA2-13B-Chat DPO-finetuned
on PUB (which focuses on implicature, presuppo-
sition, etc.) even outperforms the version finetuned
on the same social norm dataset.

The PO objective has minimal impact on
other abilities inherited from the base LLMs.
As shown in Tab. 3, across almost all benchmarks
– including professional exams (Hendrycks et al.,
2020; Zhong et al., 2023; Clark et al., 2018), math
(Cobbe et al., 2021), and reading comprehension
(Mihaylov et al., 2018) – models trained with DPO
on pragmatic data consistently outperform their
SFT counterparts, often by significant margins.
This suggests that, despite being finetuned on prag-
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Figure 2: LNRS comparisons across models, data sources, and training paradigms (PO v.s. SFT).

matic datasets, the preference-optimized version
provides a near-free launch of pragmatic abili-
ties, while even improving the various other skills
learned by the base models. On the contrary, the
SFT-tuned models perform far worse in retaining
these inherited abilities.

In addition to the quantitative metric results, we
provide qualitative analyses in Appx.D. In partic-
ular, Tab. 7 presents examples where the model’s
responses are even better than the reference “gold”
answer, as rated by our GPT-4 judge. These ex-
amples support our motivational insight that the
human-annotated “gold” response might not al-
ways be the optimal answer in social-pragmatic
scenarios (§1).

Base Models Base +SFT +PO “Gold”

LLAMA2-7B-Chat 2.75 2.11 2.81 2.34
LLAMA2-13B-Chat 2.44 2.05 2.81 2.72
PYTHIA-6.9B-Tulu 2.33 2.19 2.66 2.83

Table 1: Average human evaluation scores elicited from
our user study ranking different responses (§4.1). The
best and second best results are highlighted.

4.2 Image Referential Game with ToM

In this section, we extend our method for improv-
ing models’ pragmatic inference from the pure
text world (§4.1) to multimodal environments us-
ing large vision-language models (LVLMs). We
focused on the well-established image referential
game task (Zhu et al., 2021; Liu et al., 2023; Tak-
maz et al., 2023), which explicitly requires a theory
of mind (ToM) (Premack and Woodruff, 1978) – a

key aspect of social-pragmatic capabilities.

Task Formulation. The image referential game
involves two interlocutors: a speaker and a listener.
Given an image itarget, the speaker generates a de-
scriptive caption cspeaker, which the listener uses
to identify the target image itarget from a set of im-
ages containing both the target and several distrac-
tor images idistractor ∈ Idistractor. ToM is vividly
present in this task, as the speaker must anticipate
the listener’s understanding and frame the caption
in such a way that the listener correctly identifies
the target image. Following the methodology from
§4.1, we improve the speaker VLM’s intrinsic ToM
using the same SFT and PO objectives described in
§3 and §4.1, with the addition of visual conditions
represented by image encodings.

Setup. The base VLM-speaker is implemented
as LLaVA-1.5-7B (Liu et al., 2024a), while
the listener is modeled using the discriminative
OpenCLIP-ViT-B/32 (Ilharco et al., 2021), which
matches the target image itarget with the speaker’s
caption cspeaker based on image-text similarity.
More finetuning configurations are detailed in
Tab. 6. Our data source for the image referen-
tial game is COCO-CAPTION (Lin et al., 2014)
which includes 5 captions for each image. We used
the Karpathy-split6 – training on COCO-Karpathy-
Train and testing on COCO-Karpathy-Val. To build
preferential caption pairs {preferred caption,
dispreferred caption} for PO, we used a pre-
trained CLIP (Ilharco et al., 2021) to compute sim-

6https://cs.stanford.edu/people/karpathy/
deepimagesent/coco.zip
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Figure 3: Illustrations of our image referential game experiment with the preferential tuning objective DPO (Rafailov
et al., 2024): a) Data curation of paired preferential captions; b) DPO-finetuning a base speaker VLM; c) Evaluating
different output captions in terms of CLIP-Score Win Rate; d) Evaluating caption’s Target Image Retrieval Recall.

ilarity scores between each image and its 5 associ-
ated captions. The caption with the highest image-
text similarity was selected as the preferred caption,
while a random alternative was chosen as the dis-
preferred caption. We evaluated the speaker VLM’s
ToM using two metrics specific to the image refer-
ential game:

• CLIP-Score Win Rate: This metric compares
the captions generated by different models based
on their similarity to the target image, using CLIP-
Score (Hessel et al., 2021) to determine the winner.
The win rate reflects which model generates cap-
tions with higher fidelity to the target image.

• Target Image Retrieval Recall: This metric
measures the recall of the target image from among
the distractors, given the speaker’s caption. It di-
rectly simulates the listener’s task of selecting the
correct image from a set of distractors.

Fig. 3 illustrates our data curation, preferential
tuning process, and evaluation pipeline.

Results. Tab. 2 presents the evaluation results for
the base LLaVA-1.5-7B speaker, alongside the SFT-
and PO-finetuned version. The CLIP-Score Win
Rate compares captions between each pair among
the three models, while Target Image Retrieval
Recall is calculated at different levels (R@k for
k ∈ {1, 5, 10}), with k indicating the number of
retrieved candidates. The results show:

The PO-finetuned speaker outperforms both
the base VLM and the SFT-trained version
across all metrics in this multimodal experiment
– similar to the textual-domain results (§4.1). The
+PO model generates captions that achieve the high-

est CLIP-score similarity with the target image and
consistently leads to the highest retrieval success
on the listener’s part, which directly indicates the
best image referential game success.

SFT leads to a slight decline in performance
compared to the base pretrained VLM. The
+SFT speaker wins fewer than 50% of the caption
comparisons against the base LLaVA-1.5-7B, and
its retrieval recall is consistently lower across all
k values. This further proves that forcing a single
correct answer, as done in SFT, can even impair
a model’s ToM, which requires flexibility in the
face of dynamic social scenarios and the listener’s
knowledge space.

The consistent performance of PO across both
text-based pragmatic QA (§4.1) and image refer-
ential game (§4.2) highlights its effectiveness in
developing pragmatic abilities within the model’s
internal representations, regardless of the modal-
ity. This in turn supports our notion that learning
pragmatics requires comparing more grounded op-
tions against less grounded ones, rather than force-
memorizing of fixed answers.

4.3 Layer Depth

Human social reasoning and pragmatic prediction
with ToM are integral to high-level cognitive pro-
cesses (Sperber and Wilson, 1986; Bara, 2011).
Inspired by this fact, we explore how the depth7

of trainable network layers in a Transformer-based
LLM (Vaswani et al., 2017) relates to its pragmatic

7In our terminology, layer 1 (closest to the input) is consid-
ered the “deepest” layer, while layer 32 (closest to the output)
is considered the most “shallow” layer.
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(a) CLIP-Score Win Rate

LLaVA-1.5-7B +SFT +PO

LLaVA-1.5-7B - 56.6 45.4
+SFT 43.4 - 41.2
+PO 54.6 58.8 -

(b) Target Image Retrieval Recall

R@1 R@5 R@10

31.0 56.9 68.4
30.5↓0.5 56.0↓0.9 67.1↓1.3
31.9↑0.9 58.0↑1.1 69.4↑1.0

Table 2: Image referential game evaluation results on COCO-Karpathy-Val in terms of the CLIP-Score Win Rate
and Target Image Retrieval Recall. We compare three versions of the speaker: the base VLM LLaVA-1.5-7B as
well as the SFT-tuned (+SFT) and PO-tuned (+PO) LLaVA model. The best scores are boldfaced.

Figure 4: Impact of trainable LLAMA2-7B transformer
layer depth on PO-tuned pragmatic performance.

reasoning abilities.

Setup. Following the framework in §4.1, we ap-
plied DPO to LLAMA2-7B-Chat (Touvron et al.,
2023) with 32 transformer layers as a demonstra-
tive model, and used SOCIAL-IQA_Train as an
example training set. We controlled the trainable
layer_id (starting from 1) combinations, using a
4-layer interval: (5-32), (9-32), ..., (29-32).
Evaluation was performed across three test sets:
SOCIAL-IQA_Test, PRAGMEGA_Test, and LUD-
WIG_Test (Tab. 4), using the open-ended assess-
ment metric LNRS (§2.2).

Results. Fig. 4 reveals a clear overall trend: as
we train progressively shallower layers, the
model’s performance in pragmatic inference de-
clines. While preference-tuning deeper layers sig-
nificantly improves performance compared to the
base LLAMA2-Chat, training only shallower layers
yields limited benefits and can even degrade the
model’s performance. This underscores the neces-

sity of engaging deeper layers for effective prag-
matic learning. Additionally, the LLM’s ability
to learn pragmatic inference drops sharply start-
ing from approximately the midpoint of the trans-
former stack, with minimal gains observed after
finetuning beyond the 21st layer. The best results
are obtained by training the deep-down 5- or 9-32
layers. Interestingly, skipping the 5-8th layers pro-
duces a slightly higher LNRS score, though the
difference is not significant.

This contrast between the effectiveness of pref-
erential tuning in deeper versus shallower trans-
former layers suggests a possible correspondence
with the pattern of human cognition. Just as com-
plex social-pragmatic reasoning in humans relies
on higher-level cognitive processes, our results
(Fig. 4) demonstrate that deeper layers in an LLM
significantly invoke pragmatic performance, while
training shallower layers offer little improvement.

5 Related Work

Machine Pragmatics. Rooted in linguistic theory
(Grice, 1975; Austin, 1962; Searle, 1975; Sperber
and Wilson, 1986), the study of pragmatics within
machine learning has recently been explored in
terms of how LLMs perform in scenarios involv-
ing various pragmatic phenomena (Hu et al., 2023;
Lipkin et al., 2023; Ruis et al., 2023; Qi et al.,
2023; Sravanthi et al., 2024) or subtle social norms
(Sap et al., 2023; Shapira et al., 2023). Theory of
mind (ToM) (Premack and Woodruff, 1978) has
been tested in tasks such as false-belief reasoning
(Kosinski, 2023; Ullman, 2023), story comprehen-
sion (Jones et al., 2023), and multi-turn interactive
contexts (Kim et al., 2023). Additionally, Gandhi
et al. (2023) proposed a framework for using LLMs
themselves to generate ToM evaluation samples,
revealing that GPT-4 (OpenAI, 2023) is the only
model matching human capabilities whereas all
other LLMs struggle. To improve ToM inference in
LLMs, Moghaddam and Honey (2023) employed
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Base Model Finetuning MMLU ARC-E ARC-C AGIEval GSM8K OpenBookQA
Dataset Method 5-shot 5-shot 25-shot 0-shot 8-shot 0-shot

LLAMA2-7B-Chat

- - 47.4 80.9 53.2 37.0 23.2 43.8

SOCIQL-IQA PO 47.5 83.0 58.4 37.3 23.4 46.6
SOCIQL-IQA SFT 48.1 81.1 52.6 36.7 20.2 44.6

PUB PO 48.1 81.2 55.3 37.8 24.3 44.2
PUB SFT 47.2 80.8 51.9 36.7 23.0 42.6

LLAMA2-13B-Chat

- - 53.6 83.5 59.7 39.0 35.4 44.0

SOCIQL-IQA PO 54.0 85.3 62.8 39.2 35.7 46.4
SOCIQL-IQA SFT 53.4 84.2 58.8 38.7 33.2 45.4

PUB PO 54.4 84.8 61.6 39.5 35.9 44.8
PUB SFT 53.9 83.0 58.1 38.5 32.7 44.2

PYTHIA-6.9B-Tulu

- - 34.0 67.9 39.7 31.9 11.7 38.4

SOCIQL-IQA PO 34.6 70.3 43.0 33.0 11.5 40.6
SOCIQL-IQA SFT 33.3 67.8 38.9 32.5 10.8 36.8

PUB PO 35.2 68.9 40.2 32.7 11.4 41.0
PUB SFT 33.9 67.5 39.2 32.2 9.9 36.0

Table 3: Various benchmark performances of the base LLMs along with their versions PO- and SFT-finetuned on
pragmatic datasets. The best metric scores are boldfaced.

few-shot prompting with chain-of-thought (Wei
et al., 2022) and step-by-step reasoning (Kojima
et al., 2022), while Sclar et al. (2023) proposed a
graph module for tracking each character’s mental
state. For the image referential game, approaches
have been developed to explicitly build a simu-
lated ToM-listener that externally models ToM and
guides the speaker’s output (Zhu et al., 2021; Liu
et al., 2023; Takmaz et al., 2023).

Finetuning Methods of LLMs. Pretrained LLMs
undergo finetuning that better aligns these mod-
els with human instructions and conversational be-
haviors. Supervised finetuning (SFT) – also re-
ferred to as instruction tuning, follows the lan-
guage modeling loss on {human instruction,
response} data that directly train the LLMs to
follow human instructions and respond like the
given “gold” response. Instruction-tuned LLMs,
such as InstructGPT (Ouyang et al., 2022), out-
perform pretrained base models like GPT-3 (Brown
et al., 2020) in generating more natural, human-
like conversations. Preference optimization (PO)
steers LLMs towards outputs that align with hu-
man preferences. Reinforcement learning from
human feedback (RLHF) (Christiano et al., 2017;
Ziegler et al., 2019) uses human feedback in
the form of paired data {preferred response,
dispreferred response} to train a reward model
for interpreting human feedback, which then guides
the LLM’s outputs to align with the human prefer-
ences under a reinforcement learning framework.

However, RLHF can be complex to implement and
prone to unstable training. Recent works such as
DPO (Rafailov et al., 2024) and SimPO (Meng
et al., 2024) simplify and improve the training pro-
cess by eliminating the need for a separate reward
model or reference model, thereby making prefer-
ence optimization more efficient.

6 Conclusion

This paper addresses two lines of challenges re-
lated to social-pragmatic abilities in LLMs. First,
we argue for a shift from the traditional MCQA
format to open-ended evaluation that directly mea-
sures the soundness of the model’s generated re-
sponses in social scenarios. Second, we propose
to enhance LLMs’ intrinsic pragmatic abilities via
preference optimization (PO) over supervised fine-
tuning (SFT). Through PO, models learn to capture
the subtle nuances between preferred and dispre-
ferred social interactions. Our experiments across
multiple pragmatic datasets, coupled with human
evaluation, and further examined within a multi-
modal theory of mind setting through the image
referential game, all effectively demonstrate both
the advantages of our free-form evaluation proto-
col and the superiority of PO over SFT in prag-
matic scenarios. Additionally, we also reveal the
impact of trainable layer depth on the model’s prag-
matic performance gains, suggesting a potential
mirroring with the higher-level cognitive processes
involved in human social reasoning.
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Limitations

In our open-ended evaluation paradigm, we used
GPT-4 (OpenAI, 2023) as the judge to score the
models’ generated responses. While this approach
was effective, it relies on an API that offers lim-
ited control over how the judge’s evaluations are
conducted. Future work should explore more trans-
parent and controllable methods for quantifying the
quality of free-form outputs.

The benefits of preference optimization (PO) for
improving machine pragmatics are both intuitively
motivated by the absence of a single “gold” answer
in social interactions and empirically validated by
our experiments across modalities. But our models
also inherit certain issues associated with PO, such
as verbosity (Appx.D, Tab. 8). Addressing how to
refine these inherent limitations in PO algorithms
remains an open question for future research.

Finally, as shown in our layer-depth studies
(§4.3), the social-pragmatic abilities of LLMs are
closely tied to deeper representation, which may
reflect a similarity to the role of high-level cogni-
tive processes in human pragmatic reasoning. This
potential connection between machine learning and
human cognition should inspire future research on
possibly bridging human cognitive science with
language modeling.

Ethics Statement

In this project, all data and pretrained models are
publicly available. They are collected and pro-
cessed in adherence to the respective data, check-
points, and API usage policy. We acknowledge that
our finetuned models may generate unsafe content,
and we advise all users of careful verification be-
fore deploying this work in real-world applications.
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A GPT4-Judge Prompt Templates

Here’s our prompt template for querying GPT-4
(gpt-4-1106-preview) to score the model’s free-
form answer in relation to the provided “gold” an-
swer (§2.2). To mitigate position bias, we query
GPT-4 twice with the reversed order of the model’s
and the “gold” answer. For the reversed order query,
we simply rearrange the following prompt to have
the “gold” answer come first.

Template for GPT4-judge

[Scenario]:
{QUESTION}

[Model’s Answer]:
{ANSWER_MODEL}

[Gold Answer for Reference]:
{ANSWER_GOLD}

[System]:
We request your evaluation of the AI
model’s answer in relation to the provided
scenario and the gold answer. Assess the
responses based on the following criteria:
1. Social Understanding: How well does the
model’s answer grasp the social dynamics
or pragmatic nuances of the scenario?
2. Appropriateness: Is the model’s answer
appropriate and contextually fitting for the
scenario?
3. Insightfulness: Does the answer
demonstrate a deep understanding of the
underlying intentions, implicature, deceit,
irony, sarcasm, humor, metaphor, etc.?
4. Completeness: How comprehensive
is the model’s response in capturing the
essential elements of the scenario?

Please first output a single line containing
only two numeric values representing
scores for the model’s answer and the gold
answer respectively, on a scale of 1 to
10, where a higher score indicates better
performance. The two score values should
be separated by a space. The gold answer is
for reference only and should not strictly
limit the evaluation.
In the next line, provide a comprehensive
explanation of your evaluation, discussing
each of the criteria mentioned. This
explanation should avoid any potential bias
and ensure that the judgment is solely based
on the response’s merits in the context
of the scenario and the gold answer for
reference.
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B Human Evaluation Instruction

Instructions for Human Evaluators

We request your ranking evaluation of
different answers to the provided scenarios
and questions. Please assess the answers
based on the following criteria:
1. Overall Appropriateness: Is the answer
suitable and contextually fitting for the
scenario?
2. Social Understanding: How well does
the answer grasp the social dynamics or
pragmatic nuances of the scenario?
3. Conversational Insightfulness: Does the
answer demonstrate a deep understanding
of the underlying intentions, implicature,
deceit, irony, sarcasm, humor, metaphor,
etc.?

Rank the answers based on their qualities.
Place the best answer first, the second-best
second, and so on.
Do NOT let the length of the answers
bias your judgment. A longer answer may
better capture the scenario, or it may be
unnecessarily verbose.
Disregard minor format variations such as
ending with or without a period, extra quo-
tation marks, or differences in upper/lower
cases.

Feel free to include any additional
comments at the end of the questionnaire.

Any data you submitted remains anony-
mous and will be used for research purposes
only.

C Implementation Details

Tab. 5 provides the detailed finetuning hyperpa-
rameters for the pragmatic question answering task
discussed in §4.1.

Tab. 6 provides the detailed finetuning hyperpa-
rameters for the image referential game discussed
in §4.2. Since our focus is on how the VLM gener-
ates captions (i.e., how it arranges the wording), we
do not finetune the VLM’s image-encoder module,
allowing it to maintain a stable and robust image
embedding space throughout the experiments.

D Qualitative Examples of Model
Responses in Pragmatic Question
Answering

To provide more fine-grained analyses and better
illustrate one of our key motivations – “the human-
annotated ‘gold’ answer might not always be the
best response” (§1) – we analyze qualitative exam-
ples from the model’s generations in the pragmatic
QA task discussed in §4.1.

In Tab. 7, we present examples where the re-
sponses generated by our models under DPO tun-
ing are judged by GPT-4 as even better than the
reference “gold” answer. These examples illus-
trate how our PO-tuned models handle nuanced
contextual cues across a variety of social-pragmatic
phenomena. In many cases, the model’s responses
provide more detailed and clearer messages than
the “gold” answer. For instance, in metaphor com-
prehension, the preference-tuned models use more
descriptive words with better details, facilitating
easier communication. Similarly, in scenarios in-
volving social norms, the PO-tuned models gener-
ate responses that capture richer sentiments beyond
the “gold” response (e.g., sad because of the inabil-
ity to go out) or provide more in-depth reasoning
(e.g., trying to change the subject).

However, we also acknowledge certain limita-
tions with current PO techniques, such as ver-
bosity (Meng et al., 2024; Lu et al., 2024; Liu
et al., 2024b), which exactly motivates the length-
normalization aspect of our proposed LNRS met-
ric (§2.2).

Tab. 8 shows examples where the model’s re-
sponse is overly verbose. In these cases, the DPO-
tuned models produced responses that, while con-
taining the correct intent, were excessively verbose,
weakening the intended humor (first example) or
ironic messages (second example). Addressing
these non-ideal cases will be a promising avenue
for future work.
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Data Source Phenomena #Train #Test

SOCIAL-IQAa various social norms 33, 410 2, 224

PRAGMEGAb deceits, indirect speech, irony, maxims, metaphor, humor 0 130

LUDWIGc implicature 0 718

PUBd implicature, presupposition, reference, deixis 18, 627 0

Table 4: Details of the data sources for experimenting with our evaluation and tuning methods. If #Train is 0, it
means that we do not use this data source for training – because of the data’s scarcity.

ahttps://allenai.org/data/socialiqa. We keep the original train/dev/test splitting.
bThis is an ongoing project at https://osf.io/6abgk/?view_only=42d448e3d0b14ecf8b87908b3a618672. We used the

data provided by https://github.com/jennhu/lm-pragmatics and discarded the binary classification “Coherence” task.
chttps://huggingface.co/datasets/UCL-DARK/ludwig.
dhttps://huggingface.co/datasets/cfilt/PUB. We combined the original train/dev as our training split. We also

discarded the task instances made easier with hints. The testing questions rely too much on the MCQA selection format, so we
choose not to use its test set.

Method Parameter Value

SFT, DPO batch size 64
SFT, DPO learning rate 5.0e− 07
SFT, DPO max gradient norm 10.0
SFT, DPO optimizer RMSprop (Hinton, 2014)
SFT, DPO warmup iterations 150
SFT, DPO training epochs 1
SFT, DPO max sequence length 512
SFT, DPO max prompt length 256
SFT, DPO label smoothing 0
DPO DPO beta 0.1

Table 5: Pragmatic question answering base LLMs’ finetuning hyperparameters.

Method Parameter Value

SFT, DPO LoRA (Hu et al., 2021) r 128
SFT, DPO LoRA (Hu et al., 2021) alpha 256
SFT, DPO batch size 16
SFT, DPO learning rate 1.0e− 07
SFT, DPO optimizer AdamW (Loshchilov and Hutter, 2017)
SFT, DPO learning rate schedule Cosine
SFT, DPO weight decay 0
SFT, DPO warmup ratio 0.03
SFT, DPO training epochs 1
SFT, DPO max sequence length 2048
DPO DPO beta 0.1

Table 6: Hyperparameters for finetuning the base speaker VLM LLaVA in the image referential game.
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Figure 5: MCQA-ACC comparisons across models, data sources, and training paradigms (PO v.s. SFT).

Question “gold” Answer Model’s Answer Model Version Judge
Scores

Phenomenon

Mike and Melissa are
arguing about the state of
secondary education. Mike
states that standardized
test scores are up. Melissa
responds sarcastically about
other unrelated factors.
Why?

Melissa thinks
that statistical
information is
useless in this
debate.

Melissa has responded
to highlight the limita-
tions and flaws in the
standardized test.

LLAMA2-7B-Chat
after PO

Gold:
6
Model:
6.5

Maxims

Cindy got her paints ready
but has a meeting in 10 min-
utes. Her dad doubts it’s the
best time for painting. What
is he implying?

He does not want
Cindy to start
painting.

She should prioritize
her meeting over paint-
ing.

LLAMA2-13B-Chat
after PO

Gold:
7
Model:
8

Indirect
Speech

Janet said the dancers were
butterflies. What did she
mean?

The dancers flit-
ted around the
stage.

Janet meant that the
dancers were graceful
and light, like butter-
flies.

LLAMA2-7B-Chat
after PO

Gold:
7.5
Model:
8

Metaphor

The teacher told Sam: "You
have too much on your
plate." What did the teacher
mean?

Sam has too many
things to take care
of.

The teacher means that
Sam has too many
tasks or responsibilities
and is overwhelmed.

LLAMA2-13B-Chat
after PO

Gold:
8
Model:
9

Metaphor

Melissa’s friend convinces
her to a nightclub said to
be "super hot". When cold
inside, Melissa says, "The
heat is really on in here."
What did she want to con-
vey?

It is too cold. Melissa wanted to con-
vey that the nightclub
is freezing cold, not
hot.

LLAMA2-7B-Chat
after PO

Gold:
8.5
Model:
9

Irony

Austin got a really bad sun-
burn and decided to stay in-
side. How would Austin feel
afterwards?

Burned. Sad that he couldn’t be
out in the sun again.

PYTHIA-6.9B-Tulu
after PO

Gold:
4
Model:
5.5

Social
Norms

Riley beat around the bush
when asked about crimes.
What will she want to do
next?

Lie more. Try to avoid answering
questions, probably, or
try to change the sub-
ject.

LLAMA2-7B-Chat
after PO

Gold:
5.5
Model:
7

Social
Norms

Table 7: Examples where the model’s response is judged better than the annotated “gold” answer.
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Question “gold” Answer Model’s Answer Model Version Judge
Scores

Phenomenon

A woman decides to pre-
pare her will. She tells her
lawyer she had two final re-
quests. First, she wanted to
be cremated, and second she
wanted her ashes scattered
all over the local mall. "Why
the mall?" asked the lawyer.
She replied:

"Then I’ll be sure
my daughter vis-
its me twice a
week."

"Well, you see, I’ve
spent so much time
there over the years,
I figure it’s only fit-
ting that a part of me
should be there forever.
Plus, I think it would
be kind of funny to see
my ashes scattered all
over the food court and
watch the looks on peo-
ple’s faces as they try
to figure out where the
smell is coming from!"

LLAMA2-13B-Chat
after PO

Gold:
9
Model:
4

Humour

The Jones’ had hired a new
gardener. After a week the
lawn was looking particu-
larly unkempt. John re-
marked to his wife, "He does
such a good job!" What did
John want to convey?

He is unhappy
with the new gar-
dener.

This is a classic lateral
thinking puzzle. The
answer is "John was
being sarcastic." The
statement "He does
such a good job!" is
unlikely to be sincere
if the lawn is looking
unkempt after only a
week. It is more likely
that John is joking or
being ironic about the
gardener’s work.

LLAMA2-7B-Chat
after PO

Gold:
8.5
Model:
7.5

Irony

Table 8: Examples of verbosity in model responses.
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