
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 22633–22646
November 12-16, 2024 ©2024 Association for Computational Linguistics

Context-aware Watermark with Semantic Balanced Green-red Lists
for Large Language Models

Yuxuan Guo1, Zhiliang Tian1∗, Yiping Song1, Tianlun Liu1,
Liang Ding2, Dongsheng Li1∗

1National University of Defense Technology
2Zhejiang University

Abstract

Watermarking enables people to determine
whether the text is generated by a specific
model. It injects a unique signature based on
the "green-red" list that can be tracked during
detection, where the words in green lists are en-
couraged to be generated. Recent researchers
propose to fix the green/red lists or increase the
proportion of green tokens to defend against
paraphrasing attacks. However, these meth-
ods cause degradation of text quality due to
semantic disparities between the watermarked
text and the unwatermarked text. In this pa-
per, we propose a semantic-aware watermark
method that considers contexts to generate a
semantic-aware key to split a semantically bal-
anced green/red list for watermark injection.
The semantic balanced list reduces the perfor-
mance drop due to adding bias on green lists.
To defend against paraphrasing attacks, we gen-
erate the watermark key considering the seman-
tics of contexts via locally sensitive hashing.
To improve the text quality, we propose to split
green/red lists considering semantics to enable
the green list to cover almost all semantics. We
also dynamically adapt the bias to balance text
quality and robustness. The experiments show
our advantages in both robustness and text qual-
ity comparable to existing baselines.

1 Introduction

Large Language Models (LLMs) show their power
on text generations but their formidable power
may be used for unethical purposes such as pla-
giarism (Augenstein et al., 2023). Current research
injects watermarks into LLMs’ generated texts,
thereby enabling people to distinguish between
LLM-generated text and human-written text. Re-
cent watermark methods inject a unique signature
into LLM-generated text, which can only be per-
ceived by watermarking methods, facilitating the
detection of whether a text was generated by LLMs.

*Corresponding author

Current watermark methods mainly inject the
signature according to “green-red list” (Ren et al.,
2023): they divide vocabulary into green/red lists,
regard words in green lists as the unique signature,
and encourage to generate green tokens, which is
easy to be recognized. The methods can be di-
vided into two categories: (1) Token sampling bi-
asing-based watermark forces LLMs to select only
green tokens during generation. EXP-Edit (Ku-
ditipudi et al., 2023) intervenes in the sampling
process of each token. However, forcing LLMs
to sample green tokens restricts the semantic rich-
ness of LLM-generated text, thus undermining its
text quality. (2) To improve the generation qual-
ity, researchers further propose token probability
biasing-based watermark, which enriches the se-
mantics of watermarked texts by introducing a bias
to the probability distribution to softly encourage
generating green tokens instead of restricting to se-
lect green tokens. Takezawa et al. (2023) proposed
NS-Mark to constrain the frequency of biasing. Wu
et al. (2023) introduced DiPMark to approximate
the biased probability distribution to the original
one. These methods mitigate the impact of biasing
on text quality and ensure superior text quality.

The above methods narrow the gap in text qual-
ity between the watermarked text and the unwater-
marked text but lack robustness against paraphras-
ing attacks. Paraphrasing attacks (Krishna et al.,
2024) use language models to modify the water-
marked text to evade the unique signature of the wa-
termarked text. Specifically, first, the paraphrasing
attacks make it difficult for current watermarking
methods to match the green/red lists used in wa-
termark injection during the process of watermark
detection, causing incorrectly determining whether
a token is in the green list; second, the paraphrasing
of words turned many green tokens into red tokens,
greatly reducing the proportion of green tokens in
the text. Paraphrasing attacks make the proportion
of green tokens in the attacked watermarked text

22633

similar to that of the unwatermarked text, destroy-
ing the unique signature of the watermarked text,
and leading to detection errors.

Researchers propose to fix the green/red lists
(Zhao et al., 2024) in response to the aforemen-
tioned problem of mismatched green/red lists
caused by paraphrasing attacks: ensuring that the
green/red lists used for watermark detection are
always consistently aligned with those used for
watermark injection even if the watermarked text
suffered paraphrasing attacks. This alignment en-
ables accurate identification of tokens within the
green list. However, the watermark method intro-
duces the same bias to the probability distribution
during each generation step due to the fixed green
tokens, restricting the diversity of watermarked
text. Researchers have discovered that increasing
the proportion of green tokens in the watermarked
text can maintain a sufficiently high ratio of green
tokens even when paraphrasing attacks reduce their
count, thus ensuring the detection of the unique
signature, which effectively mitigates the problem
described above of reducing the number of green
tokens caused by paraphrasing attacks. Current
works propose to cause greater bias to the probabil-
ity distribution to increase the sampling probability
of green tokens during watermark injection, enlarg-
ing the proportion of green tokens (Kirchenbauer
et al., 2023a). However, a greater bias leads to more
significant disparities between the perturbed prob-
ability distribution and the original one, thereby
resulting in a degradation of text quality.

In this paper, to balance text quality and ro-
bustness against paraphrasing attacks, we propose
a LLM-based semantic-aware watermark method
that considers contexts to generate a semantic-
aware key to split a semantic balanced green/red
lists for watermark injection. Those green/red lists
ensure the semantic distribution of green tokens
to be very similar to the distribution of the whole
vocabulary, which highly reduces the performance
drop due to introducing biases to encourage the
green tokens. Specifically, to improve the robust-
ness against paraphrasing attacks, we propose the
context-aware semantic-based watermark key gen-
erator with local sensitive hashing (LSH). It pre-
vents the paraphrasing attack from maliciously re-
placing tokens and thus changing the watermark
key to mislead the watermark detection. To im-
prove the text quality, we propose a semantic-based
green-red lists split method, which enables the
green lists to cover almost all semantics and en-

sures the distribution among green and red lists
is balanced. It avoids the bias on green lists and
reduces the text quality. To balance the text quality
and robustness, we propose an entropy-based dy-
namic bias adaptation module, dynamically adjust-
ing the bias during generation. The experimental
results validate our method’s effectiveness in the
robustness against paraphrasing attacks and text
quality.

Our contributions are: (1) We propose a
semantic-based watermark method for LLMs to
enhance the text quality and robustness against
paraphrasing attacks. (2) We obtain the green/red
lists based on semantics, making green lists cover
almost all semantic spaces and obtain a balanced
semantics distribution green-red list. (3) Experi-
ments show our method outperforms baselines on
text quality, watermarked text detection, and ro-
bustness against paraphrasing attacks.

2 Related Works

2.1 Watermarking on Generated Text

Watermarking safeguards textual content inconspic-
uously with stable embedding (Kamaruddin et al.,
2018). Some researchers used the watermark tech-
niques to protect the privacy of user data (Song
et al., 2024, Tian et al., 2022). In this paper, we
mainly discuss using watermarks to help people dis-
tinguish between LLM-generated text and human-
written text. Initially, the focus was on integrat-
ing watermarks into existing texts. Current water-
mark methods for generated text consist of: (1)
Format-based watermark methods, that integrate
a watermark within the text format. Al-maweri
et al. (2016) proposed embedding watermarks with
Unicode extended characters using a predefined
encoding table. Alotaibi and Elrefaei (2018) in-
serted pseudo spaces within Arabic texts for wa-
termark embedding. Por et al. (2012) selectively
inserted Unicode spaces for encoding external in-
formation. (2) Lexical-based watermark methods,
which replace the tokens with watermarked tokens
with similar semantics. Topkara et al. (2006b) pro-
posed token substitution with prioritized synonyms
based on resilience criteria in the generated text.
Yang et al. (2022) introduced a scheme of using
BERT for context-aware lexical substitution. He
et al. (2022) proposed optimizing word selection
variability to mitigate watermark vulnerability. (3)
Syntactic-based watermark methods, which em-
bed the watermark into the generated text’s syntax.

22634

Atallah et al. (2001) used syntax transformations
to embed the watermark. Topkara et al. (2006a) en-
hanced the previous method with additional syntax
transformations.

2.2 Watermarking for LLMs’ generation

There are two ways to inject the watermark into
the text generated by LLMs. (1) Token sampling
biasing refers to forcing the model to sample green
tokens. Christ et al. (2023) devised an undetectable
watermark detectable only with the key. Hou et al.
(2023) introduced sentence-level watermarking dur-
ing sampling. Giboulot and Teddy (2024) intro-
duced watermark into token chunks, encouraging
the model to sample watermarked text satisfying
text quality. (2) Token probability biasing refers
to increasing the probability of the model sampling
green tokens. Kirchenbauer et al. (2023a) propose
splitting green-red lists for tokens pre-generation,
softly prompting green token use during sampling
for watermark injection. Zhao et al. (2024) devel-
oped prior methods by fixing green/red lists, and
injecting watermarks into the next token’s prob-
ability distribution at each generation step. Hu
et al. (2023) introduced an unbiased reweighting
method for watermarking without altering token
probability distribution. Lee et al. (2023) devised a
selective watermarking method, thereby alleviating
the degradation of LLM-generated code. Takezawa
et al. (2023) represented text quality degradation
due to watermarking as a constrained optimization
problem by adjusting green token proportions in
the generated text. Yoo et al. (2024) introduced a
multi-bit watermark method using positional alloca-
tion to inject traceable information. Fernandez et al.
(2023) employed cyclic shifts and a shared water-
mark key to generate multiple watermark versions,
each representing distinct watermark messages.

2.3 Paraphrasing Attacks on Watermark

Paraphrasing attacks modify the watermarked text,
disrupting its unique signature and causing misclas-
sification as unwatermarked. Early paraphrasing
attacks relied on round-trip translation (Yang et al.,
2023), translating the text into another language
and back. Ueoka et al. (2021) employed Masked
Language Models (MLMs) to replace words while
maintaining text quality, enhancing paraphrasing at-
tack effectiveness. Researchers found that text sum-
marization models simplify the text, potentially en-
hancing attack effectiveness (Hou et al., 2023). Kr-
ishna et al. (2024) finetuned a paraphrasing model,

undermining the watermark’s effectiveness.
To enhance robustness against paraphrasing at-

tacks, several strategies have been proposed: Zhao
et al. (2024) expanded existing methods by employ-
ing a fixed green/red lists strategy. Ren et al. (2023)
introduced a technique of splitting the green/red list
based on the discretized result from continuous se-
mantic spaces. Kuditipudi et al. (2023) developed
a watermarking method biasing token sampling
using edit distance during watermark detection.

3 Method

3.1 Overview

The general framework of watermark methods in-
cludes two stages: watermark injection and water-
mark detection. During every generation step, most
watermark methods first get a watermark key and
then partition the vocabulary to get the green/red
lists based on the watermark key. They introduce
a bias into the probability to encourage the gen-
eration of tokens from the green list. Following
this framework, we propose (1) context-aware
semantic-based watermark key generator (Sec.
3.2), which generates watermark key considering
semantics in the contexts to improve the robustness;
(2) semantic-aware green/red lists split (Sec. 3.3),
which splits vocabulary into green or red lists based
on the semantic, ensuring the diversity of the green
list; (3) entropy-based dynamic bias adaptation
(Sec. 3.4), which adaptively adjusts the bias.

Our framework first employs the watermark key
generator (Sec. 3.2) to obtain semantic-based wa-
termark keys for splitting the green/red lists (Sec.
3.3). Then, we conduct bias based on the green/red
lists. We dynamically add adaptive bias (Sec. 3.4)
for perturbations and filter some tokens hard to
conduct bias (see App. A due to page limitation).

3.2 Context-aware Semantic-based
Watermark Key Generator

To generate a suitable watermark key to defend
against paraphrasing attacks, we propose a Context-
aware Semantic-based Watermark Key Generator.
It utilizes the semantics of the context to generate
the watermark key.

Current watermark methods generate the water-
mark key by feeding the context tokens for hash-
ing without considering the semantics, thus simi-
lar words can not share the same key. Paraphras-
ing attacks change the contexts by replacing to-
kens with semantically similar tokens, resulting in

22635

biased probability

(2) Semantic-based Green-Red Lists Split(1) Context-aware Semantic-based
Watermark Key Generator

Input: The cats sat on ____
Output: The cats
sat on mats

Large Language
Model

01
00

10
11

keyLSH hyperplane

01LSH hash value

token embedding
green token
red tokenLSH normal vector

01

semantic space

00
11

10

(3) Entropy-based Dynamic Bias Adaptation

bias 𝛿𝛿′

strength 𝛿𝛿

adaptation
𝛿𝛿′ =

𝛿𝛿
𝑒𝑒 + 𝜙𝜙

red list

cushions
satisfied

…
sorrowful

mats
fulfilled

…
mournful

green list

original probability

cushions
matsentropy 𝑒𝑒

01
00

10
11

vocabulary Step 1
divide into
semantic sets

{S1, S2, S3, S4}
{G1, G2, G3, G4}
{R1, R2, R3, R4}

add bias 𝛿𝛿′ to tokens in the green list

Step 2
random split
(treat keys as
random seeds)

Step 1
representation(on)

Step 2
hashing via LSH

Figure 1: An overview of our method. At each generation step, the (1) Key Generator (lower branch) applies LSH
to hash tokens in the vocabulary into hash key according to the semantics of "on"; the (2) Green-Red List Split splits
green-red list for each divided semantic set. In the upper branch of each generation step, the LLM generates as
usual, then the (3) Bias Adaptation dynamically obtains bias according to the entropy. Finally, the model adds the
bias on the generation distributions of green list tokens and then generates the next token "mats".

changing the watermark key. Changing watermark
keys causes the change of green/red list, which fur-
ther misleads the watermarked detection (judging
the watermarked text as an unwatermarked one) 1.

Hence, we construct a semantic-based water-
mark key to assign the same watermark key to
tokens with similar semantics via local sensitive
hashing (LSH) (Indyk and Motwani, 1998). This
ensures replacing with similar tokens in paraphras-
ing attacks may not result in the change of water-
marked keys, since similar tokens may have the
same key. Particularly, at each generation step, the
processing consists of two steps as the bottom left
corner of Fig. 1: (1) Representation. We represent
the context semantic with an embedding: we treat
the last token as the context and feed it into the
embedding layer of the LLM to obtain the last to-
ken embedding. (2) Hashing via LSH. We obtain
the hash value of current step according to the last
token embedding via LSH, which hashes similar in-
puts into the same value, serving as the watermark
key corresponding to each token.

LSH hashes similar textual inputs into the same
hash value, making it viable to get the watermark
key from the semantic. We follow the cosine-
preserving method (Weir et al., 2020, Guu et al.,
2018 and Charikar, 2002). This method uses d ran-

1Using different green/red lists to determine the next token
will randomize the detection result, causing the number of
green tokens in the watermarked text similar to that in the
unwatermarked text, resulting in missing detection.

dom hyperplanes to split the semantic space, which
specifies d hyperplanes represented by correspond-
ing normal vector r(i) that is randomly drawn from
the Gaussian distribution with the same dimension
as the token embedding v 2. For the i-th hyper-
plane, we get the dot product between the token
embedding and its normal vector r(i) and use an
indicator function 1(·) to get the result that rep-
resents the side of the hyperplane that the token
embedding falls to.

LSHi(v) = 1(ri · v ≥ 0) (1)

After projection on d hyperplanes, we get a d-bit
binary value, which represents the hash value. At
each generation, we use the hash value of the pre-
vious token as the watermark key for splitting the
green/red lists of the next word, which can be ob-
tained from the text itself to reproduce the split
results of each generation step.

After obtaining the watermark keys of all tokens,
we construct the mapping from tokens to water-
mark keys and store this mapping. In watermark
injection and detection processes, we directly re-
trieve the watermark key from the mapping given
the context tokens to avoid the practical issues of
calling the watermarked LLM during detection.

2Normal vector r(i) signifies the hyperplane that is perpen-
dicular to r(i) and pass through the origin.

22636

3.3 Semantic-based Green-Red Lists Split

To ensure the green lists cover almost all semantics,
we propose Semantic-based Green-Red Lists Split
to split green/red lists based on the sets of tokens
with similar semantics.

Current methods directly partition the vocabu-
lary randomly into green/red lists seeded by the
watermark key. The arbitrary partitioning over the
vocabulary ensures that each word has an equal
probability of being selected as a green token. How-
ever, this split method cannot guarantee that tokens
with similar semantics are balanced distributed be-
tween the green list and the red list at every gen-
eration step. That imbalanced distribution among
similar tokens makes it difficult for the green to-
kens to cover almost all semantics, which makes
it hard for the model to select desired tokens from
green lists to express the desired semantics thus
degrading the quality of generated texts.

Hence, we get the green/red lists of the vocabu-
lary by splitting the green/red lists from the sets of
tokens with similar semantics and merging these
lists, which achieves a balanced distribution of the
tokens with similar semantics in the green/red lists
for every generation step. The processing con-
sists of three steps: (1) Divide into semantic sets.
Based on the analysis of LSH in Sec. 3.2, tokens
with the same hash value can be regarded as to-
kens with similar semantics. At each generation
step, we divide the vocabulary into semantic sets
based on the hash value and get all semantic sets of
tokens with similar semantics {S1, S2, ..., Sn}.(2)
Randomly split into green/red lists. At each gen-
eration step, for the i-th semantic set Si, we ran-
domly split the set to get the green list Gi and
the red list Ri, where we treat the semantic-based
key from Sec. 3.2 as the seed of pseudo-random
function. Employing a semantic-based key as the
seed is crucial since watermark algorithm requires
the detection, and injection with the same contexts
should share a same green/red list and the water-
mark key relying on context semantics ensures de-
tection and injection can get the same key to obtain
a same green/red list. (3) Gather to obtain whole
green/red lists. Now we merge green lists {Gi}
from the semantic sets to get a whole green list for
the vocabulary G through G = G ∪ Gi and red
lists {Ri} into a whole red list R by R = R ∪Ri.
The merged green/red G and R list will be used
in adding biases into the generation (mentioned in
Sec. 3.5).

This approach guarantees that similar tokens
are balanced distributed on the green/red lists and
makes green lists cover all lived semantics of the
semantic space (i.e. vocabulary), which is aligned
with the LSH’s semantic space 3. It means that
the gap between the semantic distribution of green
lists and that of the entire vocabulary is quite small.
It results in adding a bias to obtain green tokens
does not lead to a large semantic shift, guaranteeing
the semantic coherence of the generated text when
sampling green tokens.

3.4 Entropy-based Dynamic Bias Adaptation
To balance text quality and robustness against para-
phrasing attacks, we propose Entropy-based Dy-
namic Bias Adaptation to modify bias dynamically
according to the entropy for each generation step.

Current watermark methods inject a bias into
the probability distribution. A large bias improves
robustness against paraphrasing attacks but causes
a low text quality due to the drastic impact. A low
bias introduces a minor impact on the distribution
but can improve the text quality. Current methods
mostly use a fixed bias and lack dynamic adjust-
ment for the bias to influence the biasing effect
according to the requirements. The fixed bias can-
not meet the changing need for each generation
step, making it difficult for watermark methods to
improve robustness against paraphrasing attacks
while preserving text quality.

We introduce a dynamic adaptation mechanism
for the bias that scales the bias dynamically based
on the entropy of generated tokens. Following
Kirchenbauer et al. (2023a), we use spike en-
tropy to quantify the uncertainty of the distribution,
which reflects the ease of sampling green tokens.

We use the reciprocal function for entropy to
form an inverse relationship with entropy. To re-
duce the bias when the entropy is extremely high,
we then introduce a scalar ϕ as a balance factor
to control the maximal value of reciprocal value,
which will cause a reduction of the bias δ when the
entropy is high.

δ′(s) = δ · 1

entropy(s) + ϕ
(2)

We adjust the bias dynamically adaptation ac-
cording to the entropy: at low entropy, a low bias
aimed at preserving text quality fails to sustain

3LSH has processed the token embeddings of all tokens,
making the hash value can reflect the semantic similarity of
the tokens in the semantic space.

22637

the sampling probability of green tokens. Con-
sequently, we use the dynamical adaption to in-
crease the bias to elevate the sampling probability;
when the entropy is high, the large bias used to
preserve the sampling probability of green tokens
will cause a severe impact on the probability dis-
tribution. Thus, we reduce the bias dynamically to
mitigate the impact of the bias. Our method solves
the inability to adapt to bias requirements in high
and low entropy environments due to the fixed bias.

3.5 Workflow of Watermark Injection and
Detection

For watermark injection, at each generation step,
we first use the Context-aware Semantic-based Wa-
termark Key Generator (Sec. 3.2) to generate wa-
termark key based on the semantics of the context.
Then, we employ Semantic-aware green/red lists
Split (Sec. 3.3) to get the green/red list. Before
conducting bias, we get the entropy from the next
token’s probability distribution, and use Entropy-
based Dynamic Bias Adaptation (Sec. 3.4) to adjust
the bias. The procedure of injection can be found
in Algorithm 1 in appendix. We introduce Entropy-
based Token Filter module in App. A.

For watermark detection, given a text, for each
token, we obtain a watermark key from the context
and split the green/red lists based on the key follow-
ing the process of injection to determine whether
the token falls into the green list. We count the
number of green tokens T, and calculate z-score as:

z =
T − γN

γ(1− γ)N
(3)

where γ is the percentage of green list in entire
vocabulary and N is the number of tokens. Higher
z-score provides more confidence in determining
whether the text is watermarked. We expand the
explanation of watermark detection in App. B. The
detection procedure is in Algorithm 2 in appendix.

4 Experiments

4.1 Experiment Settings

Dataset. Following previous works (Hou et al.,
2023, Kirchenbauer et al., 2023a, Kuditipudi et al.,
2023), we randomly sampled 500 samples from the
RealNews subset of the C4 dataset (Raffel et al.,
2020), which contains a variety of news articles.
Baselines. Our baselines consist of the fol-
lowing watermark methods: (1) KGW / KGW-
Large (Kirchenbauer et al., 2023a), which split the

green/red lists based on the watermark key hashed
from the previous token to inject the watermark;
(2) Unigram watermark (Zhao et al., 2024), which
use a fixed green/red lists to improve the robust-
ness against paraphrasing attacks; (3) SWEET (Lee
et al., 2023), which reduce the number of bias to
improve the text quality; (4) EWD (Lu et al., 2024),
which gives weights to tokens based on their en-
tropy to improve the robustness against paraphras-
ing attacks; (5) EXP-Edit (Kuditipudi et al., 2023),
which bias the token sampling process to improve
the robustness against paraphrasing attacks (See
implication details in App. C).
Evaluation Metrics. Following the previous works
(Liu and Bu, 2024, Ren et al., 2023), our meth-
ods consist of: (1) Area Under the Receiver Op-
erating Characteristic curve (AUROC). AUROC
evaluates the performance of classification results
based on the True Positive Rate (TPR) and the
False Positive Rate (FPR) at various thresholds; (2)
TPR@5%FPR, which represents the ratio of wa-
termarked text that is detected correctly when 5%
of unwatermarked texts are misclassified as water-
marked text. (3) Best F1 score, which represents
the F1 score provided with the optimal TPR and
FPR during detection; (4) Perplexity. we use the
perplexity to measure the quality of the generated
texts. We use OPT-2.7B (Zhang et al., 2022) to
calculate the perplexity of the text.
Paraphrasing attacks setup. Following Zhao et al.
(2024), we test the detectability of the paraphrased
watermarked text since people tend to use the gen-
erated text after paraphrasing it rather than directly
using it. We use two types of paraphrasing attacks
to modify the watermarked text, including Pega-
sus (Zhang et al., 2020) and Dipper (Krishna et al.,
2024). Pegasus is a language model that simplifies
the watermarked text. Dipper is a model with 11B
parameters fine-tuned for paraphrasing, causing
a significant modification of the text. For Pega-
sus, we paraphrase the watermarked text through
beam search with 25 beams. For Dipper, we follow
the same parameter setting in Kirchenbauer et al.
(2023b), with the lex diversity of 60.

4.2 Overall Performance on Detectability
Table 1 shows the detectability of the original wa-
termarked text (No Attack) and robustness against
different paraphrasing attacks (Pegasus Attack and
Dipper Attack) in various watermark methods.
The detectability of the original watermarked texts
among various watermark methods (No Attack in

22638

Method No Attack Pegasus Attack Dipper Attack
TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) TPR@5%FPR (↑) Best F1 (↑) AUROC (↑)

KGW 0.9960 0.9940 0.9993 0.8480 0.9021 0.9298 0.5380 0.7947 0.8693
KGW-Large 0.9980 0.9950 0.9969 0.8980 0.8980 0.9486 0.5380 0.8230 0.9045
Unigram 0.9920 0.9970 0.9989 0.9120 0.9460 0.9743 0.6600 0.8379 0.9115
SWEET 0.9840 0.9889 0.9975 0.9220 0.9228 0.9695 0.5360 0.7907 0.8593
EWD 0.9960 0.9950 0.9943 0.9140 0.8891 0.9189 0.5060 0.7773 0.8492
EXP-Edit 0.9980 0.9947 0.9968 0.8860 0.9216 0.9452 0.5460 0.8407 0.8986
Ours 0.9980 0.9980 0.9998 0.9380 0.9545 0.9773 0.7880 0.8742 0.9188

Table 1: Performance comparison on different methods, including cases with no attack and two paraphrasing
attacks. The detectability of the cases with two paraphrasing attacks represents the performance of robustness.

Settings No Attack Paraphrasing Attack Text Quality
TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) Perplexity (↓)

Ours (Full Model) 0.9980 0.9980 0.9998 0.9380 0.9545 0.9773 6.1880
w/o Watermark Key 0.9940 0.9960 0.9992 0.9100 0.9326 0.9564 6.2432
w/o Green-Red Lists 0.9960 0.9960 0.9982 0.9402 0.9482 0.9738 6.7048
w/o Dynamic Bias 0.9920 0.9869 0.9976 0.9200 0.9431 0.9600 6.0649

Table 2: Performance comparison of robustness and text quality after the removal of different components.

unwatermarked

KGW KGW-Large
Unigram

SWEET
EWD EXP-Edit

Ours

10

20

Pe
rp

le
xi

ty

Mean Performance w/o Watermark

Figure 2: Violin plot of Text PPL over all methods.

Table 1) proves the effectiveness of current wa-
termark methods in watermark detection since all
watermark methods demonstrate effective perfor-
mance. Robustness against paraphrasing attacks
is represented by the detectabilities for the water-
marked texts under two paraphrasing attacks in
Pegasus Attack and Dipper Attack rows of Ta-
ble 1. The results demonstrate our method still
keeps a relatively high detectability while the de-
tectability of most baselines significantly deterio-
rated, which indicates the outperformance of our
method in robustness against paraphrasing attacks
since our method obtained the watermark key based
on the semantics of the context and increased the
number of green tokens in the original watermark
text. We test the time consumption among differ-
ent watermark methods during watermark injection
and detection in App. D.

4.3 Overall Performance on Text Quality

In Fig. 2, we compare the quality of generated
text by calculating text perplexity (PPL) on dif-
ferent watermark methods. We observe that our
method obtains similar perplexity to that of the

unwatermarked text, which shows our watermark
has almost no influence on the generated quality.
This performance can be attributed to our semantic-
based green/red lists allowing the model to sample
the desired tokens in the green list, which narrows
the gap in the semantics between the watermarked
text and the unwatermarked text.

4.4 Ablation Studies

In Table 2, we conduct ablation studies by remov-
ing the proposed modules one by one to verify
their effectiveness. We use Pegasus Attack as a
typical example of paraphrasing attacks. The row
2 demonstrates that the deletion of the Semantic-
based Watermark Key Generator (Sec. 3.2) worsens
the robustness performance, which indicates that
the semantic-aware key plays an important role
in improving the robustness against paraphrasing
attacks. The removal of the Semantic-based Green-
Red Lists Split (Sec. 3.3) increases perplexity in
the watermarked text, which proves the semantic-
based green/red lists help our method have a better
performance in text quality. We also find that re-
moving the semantic-based green/red lists worsens
the robustness against paraphrasing attacks since
our green/red lists have a more uniform distribu-
tion of the semantically similar tokens, resulting
in paraphrased tokens being more likely to fall on
the green list, maintaining the proportion of green
tokens. After removing the Dynamic Bias Adapta-
tion (Sec. 3.4), text quality increases slightly but ro-
bustness against paraphrasing attacks drops much,
which implies that the dynamic bias balances the
text quality and robustness against paraphrasing
attacks. Our method performs worse perplexity

22639

Method No Attack Pegasus Attack Dipper Attack Text Quality
TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) Perplexity (↓)

KGW 0.9940 0.9940 0.9995 0.7460 0.8731 0.9389 0.3080 0.7233 0.7777 4.2932
KGW-Large 0.9980 0.9970 0.9998 0.9140 0.9429 0.9503 0.4100 0.7712 0.8379 4.6295
Unigram 0.9780 0.9982 0.9927 0.9040 0.9261 0.9180 0.6040 0.8074 0.8885 4.2104
EXP-Edit 1.0000 0.9990 1.0000 0.8923 0.9431 0.9482 0.3768 0.7675 0.8328 4.9284
SWEET 1.0000 0.9980 1.0000 0.7273 0.7692 0.9407 0.3490 0.7599 0.8060 4.2156
EWD 0.9980 0.9940 0.9998 0.7273 0.5556 0.9298 0.3440 0.7472 0.7987 4.2330
Ours 1.0000 0.9990 1.0000 0.9260 0.9454 0.9522 0.7040 0.8316 0.9113 4.0928

Table 3: Performance comparison on different methods based on Llama-2-7b, including cases with no attack and
two paraphrasing attacks. Perplexity is calculated by Llama-2-13b.

compared to the method removing dynamic bias
due to our dynamic bias module focusing on im-
proving robustness against paraphrasing attacks
while slightly decreasing text quality.

We also conducted the performance comparison
on different methods with Llama-2-7b (Touvron
et al., 2023) as the backbone model. The result can
be found in Table 3 with analysis in App. E.

4.5 Semantic Coverage of Green List

To validate that our semantic-based green/red lists
provide more comprehensive semantics, we con-
ducted an experiment comparing the average se-
mantic similarity of the Top-K green tokens be-
tween our method (semantic-based green/red lists)
and the KGW method (traditional green/red lists).

Specifically, for each step, we random sample
a token from the vocabulary and find the Top-K
green tokens that have the highest semantic simi-
larity with the sampled token, and compute their
average similarity4. The higher metric reflects the
better semantic coverage of the green list. Table 4
shows that our method (semantic-based green list)
has higher similarities than the KGW method (tra-
ditional green list) across different K values. This
reflects that our green list is more semantically com-
prehensive. For a given token, a semantic-based
green list can provide highly semantically similar
tokens, indicating rich semantic coverage. This
demonstrates that our green list covers almost all
semantic space of the vocabulary, performing more
comprehensive coverage of the semantics.

4.6 Semantic Distribution between Green and
Red Lists

To confirm that the distribution of semantically sim-
ilar tokens in our semantic-based green/red lists is
more uniform, we conducted an experiment to com-
pare the distribution of our method (semantic-based

4The percentage of green tokens is set to 0.25. To evade
randomness, we set test times to 200 and K to 5, 10, 20 or 50.
We use the cosine similarity of token embeddings to measure
the semantic similarity between tokens.

Settings Method Semantic Similarity (↑)
K=5

KGW 0.529
Ours 0.542 (+2.40%)

K=10
KGW 0.528
Ours 0.535 (+1.31%)

K=20
KGW 0.505
Ours 0.507 (+0.39%)

K=50
KGW 0.484
Ours 0.485 (+0.21%)

Table 4: Comparison of semantic comprehensiveness.
Higher Similarity indicates comprehensiveness.

Settings Method Standard Deviation (↓)
K=5

KGW 0.1997
Ours 0.1887 (-5.83%)

K=10
KGW 0.1456
Ours 0.1357 (-7.29%)

K=20
KGW 0.0937
Ours 0.0935 (-0.21%)

K=50
KGW 0.0621
Ours 0.0576 (-7.81%)

Table 5: Comparison of semantic distribution. Lower
Standard Deviation indicates more uniform distribution.

green/red lists) to that of the KGW method (tradi-
tional green/red lists). The experimental settings
are identical to those in Section 4.5.

Specifically, for each step, we randomly split the
green/red lists and find the Top-K tokens with the
highest semantic similarity with a fixed token and
determine the proportion of green tokens among
these K tokens. We then calculate the standard de-
viation to analyze the distribution. Table 5 presents
that our method (semantic-based green/red lists)
achieves lower standard deviations compared to the
KGW method (traditional green/red lists) across
different K values, which suggests a more uniform
distribution of semantically similar tokens in our
semantic-based green/red lists. This uniform dis-
tribution implies that the frequency of tokens from
various semantics appearing more evenly in our
semantic-based green/red lists. Consequently, the
watermarked text based on our approach is seman-
tically closer to the unwatermarked text.

We also present the robustness against paraphras-

22640

ing attacks of different numbers of LSH hyper-
planes in Table 9 with analysis in App. F.

5 Conclusion

In this paper, we propose a semantic-based water-
mark method for LLMs that balances text quality
and robustness against paraphrasing attacks. Our
approach effectively retrieves the semantic water-
mark key and ensures coverage among semantically
similar tokens in the green list while reducing the
semantic distribution gap between the green list
and the entire vocabulary. This allows the model to
sample desired text in the green list, enhancing text
quality. Dynamic bias adaption addresses fixed bias
adaptation limitations. The experiments show our
method excels in robustness against paraphrasing
attacks and significantly improves text quality.

Limitations

Locality-Sensitive Hashing (LSH) algorithm is a
relatively old-fashioned method for gathering se-
mantically similar tokens. Some advanced methods
can perform better in splitting the sets of seman-
tically similar tokens. Nevertheless, our method
regards the LSH method as a module that can be
easily replaced with other advanced methods.

The dataset and backbone model we utilized in
the experiment are comparatively small. The Real-
News subset from C4 dataset (Raffel et al., 2020)
and OPT-1.3B (Zhang et al., 2022) are recognized
as benchmark standards, widely used by numer-
ous studies (Kirchenbauer et al., 2023a, Hou et al.,
2023, Wang et al., 2023, Liu et al., 2023). Although
our method is relatively independent and can easily
adapt to new datasets and models, we choose these
benchmarks for fair comparison.

We only tested our watermarking method in an
English environment, lacking validation in multi-
lingual contexts. However, our token-based wa-
termark design exhibits high compatibility with
various languages. We conducted our experiments
on the datasets composed of English corpora to
align with existing watermark methods.

Ethical Considerations

Privacy: Watermarking technology does not
present ethical concerns. On the contrary, water-
marking can enhance the accountability of large
language model API access by tracking malicious
users, without infringing on individual user privacy.

Human Resources: As our research does not in-
volve manual annotation, there is no risk of labor
exploitation, such as forcing employees to over-
work or paying them below-market wages.
Watermark Application: The advanced capabil-
ities of LLMs have greatly increased the need for
detecting LLM-generated texts. We advocate for
the integration of watermarking methods into mod-
els to improve the governance of LLMs. While our
method demonstrates excellent robustness and text
quality, the watermark remains vulnerable to para-
phrasing attacks from advanced language models
and thus should not be overly relied on. We remind
users to pay attention to the above issue.

Acknowledgments

This work is supported by the following fund-
ings: Young Elite Scientist Sponsorship Pro-
gram by CAST (2023QNRC001) under Grant
No. YESS20230367, the National Natural Science
Foundation of China under Grant No. 62306330,
No. 62106275, No. 62025208, No. 62421002, and
the Grant of No. WDZC20235250103.

References
Nasraddin Ahmed Salem Al-maweri, Wan Azizun Wan

Adnan, Abdul Rahman Ramli, Khairulmizam Sam-
sudin, and Sharifah Mumtazah Syed Ahmad Abdul
Rahman. 2016. Robust digital text watermarking
algorithm based on unicode extended characters. In-
dian Journal of Science and Technology.

Reem A Alotaibi and Lamiaa A Elrefaei. 2018. Im-
proved capacity arabic text watermarking meth-
ods based on open word space. Journal of King
Saud University-Computer and Information Sciences,
30(2):236–248.

Mikhail J Atallah, Victor Raskin, Michael Crogan,
Christian Hempelmann, Florian Kerschbaum, Dina
Mohamed, and Sanket Naik. 2001. Natural lan-
guage watermarking: Design, analysis, and a proof-
of-concept implementation. In Information Hiding:
4th International Workshop, IH 2001 Pittsburgh, PA,
USA, April 25–27, 2001 Proceedings 4, pages 185–
200. Springer.

Isabelle Augenstein, Timothy Baldwin, Meeyoung Cha,
Tanmoy Chakraborty, Giovanni Luca Ciampaglia,
David Corney, Renee DiResta, Emilio Ferrara, Scott
Hale, Alon Halevy, Eduard Hovy, Heng Ji, Filippo
Menczer, Ruben Miguez, Preslav Nakov, Dietram
Scheufele, Shivam Sharma, and Giovanni Zagni.
2023. Factuality challenges in the era of large lan-
guage models. Preprint, arXiv:2310.05189.

Moses S Charikar. 2002. Similarity estimation tech-
niques from rounding algorithms. In Proceedings of

22641

https://arxiv.org/abs/2310.05189
https://arxiv.org/abs/2310.05189

the thiry-fourth annual ACM symposium on Theory
of computing, pages 380–388.

Miranda Christ, Sam Gunn, and Or Zamir. 2023. Un-
detectable watermarks for language models. arXiv
preprint arXiv:2306.09194.

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien
Chappelier, and Teddy Furon. 2023. Three bricks to
consolidate watermarks for large language models.
In 2023 IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1–6. IEEE.

Eva Giboulot and Furon Teddy. 2024. Watermax:
breaking the llm watermark detectability-robustness-
quality trade-off. arXiv preprint arXiv:2403.04808.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association
for Computational Linguistics, 6:437–450.

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu,
Fangzhao Wu, Jiwei Li, and Ruoxi Jia. 2022. Cater:
Intellectual property protection on text generation
apis via conditional watermarks. Advances in Neural
Information Processing Systems, 35:5431–5445.

Abe Bohan Hou, Jingyu Zhang, Tianxing He,
Yichen Wang, Yung-Sung Chuang, Hongwei Wang,
Lingfeng Shen, Benjamin Van Durme, Daniel
Khashabi, and Yulia Tsvetkov. 2023. Semstamp: A
semantic watermark with paraphrastic robustness for
text generation. arXiv preprint arXiv:2310.03991.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu,
Hongyang Zhang, and Heng Huang. 2023. Unbiased
watermark for large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth an-
nual ACM symposium on Theory of computing, pages
604–613.

Nurul Shamimi Kamaruddin, Amirrudin Kamsin,
Lip Yee Por, and Hameedur Rahman. 2018. A review
of text watermarking: theory, methods, and applica-
tions. IEEE Access, 6:8011–8028.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023a.
A watermark for large language models. In Proceed-
ings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine
Learning Research, pages 17061–17084. PMLR.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando,
Aniruddha Saha, Micah Goldblum, and Tom Gold-
stein. 2023b. On the reliability of watermarks for
large language models. In The Twelfth International
Conference on Learning Representations.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. 2024. Paraphras-
ing evades detectors of ai-generated text, but retrieval
is an effective defense. Advances in Neural Informa-
tion Processing Systems, 36.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2023. Robust
distortion-free watermarks for language models.
arXiv preprint arXiv:2307.15593.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2023. Who wrote this code? watermarking for
code generation. arXiv preprint arXiv:2305.15060.

Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie
Wen, Irwin King, and S Yu Philip. 2023. A private
watermark for large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Yepeng Liu and Yuheng Bu. 2024. Adaptive text wa-
termark for large language models. arXiv preprint
arXiv:2401.13927.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin
King. 2024. An entropy-based text watermarking
detection method. arXiv preprint arXiv:2403.13485.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Lip Yee Por, KokSheik Wong, and Kok Onn Chee. 2012.
Unispach: A text-based data hiding method using
unicode space characters. Journal of Systems and
Software, 85(5):1075–1082.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang
Wang, Dawei Yin, and Jiliang Tang. 2023. A
robust semantics-based watermark for large lan-
guage model against paraphrasing. arXiv preprint
arXiv:2311.08721.

Yiping Song, Juhua Zhang, Zhiliang Tian, Yuxin Yang,
Minlie Huang, and Dongsheng Li. 2024. Llm-based
privacy data augmentation guided by knowledge dis-
tillation with a distribution tutor for medical text clas-
sification. Preprint, arXiv:2402.16515.

22642

https://doi.org/10.1162/tacl_a_00030
https://doi.org/10.1162/tacl_a_00030
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://arxiv.org/abs/2402.16515
https://arxiv.org/abs/2402.16515
https://arxiv.org/abs/2402.16515
https://arxiv.org/abs/2402.16515

Yuki Takezawa, Ryoma Sato, Han Bao, Kenta Niwa,
and Makoto Yamada. 2023. Necessary and suffi-
cient watermark for large language models. Preprint,
arXiv:2310.00833.

Zhiliang Tian, Yingxiu Zhao, Ziyue Huang, Yu-Xiang
Wang, Nevin L. Zhang, and He He. 2022. Seqpate:
Differentially private text generation via knowledge
distillation. In Advances in Neural Information Pro-
cessing Systems, volume 35, pages 11117–11130.
Curran Associates, Inc.

Mercan Topkara, Umut Topkara, and Mikhail J Atallah.
2006a. Words are not enough: sentence level natural
language watermarking. In Proceedings of the 4th
ACM international workshop on Contents protection
and security, pages 37–46.

Umut Topkara, Mercan Topkara, and Mikhail J Atallah.
2006b. The hiding virtues of ambiguity: quantifi-
ably resilient watermarking of natural language text
through synonym substitutions. In Proceedings of
the 8th workshop on Multimedia and security, pages
164–174.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Honai Ueoka, Yugo Murawaki, and Sadao Kuro-
hashi. 2021. Frustratingly easy edit-based linguistic
steganography with a masked language model. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5486–5492, Online. Association for Computa-
tional Linguistics.

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou,
Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
2023. Towards codable text watermarking for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Nathaniel Weir, João Sedoc, and Benjamin Van Durme.
2020. COD3S: Diverse generation with discrete se-
mantic signatures. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5199–5211, Online. As-
sociation for Computational Linguistics.

Yihan Wu, Zhengmian Hu, Hongyang Zhang, and
Heng Huang. 2023. Dipmark: A stealthy, efficient
and resilient watermark for large language models.
Preprint, arXiv:2310.07710.

Xi Yang, Kejiang Chen, Weiming Zhang, Chang Liu,
Yuang Qi, Jie Zhang, Han Fang, and Nenghai Yu.
2023. Watermarking text generated by black-box
language models. arXiv preprint arXiv:2305.08883.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Ze-
hua Ma, Feng Wang, and Nenghai Yu. 2022. Tracing
text provenance via context-aware lexical substitu-
tion. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 36, pages 11613–11621.

KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. 2024.
Advancing beyond identification: Multi-bit wa-
termark for large language models. Preprint,
arXiv:2308.00221.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J Liu. 2020. Pegasus: pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on
Machine Learning, pages 11328–11339.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li,
and Yu-Xiang Wang. 2024. Provable robust water-
marking for AI-generated text. In The Twelfth Inter-
national Conference on Learning Representations.

A Entropy-based Token Filter

To solve the problem where biasing low-entropy
tokens will worsen text quality, we propose the
Entropy-based Token Filter to ignore low-entropy
tokens and not inject watermarks into them, which
preserves their probability distribution and main-
tains the semantic, improving text quality of the
watermarked text.

As described in Sec. 3.4, the probability distri-
bution with low entropy means one or a very few
tokens account for a large proportion of the proba-
bility, making it difficult to sample the green tokens
if these high-probability tokens are not in the green
list. It is feasible to introduce a large bias in the
probability distribution and enlarge the probability
of sampling green tokens. However, the drastic

22643

https://arxiv.org/abs/2310.00833
https://arxiv.org/abs/2310.00833
https://proceedings.neurips.cc/paper_files/paper/2022/file/480045ad846b44bf31441c1f1d9dd768-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/480045ad846b44bf31441c1f1d9dd768-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/480045ad846b44bf31441c1f1d9dd768-Paper-Conference.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2021.naacl-main.433
https://doi.org/10.18653/v1/2021.naacl-main.433
https://doi.org/10.18653/v1/2020.emnlp-main.421
https://doi.org/10.18653/v1/2020.emnlp-main.421
https://arxiv.org/abs/2310.07710
https://arxiv.org/abs/2310.07710
https://arxiv.org/abs/2308.00221
https://arxiv.org/abs/2308.00221
https://openreview.net/forum?id=SsmT8aO45L
https://openreview.net/forum?id=SsmT8aO45L

Settings No Attack Paraphrasing Attack Text Quality
TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) Perplexity (↓)

Ours 0.9980 0.9980 0.9998 0.9380 0.9545 0.9773 6.1880
w/ Entropy-based Token Filter 0.9960 0.9970 0.9994 0.9560 0.9606 0.9870 5.8942

Table 6: Performance comparison of our original method and our method with the entropy-based token filter
module.

Proxy LM No Attack Paraphrasing Attack Text Quality
TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) Perplexity (↓)

OPT-125M 0.9960 0.9970 0.9994 0.9560 0.9606 0.9870 5.8942
GPT2 0.9980 0.9920 0.9993 0.9573 0.9629 0.9884 5.7403

OPT-350M 0.9980 0.9940 0.9979 0.9590 0.9682 0.9938 5.7365

Table 7: Performance comparison of our method with the entropy-based token filter module with different Proxy
LMs.

biasing of the probability distribution severely im-
pacts the semantics which affects the coherence of
the text, causing a decline in text quality.

Hence, we set a threshold of entropy to select
these low-entropy tokens and preserve their prob-
ability distributions, which means there is no wa-
termark injection on these low-entropy tokens. We
refer to the token sampled from the original proba-
bility distribution as unwatermarked token and the
token sampled from the biased distribution as wa-
termarked token. When detecting text, we filter out
these unwatermarked tokens and only calculate the
proportion of green tokens among the watermarked
tokens.

We follow the entropy described in Sec. 3.4. We
regard the LLM using the watermark method as a
watermarked LLM. We use a Proxy Model (PM)
to calculate the probability distribution of the next
token and estimate the entropy given previous se-
quences to avoid invocating the watermarked LLM
during watermark detection, which will turn our
method into a white-box method, lacking practical-
ity. We employ OPT-125M (Zhang et al., 2022) as
the PM, which is a smaller-scale language model
compared to the watermarked LLM.

Filtering the low-entropy tokens means the wa-
termark injection will maintain the semantics and
keep the coherence of the text during generation.
When detecting text, the proportion of green tokens
can be preserved by filtering out these unwater-
marked tokens, which maintains robustness against
paraphrasing attacks.

We test the performance of this module by
adding the module to our method. The result can
be found in Table 6. We found our method will
have a better performance with this module. We
also test the performance of our method with this
module while using different Proxy LMs, including

Algorithm 1 Watermark Injection
Input: Large language model LLM(·), previous
watermarked sequences s(1):(t−1), hash size K,
green list ratio γ, watermark strength δ, genera-
tion length L.

1: for t← t to L do
2: Initialize G
3: key ← LSH(s(t−1))
4: for i← 1 to K do
5: For each set Si, partition it into a green

list Gi of size |Si| and a red list Ri of size
(1− γ)|Si| seeded by key.

6: G← G ∪Gi

7: end for
8: logits l← LLM(s(1):(t−1))
9: entropy ent← H(s(t))

10: dynamic bias δ′ = δ · 1
ent+ϕ

11: for v ∈ G do
12: l̂v = lv · (1 + δ′)
13: end for
14: biased probs p̂ = softmax(l̂)
15: sample a next token s(t) from p̂
16: end for
Output: watermarked text s(1), s(2), ..., s(L)

OPT-125M (Zhang et al., 2022), GPT-2 (Radford
et al., 2019) and OPT-350M (Zhang et al., 2022).
The result in Table 7 shows that our method will ex-
hibit even better results as the proxy LM becomes
stronger. However, the outperformance comes at
the cost of time.

B Procedure of Watermark Injection and
Detection

The process of watermark injection is as Sec. 3.5
described. The injection procedure can be found in
Algorithm 1.

22644

Algorithm 2 Watermark Detection

Input: Suspicious text s(1), s(2), ..., s(L), Proxy
LM PM(·), hash size K

1: Initialize count of detected tokens ND

2: Initialize count of green tokens NG

3: for t← 2 to L do
4: Initialize G
5: key ← LSH(s(t−1))
6: for i← 1 to K do
7: For each set Si, partition it into a green

list Gi of size |Si| and a red list Ri of size
(1− γ)|Si| seeded by key.

8: G← G ∪Gi

9: end for
10: if s(t) ∈ G then
11: NG += 1
12: end if
13: ND += 1
14: end for
15: z-score z = NG−γND

γ(1−γ)ND

Output: z-score z

During watermark detection, Kirchenbauer et al.
(2023a) test the following null hypothesis through
a one-proportion z-test to detect whether the text is
injected into a watermark:

H0 : The text is generated (or written) lacking
knowledge about the green/red lists.

According to Eq. 3, the z-score indicates the
difference in the number of green tokens between
the suspicious text and the unwatermarked text.
The null hypothesis will be rejected if the z-score
used in 3 computed based on the number of green
tokens in the text exceeds a threshold M .

During detection, we detect the tokens in the text
one by one to count the number of green tokens.
We determine the text is watermarked when z-score
z > Mr, where Mr is located according to a given
FPR r: We define watermarked as the positive class
and unwatermarked as the negative class. We get
Mr = m where m is the selected threshold in which
r percentage of unwatermarked texts are classified
as watermarked falsely. The process of watermark
detection is as Alogrithm 2.

C Additional Experiment Settings

Implication details. Following Kirchenbauer et al.
(2023a), we utilize OPT-1.3B (Zhang et al., 2022)

as the backbone model. For each sample, We use
the first 20 tokens of each text as a prompt for the
model. For each prompt, we expect the model to
generate 200± 5 tokens. For KGW, Unigram wa-
termark, SWEET, EWD, and our method, we set
the green list percentage γ and the bias δ to 0.5 and
1.5 respectively. For KGW-Large, we use a larger
bias δ = 2.0 to test the impact of the large bias on
the text quality and robustness. For EXP-Edit, we
follow the same settings from the original paper.
We use Pytorch (Paszke et al., 2019) during experi-
ments. RealNews dataset uses news from Common
Crawl dumps from December 2016 through March
2019 as training data and the articles published in
April 2019 from the April 2019 dump as evaluation
data.

Computing Infrastructure and Budget: We run
sampling and paraphrase attack jobs on 2 A100
GPUs, taking up a total of around 100 GPU hours.

D Generation time of Watermarked Text

This section compares the watermarked text gener-
ation time and the watermark detection time for dif-
ferent watermark methods. We follow the same set-
ting for all watermark methods in Sec. 4.1. We gen-
erate and detect 500 samples of watermarked text,
each containing 200 ± 5 tokens for each method.
Later, we compute the average time taken for both
the generation and detection of each sample of wa-
termarked text.

The result can be found in Table 8. For gen-
eration time, EXP-Edit has the fastest generation
time because it directly biases the process of to-
ken sampling to inject the watermark and does not
require the computation of biasing the probability
distribution. However, during the detection time,
the EXP-Edit method has the worst performance
due to its requirement during watermark detection
of calculating the alignment between the water-
marked text and the watermark key sequence. The
SWEET method and EWD method need to use the
original LLM during watermark detection, which
causes a time consumption. The performance of
our method is very similar to these methods only
using green/red lists though we add these mod-
ules. Our method with the entropy-based token
filter module causes more wastage of computing
and time resources compared to our basic method
since we introduce a Proxy LM during generation
and detection.

22645

Method Average Generation Time Average Detection Time
KGW 4.53s 0.05s
Unigram 4.16s 0.04s
SWEET 4.95s 0.10s
EWD 4.56s 0.08s
EXP-Edit 1.53s 172.89s
Ours 4.37s 0.04s
Ours w/ Entropy-based Token Filter 5.62s 0.06s

Table 8: Text generation and detection time performance in different watermark methods.

d
No Attack Paraphrasing Attack Text Quality

TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) TPR@5%FPR (↑) Best F1 (↑) AUROC (↑) Perplexity (↓)
2 0.9900 0.9909 0.9964 0.9400 0.9467 0.9689 5.7186
4 0.9960 0.9989 0.9974 0.9360 0.9507 0.9775 6.1129
8 0.9980 0.9960 0.9998 0.9320 0.9494 0.9691 6.0039

Table 9: Performance comparison of robustness and text quality in different settings of d.

E Experiments on different watermark
methods based on Llama-2

To test the effect of those watermark methods in a
newer and larger LLM, we conducted experiments
with a larger model, Llama2-7b (Touvron et al.,
2023). We then use Llama-2-13b to calculate the
text perplexity. We found the result in Table 3 is
similar to the result in Table 1, where our method
achieves the best performance of robustness against
paraphrasing attacks and the best text quality. The
result proves that our method still has a better per-
formance compared to the baselines even if we use
a larger model as the backbone model.

F Effect of Number of LSH Hyperplanes

We test the performance of our method across dif-
ferent numbers of the random hyperplanes d. The
result can be found in Table 9. We found when
d = 4, our method performs best in robustness
against paraphrasing attacks since the tokens are
more likely to fall into the same region after suf-
fering paraphrasing attacks. However, robustness
performance when d = 2 is weaker, which indicates
too few hyperplanes used in our method will result
in more tokens falling into the same region in se-
mantic space, which causes an inflated number of
green tokens, leading to misclassifying the unwa-
termarked text as watermarked text, causing bad
performance in both the detectability of the water-
marked text and robustness against paraphrasing
attacks. Based on the above analysis, we set d to 4
in Sec. 4 to maintain robustness against paraphras-
ing attacks.

22646

